Determine whether each of the following salts will form a solution that is acidic, basic, or pH-neutral. Drag the appropriate items to their respective bins.
Al(NO3)3
C2H5NH3NO3
NaClO
RbI
CH3NH3CN

Answers

Answer 1

Answer:

Al(NO₃)₃: Acidic.

C₂H₅NH₃NO₃: Acidic.

NaClO: Basic

RbI: pH-neutral

CH₃NH₃CN: Solution basic

Explanation:

The general rules to determine if a solution is acidic, basic or neutral are:

If it is a salt of a strong acid and base, the solution will be pH-neutral. If it is a salt of a strong acid and a weak base, the solution will be acidic due to the hydrolysis of the weak base component (cation). If it is a salt of a strong base and a weak acid, the solution will be basic due to the hydrolysis of the weak acid component (anion).

For the salts:

Al(NO₃)₃. The repective acid is HNO₃ (Strong acid) and the base is Al(OH)₃ (Weak base). As the salt comes from strong acid and weak base. SOLUTION ACIDIC

C₂H₅NH₃NO₃. The acid is HNO₃ (Strong acid) and the base C₂H₅NH₃OH (Weak base). SOLUTION ACIDIC.

NaClO. Tha acid is HClO (weak acid), and the base NaOH (Strong base). SOLUTION BASIC.

RbI: The acid is HI (Strong acid) and the base RbOH (Strong base). pH-NEUTRAL

CH₃NH₃CN. The acid is HCN (weak acid; pKb = 4.79) and  the base CH₃NH₃OH (weak base; pKa = 10.64). Both weak acid and base will produce each hydrolisis. The lower pK will predominate. That is the weak acid. SOLUTION BASIC

Answer 2

Solution of Al(NO₃)₃ and C₂H₅NH₃NO₃ salts is acidic, NaClO is basic and of RbI & CH₃NH₃cyanide is neutral in nature.

What is pH?

pH of any solution tells about the acidity or basicity of the solution, pH of any solution ranges from 0 to 14 and from acidity to basicity.

Al(NO₃)₃ is a salt which is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base Al(OH)₃, so the resultant solution of the salt is acidic in nature.C₂H₅NH₃NO₃ salt is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base C₂H₅NH₃OH, so the resultant solution of the salt is acidic in nature.NaClO is a salt of weak acid is HClO and strong base NaOH, so the resultant solution of the salt is basic in nature.RbI salt is formed by the combination of strong acid HI and strong base RbOH, so the resultant solution of the salt is neutral in nature.CH₃NH₃Cyanide is a salt of weak acid hydrogen cyanide and weak base CH₃NH₃OH,  so the resultant solution of the salt is neutral in nature.

Hence, appropriate differentiation was done above.

To know more acidity or basicity, visit the below link:

https://brainly.com/question/172153


Related Questions

Calculate the maximum volume in mL of 0.18 M HCl that a tablet containing 340 mg Al(OH)3 and 516 mg Mg(OH)2 would be expected to neutralize. Assume complete neutralization.

Answers

Answer:

171 mL of HCl

Explanation:

The first thing we want to do is consider the reaction between Al(OH)3 and water - as that is the expected reaction that is taking place,

Al(OH)3 + 3HCl → AlCl3 + 3H2O

Knowing this, let's identify the mass of Al(OH)3. Aluminum = 27 g / mol, Oxygen( 3 ) = 16 [tex]*[/tex] 3 = 48, Hydrogen ( 3 ) = 1 [tex]*[/tex] 3 = 3 - 27 + 48 + 3 = 78 g / mol. This value is approximated however ( 78 g / mol ), as the molar mass of each substance is rounded as well. Another key thing we need to do here is to convert 340 mg → grams, considering that that unit is a necessity with respect to moles, as you might know - 340 mg = 0.340 g.

Now we can calculate how much moles of HCl will be present in solution, provided we have sufficient information for that,

(0.340 g Al(OH)3) / (78.0036 g / mol Al(OH)3) [tex]*[/tex] (3 mol HCl / 1 mol Al(OH)3)

⇒ (.004358773185 g^2 / mol Al(OH)3) [tex]*[/tex] (3 HCl / Al(OH)3 )

⇒ .01307632 mol HCl

We can apply this same concept on the reaction of Mg(OH)2 and water, receiving the number of moles of HCl when that takes place. Then we can add the two ( moles of HCl ) and divide by the value " 0.18 mol / L " given to us.

" Mg(OH)2 + 2HCl → MgCl2 + 2H2O "

Molar mass of Mg(OH)2 = 58.3197 g / mol,

516 mg = 0.516 g

(0.516 g Mg(OH)2) / (58.3197 g / mol Mg(OH)2) [tex]*[/tex] (2 mol HCl / 1 mol Mg(OH)2)

= .017695564 mol HCL

___________

( .01307632 + .017695564 ) / ( 0.18 M HCl )

= 0.170954911 L

= 171 mL of HCl

A strontium hydroxide solution is prepared by dissolving 10.60 gg of Sr(OH)2Sr(OH)2 in water to make 47.00 mLmL of solution.What is the molarity of this solution? Express your answer to four significant figures and include the appropriate units.

Answers

Answer:

Approximately [tex]1.854\; \rm mol\cdot L^{-1}[/tex].

Explanation:

Note that both figures in the question come with four significant figures. Therefore, the answer should also be rounded to four significant figures. Intermediate results should have more significant figures than that.

Formula mass of strontium hydroxide

Look up the relative atomic mass of [tex]\rm Sr[/tex], [tex]\rm O[/tex], and [tex]\rm H[/tex] on a modern periodic table. Keep at least four significant figures in each of these atomic mass data.

[tex]\rm Sr[/tex]: [tex]87.62[/tex].[tex]\rm O[/tex]: [tex]15.999[/tex].[tex]\rm H[/tex]: [tex]1.008[/tex].

Calculate the formula mass of [tex]\rm Sr(OH)_2[/tex]:

[tex]M\left(\rm Sr(OH)_2\right) = 87.62 + 2\times (15.999 + 1.008) = 121.634\; \rm g \cdot mol^{-1}[/tex].

Number of moles of strontium hydroxide in the solution

[tex]M\left(\rm Sr(OH)_2\right) =121.634\; \rm g \cdot mol^{-1}[/tex] means that each mole of [tex]\rm Sr(OH)_2[/tex] formula units have a mass of [tex]121.634\; \rm g[/tex].

The question states that there are [tex]10.60\; \rm g[/tex] of [tex]\rm Sr(OH)_2[/tex] in this solution.

How many moles of [tex]\rm Sr(OH)_2[/tex] formula units would that be?

[tex]\begin{aligned}n\left(\rm Sr(OH)_2\right) &= \frac{m\left(\rm Sr(OH)_2\right)}{M\left(\rm Sr(OH)_2\right)}\\ &= \frac{10.60\; \rm g}{121.634\; \rm g \cdot mol^{-1}} \approx 8.71467\times 10^{-2}\; \rm mol\end{aligned}[/tex].

Molarity of this strontium hydroxide solution

There are [tex]8.71467\times 10^{-2}\; \rm mol[/tex] of [tex]\rm Sr(OH)_2[/tex] formula units in this [tex]47\; \rm mL[/tex] solution. Convert the unit of volume to liter:

[tex]V = 47\; \rm mL = 0.047\; \rm L[/tex].

The molarity of a solution measures its molar concentration. For this solution:

[tex]\begin{aligned}c\left(\rm Sr(OH)_2\right) &= \frac{n\left(\rm Sr(OH)_2\right)}{V}\\ &= \frac{8.71467\times 10^{-2}\; \rm mol}{0.047\; \rm L} \approx 1.854\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

(Rounded to four significant figures.)

Ag+(aq)+2NH3(aq)⇌Ag(NH3)2+(aq) : A g + ( a q ) + 2 N H 3 ( a q ) ⇌ A g ( N H 3 ) 2 + ( a q ) : blank is the Lewis acid and blank is the Lewis base. is the Lewis acid and A g + ( a q ) + 2 N H 3 ( a q ) ⇌ A g ( N H 3 ) 2 + ( a q ) : blank is the Lewis acid and blank is the Lewis base. is the Lewis base.

Answers

Answer:

Silver ion - Lewis acid, Ammonia -  Lewis base

Explanation:

The reaction is given as;

Ag+(aq) + 2NH3(aq) ⇌ [Ag(NH3)]2+(aq)

A lewis acid is an electron pair acceptor. While a lewis base is any substance that that can donate a pair of nonbonding electrons.

This reaction however is a complexation reaction, where ammonia is reacting with the silver ion.

Silver ion accepts electrons in this reaction, hence it is the lewis acid. The ammonia on the other hand donates the electrons used in bonding so it is the lewis base.

Q1) How much heat is released when 6.38 grams of Ag(s) (m.m = 107.9 g/mol) reacts by the equation shown below at
standard state conditions?
4A9 (s) + 2H,Sq) + O2(g)
2Ag $(s) + 2H200)
Substance
AHof (kJ/mol)
-20.6
H259)
Ag2S (5)
H200
-32.6
-285.8
a)
8.80 KI
b) 69.9 kJ
C) 22.1 kJ
d) 90.8 kJ
e) 40.5 kJ​

Answers

Answer:

The correct answer is -8.80 kJ.

Explanation:

The ΔH° can be determined by using the formula,  

ΔH°rxn = ΔH°f (products) - ΔH°f(reactants)

Based on the given information, the ΔH°f of H2S(g) is -20.6, for Ag2S (s) is -32.6 and for H2O (l) is -285.8 kJ/mole.  

Now putting the values we get,  

= [2 molΔH°f (Ag2S) + 2 molΔH°f (H2O)] - [4 molΔH°f(Ag) + 2 molΔH°f(H2S) + 1 molΔH°f(O2)]

=[2 mol (-32.6 kJ/mol) + 2 mol(-285.8 kJ/mol)] - [4 mol(0.00 kJ/mol) + 2 mol (-20.6 kJ/mol) + 1 mol (0.00 kJ/mol)

= [(-65.2 kJ) + (-571.6 kJ)] - [(-41.2 kJ)]

= -595.6 kJ

Thus, the enthalpy change of -595.6 kJ takes place when 4 mol of Ag reacts by the equation mentioned.  

The mass of Ag given is 6.38 grams, the molecular mass of Ag is 107.9 g/mol. The formula for calculating moles is,  

Moles = mass/molar mass

= 6.38 g / 107.9 g/mol

= 0.0591 mol

Now the change in enthalpy when 0.0591 mol of Ag reacts by the given reaction is (-595.6 kJ/4 mol) × 0.0591 mol = -8.80 kJ

The negative sign indicates that the heat is released in the process. Therefore, the -8.80 kJ of heat is released by 6.38 grams of Ag in the given case.  

Using the periodic table provided, identify the atomic mass of sodium (Na) . Your answer should have 5 significant figures. Provide your answer below: __ amu

Answers

Answer:

Your answer will either be 22.9897 or 22.990 !!

Explanation:

Stote 4 ways in which excesine alcohol conscuption is
harmful to humans​

Answers

Answer:

An addiction could occur, maybe an overdose?, this could lead to death and maybe you would do unreasonable things which could get you fined or arrested.

Explanation:

Answer:

Excessive alcohol is harmful because you could get addicted.Alcohol can affect your nervous system.Your sugar levels will not be good.Parts of your body and organs will become inflamed.You can get a larger amount of muscle cramps.Also you will not be able to get enough vitamins in your body.Accidents that lead to deaths could occur.You would do crazy actions with things such as theft or breaking into a house which could get you fined or arrested.Too much alcohol can lead to high blood pressure, disease and even strokes.You can have birth defectsWith excessive alcohol you can get osteoporosis.You can also get your immune system weakened.Finally, alcohol can lead to cancer.

Hope this helped,

Kavitha

Compare strontium with rubidium in terms of the following properties:
a. Atomic radius, number of valence electrons, ionization energy.
b. Strontium is smaller than rubidium.
c. Rubidium is smaller than strontium.
d. Strontium has more valence electrons.
e. Rubidium has more valence electrons.
f. Strontium has a larger ionization energy.
g. Rubidium has a larger ionization energy.

Answers

Answer:

Strontium is smaller

Strontium has the higher ionization energy

Strontium has more valence electrons

Explanation:

It must be understood that both elements belong to the same period i.e the same horizontal band of the periodic table

While Rubidium is an alkali metal(group 1) while Strontium is an alkali earth metal(group 2)

Since they are in the same period, periodic trends would be useful in evaluating their properties

In terms of atomic radius, rubidium is larger meaning it has a bigger atomic size

Generally, across the periodic table, atomic radius is expected to decrease and thus Rubidium which is leftmost is expected to have the higher atomic radius

Since strontium belongs to group 2 of the periodic table, it has 2 valence electrons which is more than the single valence electron that rubidium which is in group 1 has

In terms of ionization energy, the atom with the higher number of valence electrons will have the higher ionization energy which is strontium in this case

Modern atomic theory states that atoms are neutral. How is this neutrality achieved in atoms? (2 points)

Answers

I’m pretty sure the answer is that there are equal number of protons and electrons

A reaction mixture at 175 K initially contains 522 torr of NO and 421 torr of O2. At equilibrium, the total pressure in the reaction mixture is 748 torr. Calculate Kp at this temperature. Express your answer to three significant figures.

Answers

Answer:

[tex]Kp=0.0386[/tex]

Explanation:

Hello,

In this case, the undergoing chemical reaction is:

[tex]2NO+O_2\rightleftharpoons 2NO_2[/tex]

For which the equilibrium expression is:

[tex]Kp=\frac{p_{NO_2}^2}{p_{NO}^2p_{O_2}}[/tex]

Whereas, at equilibrium, each pressure is computed in terms of the initial pressure and the reaction extent via:

[tex]p_{NO_2}=2x\\p_{NO}=522-2x\\p_{O_2}=421-x[/tex]

And the total pressure:

[tex]p_{eq}=p_{NO_2}+p_{NO}+p_{O_2}\\\\p_{eq}=2x+522-2x+421-x\\\\p_{eq}=943-x[/tex]

Yet it is 748 torr, for which the extent is:

[tex]x=943-p_{eq}=943-748\\\\x=195torr[/tex]

Therefore, Kp turns out:

[tex]Kp=\frac{(2x)^2}{(522-2x)^2(421-x)}\\\\Kp=\frac{(2*195)^2}{(522-2*195)^2(421-195)}\\\\Kp=0.0386[/tex]

Best regards.

What is an example of a molecular compound

Answers

Answer:

Molecular compounds are inorganic compounds that take the form of discrete (covalent) molecules. Examples include such familiar substances as water (H2O) and carbon dioxide (CO2).

For each of the following, classify the substance as a strong acid, strong base, weak acid, or weak base (or perhaps not acidic or basic). Then determine the pH of the solution and calculate the concentrations of all aqueous species present in the solution.a. 2.0 × 10 ^–2 M HBrb. 1.0 × 10^–4 M NaOHc. 0.0015 M Ba(OH)2 d. 0.25 M HCN e. 2.0 × 10 ^–10 M KOH f. 0.050 M NH3 g. 0.100 M NH4Cl h. 0.200 M CaF2 i. 0.0500 M Ba(NO3)2 j. 0.100 M Al(NO3)3

Answers

Answer:

a. Strong acid, pH = 1.69

b. Strong base, pH = 10

c. Strong base, pH = 11

d. Weak acid, pH = 4.90

e. Strong base, pH ≅ 7 (pH should be higher than 7, but the base is so diluted)

f. Weak base, pH = 10.96

g. Acidic salt, pH = 5.12

h. Basic salt, pH = 8.38

i. Neutral salt, pH = 7

j. Acidic salt, pH < 7

Explanation:

a. HBr →  H⁺  +  Br⁻

Hydrobromic acid is a strong acid.

pH = - log [H⁺]

- log 0.02 = 1.69

b. NaOH → Na⁺  +  OH⁻

Sodium hydroxide is a strong base.

pH = 14 - pOH

pOH = - log [OH⁻]

pH = 14 - (-log 0.0001) = 10

c. Ba(OH)₂ → Ba²⁺  +  2OH⁻

Barium hydroxide is a strong base

[OH⁻] = 2 . 0.0015 = 0.003M

pH = 14 - (-log 0.003) = 11

d. HCN + H₂O ⇄  H₃O⁺  + CN⁻

This is a weak acid, it reacts in water to make an equilibrium between the given protons and cyanide anion.

To calculate the [H₃O⁺] we must apply, the Ka

Ka = [H₃O⁺] . [CN⁻] / [HCN]

6.2×10⁻¹⁰ = x² / 0.25-x

As Ka is really small, we can not consider the x in the divisor, so we avoid the quadratic formula.

[H₃O⁺] = √(6.2×10⁻¹⁰ . 0.25) = 1.24×10⁻⁵

-log 1.24×10⁻⁵ = 4.90 → pH

e.  KOH →  K⁺  +  OH⁻

2×10⁻¹⁰ M → It is a very diluted concentration, so we must consider the OH⁻ which are given, by water.

In this case, we propose the mass and charges balances equations.

Analytic concentration of base = 2×10⁻¹⁰ M = K⁺

[OH⁻] = K⁺ + H⁺ → Charges balance

The solution's hydroxides are given by water and the strong base.

Remember that Kw = H⁺ . OH⁻, so H⁺ = Kw/OH⁻

[OH⁻] = K⁺ + Kw/OH⁻. Let's solve the quadratic equation.

[OH⁻] = 2×10⁻¹⁰ + 1×10⁻¹⁴ /OH⁻

OH⁻² = 2×10⁻¹⁰. OH⁻ + 1×10⁻¹⁴

2×10⁻¹⁰. OH⁻ + 1×10⁻¹⁴ - OH⁻²

We finally arrived at the answer [OH⁻] = 1.001ₓ10⁻⁷

pH = 14 - (- log1.001ₓ10⁻⁷) = 7

The strong base is soo diluted, that water makes the pH be a neutral value.

Be careful, if you determine the [OH⁻] as - log 2×10⁻¹⁰, because you will obtain as pOH 9.69, so the pH would be 4.31. It is not possible, KOH is a strong base and 4.30 is an acid pH.

f. Ammonia is a weak base.

NH₃ +  H₂O  ⇄  NH₄⁺  + OH⁻

Kb = OH⁻  .  NH₄⁺  /  NH₃

1.74×10⁻⁵ = x² / 0.05 - x

We can avoid the x from the divisor, so:

[OH⁻] = √(1.74×10⁻⁵ . 0.05) = 9.32×10⁻⁴

pH = 14 - (-log 9.32×10⁻⁴ ) = 10.96

g. NH₄Cl, an acid salt. We dissociate the compound:

NH₄Cl →  NH₄⁺  +  Cl⁻.  We analyse the ions:

Cl⁻ does not make hydrolisis to water. In the opposide, the ammonium can react given OH⁻ to medium, that's why the salt is acid, and pH sould be lower than 7

NH₄⁺  +  H₂O  ⇄  NH₃  +  H₃O⁺   Ka

Ka = NH₃  .   H₃O⁺ / NH₄⁺

5.70×10⁻¹⁰ = x² / 0.1 -x

[H₃O⁺] = √ (5.70×10⁻¹⁰  . 0.1) = 7.55×10⁻⁶

pH = - log 7.55×10⁻⁶ = 5.12

As Ka is so small, we avoid the x from the divisor.

h. CaF₂  →  Ca²⁺  +  2F⁻

This is a basic salt.

The Ca²⁺ does not react to water. F⁻ can make hydrolisis because, the anion is the strong conjugate base, of a weak acid.

F⁻  +  H₂O  ⇄  HF  +  OH⁻          Kb

Kb = x² / 2 . 0.2 - x

Remember that, in the original salt we have an stoichiometry of 1:2, so 1 mol of calcium flouride may have 2 moles of flourides.

As Kb is small, we avoid the x, so:

[OH⁻] = √(1.47×10⁻¹¹ . 2 . 0.2) = 2.42×10⁻⁵

14 - (-log 2.42×10⁻⁵) = pH → 8.38

i . Neutral salt

BaNO₃₂  →   Ba²⁺  +  2NO₃⁻

Ba²⁺ comes from a strong base, so it is the conjugate weak acid and it does not react to water. The same situation to the nitrate anion. (The conjugate weak base, from a strong acid, HNO₃)

pH = 7

j.  Al(NO₃)₃, this is an acid salt.

Al(NO₃)₃  →  Al³⁺  +  3NO₃⁻

The nitrate anion is the conjugate weak base, from a strong acid, HNO₃ so it does not make hydrolisis. The Al³⁺ comes from the Al(OH)₃ which is an amphoterous compound (it can react as an acid or a base) but the cation has an acidic power.

Al·(H₂O)₆³⁺  + H₂O ⇄  Al·(H₂O)₅(OH)²⁺  + H₃O⁺

Medical implants and high-quality jewelry items for body piercings are frequently made of a material known as G23Ti or surgical-grade titanium. The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium. What is the empirical formula for surgical-grade titanium

Answers

Answer:

The Empirical Formular is given as; Ti₆Al₄V

Explanation:

The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium.

Elements                        Titanium            Aluminium        Vanadium

Percentage                    64.39                 24.19                   11.42

Divide all through by their molar mass

                                     64.39 / 47.87      24.19 / 27               11.42 / 50.94

                                       =  1.345                = 0.896                 = 0.224

Divide all though  by the smallest number (0.224)

                                     1.345 / 0.224        0.896 / 0.224       0.224 / 0.224

                                     = 6                         = 4                             = 1

The Empirical Formular is given as; Ti₆Al₄V

Using the stepwise procedure for obtaining the empirical formula of a compound, the empirical formula is [tex] T_{6}Al_{4}V[/tex]

Titanium :

Percentage composition = 64.39%Molar mass = 47.87

Divide by Molar mass : = 64.39/47.87 = 1.345

Aluminum :

Percentage composition = 24.19%Molar mass = 27

Divide by Molar mass : = 24.19/27 = 0.896

Vanadium :

Percentage composition = 11.42%Molar mass = 50.94%

Divide by Molar mass : = 11.42/50.94 = 0.224

Divide by the smallest :

Titanium = 1.345 / 0.224 = 6.00

Aluminum = 0.896 / 0.224 = 4

Vanadium = 0.224 / 0.224 = 1

Hence, the empirical formula is [tex] T_{6}Al_{4}V[/tex]

Learn more : https://brainly.com/question/17091379

A 45.0 mL sample of 0.020 M acetic acid (HC2H3O2) is titrated with 0.020 M NaOH.? Determine the pH of the solution after adding 35.0 mL of any NaOH. (Ka of acetic acid is 1.8 x 10-5) HC2H3O2 (aq) + NaOH (aq) D NaC2H3O2(aq) + H2O (l) (Hint: Calculate new concentration and ICE table)

Answers

Answer:

Explanation:

CH₃COOH + NaOH = CH₃COONa + H₂O .

.02M

CH₃COOH  = CH₃COO⁻ + H⁺

C                       xC             xC

Ka = xC . xC / C = x² C

1.8 x 10⁻⁵ = x² . .02

x² = 9 x 10⁻⁴

x = 3 x 10⁻²

= .03

concentration of H⁺ = xC = .03 . .02

= 6 x 10⁻⁴ M , volume =  45 x 10⁻³ L

moles of H⁺  = 6 X 10⁻⁴  x 45 x 10⁻³

= 270 x 10⁻⁷ moles

= 2.7 x 10⁻⁵ moles

concentration of NaOH = .0200 M , volume = 35 x 10⁻³ L

moles of Na OH = 2 X 10⁻²  x 35 x 10⁻³

= 70 x 10⁻⁵ moles

=  

NaOH is a strong base so it will dissociate fully .

there will be neutralisation reaction between the two .

Net NaOH remaining = (70 - 2.7 ) x 10⁻⁵ moles

= 67.3 x 10⁻⁵ moles of NaOH

Total volume = 45 + 35 = 80 x 10⁻³

concentration of NaOH after neutralisation.= 67.3  x 10⁻⁵ / 80 x 10⁻³ moles / L

= 8.4125  x 10⁻³ moles / L

OH⁻ = 8.4125  x 10⁻³

H⁺ = 10⁻¹⁴ / 8.4125  x 10⁻³

= 1.1887 x 10⁻¹²

pH = - log (  1.1887 x 10⁻¹² )

= 12 - log 1.1887

= 12 - .075

= 11.925 .

Rank the compounds in each set in order of increasing acid strength.
(a) CH3CH2COOH CH3CHBrCOOH CH3CBr2COOH
(b) CH3CH2CH2CHBrCOOH CH3CH2CHBrCH2COOH CH3CHBrCH2CH2COOH

Answers

Answer:

See explanation

Explanation:

For this question, we have to remember the effect of an atom with high electronegativity as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an inductive effect. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be weaker and the compound will be more acid (because is easier to produce the hydronium ion [tex]H^+[/tex]).

With this in mind, for A in the last compound, we have 2 Br atoms near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have more acidity. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.

In B, the difference between the molecules is the position of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a higher inductive effect and more acidity.

See figure 1

I hope it helps!

Use your periodic table and calculator as needed for the following question.
How much stock solution is needed to make 250 mL of a 6.0M solution. The molarity of the stock solution is 18M.
Selections may be rounded so choose the best answer.
56 mL
83 mL
2.3 mL
4.7 ml

Answers

Hope you find this answer I need points

1. In this experiment, the procedure instructs you to dissolve solid potassium hydrogen tartrate (KHT) in two different solvents. What are these two solvents? (2 pts)

Answers

Answer:

Water

Explanation:

Solid potassium hydrogen tartrates (KHT) is soluble in water. This is especially at room temperature.

The solvent for KHT is water.

Convert the following measurement

Answers

Answer:

6.9 Kg/mol•dL

Explanation:

To convert 6.9×10⁴ g/mol•L to kg/mol•dL,

First, we shall convert to kg/mol•L.

This can be achieved by doing the following:

Recall: 1 g = 1×10¯³ Kg

1 g/mol•L = 1×10¯³ Kg/mol•L.

Therefore,

6.9×10⁴ g/mol•L = 6.9×10⁴× 1×10¯³

6.9×10⁴ g/mol•L = 69 Kg/mol•L

Finally, we shall convert 69 Kg/mol•L to Kg/mol•dL.

This is illustrated below:

Recall: 1 L = 10 dL

1 Kg/mol•L = 1×10¯¹ Kg/mol•dL

Therefore,

69 Kg/mol•L = 69 × 1×10¯¹

69 Kg/mol•L = 6.9 Kg/mol•dL

Therefore, 6.9×10⁴ g/mol•L is equivalent to 6.9 Kg/mol•dL.

The Lucas test has _______ results based on the type of alcohol present because the reaction involves a _________, which is ________ stable for tertiary alcohols compared to primary alcohols. Therefore, tertiary alcohols react ________ primary alcohols.

Answers

Answer:

1) positive

2) carbocation

3) most stable

4) faster

Explanation:

A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.

The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.

Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.

Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.

A diode has IS = 10−17 A and n = 1.05. (a) What is the diode voltage if the diode current is 70 μA? (b) What is the diode current for VD = 0.1 mV?

Answers

Answer:

(a) The diode voltage,  [tex]V_D =[/tex]  0.776 V

(b) The diode current, [tex]I_D =[/tex] 3.81 x 10⁻²⁰ A

Explanation:

Given;

saturation current in diode, [tex]I_s[/tex] = 10⁻¹⁷ A

nonideality factor, n = 1.05

(a) the diode voltage

Given diode current, [tex]I_D[/tex] = 70 μA = 7 x 10⁻⁶ A

Diode voltage is calculated as;

[tex]V_D = nV_Tln(1+ \frac{I_D}{I_S} )[/tex]

Where;

[tex]V_T[/tex] is thermal voltage at 25°C = 0.025

[tex]V_D = 1.05 * 0.025 ln(1+ \frac{70*10^{-6}}{1*10^{-17}})\\\\V_D = 0.02625ln(1+ 7*10^{12})\\\\V_D = 0.776 \ V[/tex]

b) the diode current for VD = 0.1 mV

[tex]V_D = nV_Tln(1 +\frac{I_D}{I_S} )\\\\ln(1 +\frac{I_D}{I_S} ) = \frac{V_D}{nV_T} \\\\ln(1 +\frac{I_D}{I_S} ) = \frac{0.1*10^{-3}}{1.05*0.025} \\\\ln(1 +\frac{I_D}{I_S} ) = 0.00381\\\\1 +\frac{I_D}{I_S} = e^{0.00381}\\\\1+ \frac{I_D}{I_S}= 1.00381\\\\ \frac{I_D}{I_S}=1.00381 - 1\\\\ \frac{I_D}{I_S}= 0.00381\\\\I_D = 0.00381(I_S)\\\\I_D = 0.00381(10^{-17})\\\\I_D = 3.81*10^{-20} \ A[/tex]

Which functional group does the molecule below have?

A. Ether
B. Ester
C. Hydroxyl
D. Amino

Answers

Answer:

Hydroxyl

Explanation:

A hydroxyl group is a functional group that attaches to some molecules containing an oxygen and hydrogen atom, bonded together. Also spelled hydroxy, this functional group provides important functions to both alcohols and carboxylic acids.

The functional groups are the part of the organic chemistry that confers the characteristic feature of a molecule. The molecule has a hydroxyl group in its structure. Thus, option C is correct.

What are hydroxyl functional groups?

Hydroxyl functional groups are the atoms or molecules that provide a distinctive property to a compound. It has a chemical formula of -OH that has oxygen covalently bonded to the hydrogen atom.

The hydroxyl group is called the alcohol group that is seen in methanol, ethanol, propanol, etc. The presence of hydrogen allows the compound to form a water bond with other molecules and makes them soluble and polar.

Therefore, option C. the molecule has a hydroxyl or alcoholic functional group attached to its carbon atom.

Learn more about the hydroxyl functional group here:

https://brainly.com/question/4682253

#SPJ5

When silver nitrate is added to an aqueous solution of magnesium chloride, a precipitation reaction occurs that produces silver chloride and magnesium nitrate. When enough AgNO3 is added so that 34.3 g of MgCl2 react, what mass of the AgCl precipitate should form

Answers

Answer:

103.62 g of AgCl.

Explanation:

Step 1:

The balanced equation for the reaction. This is given below:

2AgNO3 + MgCl2 —> 2AgCl + Mg(NO3)2

Step 2:

Determination of the mass of MgCl2 that reacted and the mass of AgCl produced from the balanced equation.

This is illustrated below:

Molar mass of MgCl2 = 24 + (2x35.5) = 95 g/mol

Mass of MgCl2 from the balanced equation = 1 x 95 = 95 g

Molar mass of AgCl = 108 + 35.5 = 143.5 g/mol

Mass of AgCl from the balanced equation = 2 x 143.5 = 287 g

Thus, from the balanced equation above,

95 g of MgCl2 reacted to produce 287 g of AgCl.

Step 3:

Determination of the mass of AgCl produced from the reaction of 34.3 g of MgCl2.

The mass of AgCl produced from the reaction can be obtained as follow:

Form the balanced equation above,

95 g of MgCl2 reacted to produce 287 g of AgCl.

Therefore, 34.3 g of MgCl2 will react to produce = (34.3 x 287)/95 = 103.62 g of AgCl.

Therefore, 103.62 g of AgCl were produced from the reaction.

Which phase change is an example of an exothermic process?
A.
solid to liquid
B.
solid to gas
C.
liquid to solid
D.
liquid to gas
E.
solid to plasma
Reset

Answers

Answer:

C

Explanation:

Turning liquid to a solid is like freezing water to ice and requires the water to LOSE (release) heat causing an exothermic reaction.

C is an exothermic process. To form solid from a liquid, heat energy must be realised to push particles together and form bonds.
An endothermic process is when heat is absorbed to break bonds between particles (liquid-> gas)

Which of the following metals has a low melting point?
2 A. Rubidium
B. Potassium
C. Calcium
D. Sodium​

Answers

Answer:

Rubidium

Explanation:

A student mixes 2.83 mL of benzoyl chloride with excess 15 M NH4OH to produce 1.95 g of benzamide. What is the percent yield of this student's experiment

Answers

Answer:

Explanation:

The reaction of benzoyl chloride with NH₄OH to produce benzamide is:

Benzoyl chloride + ammonia → Benzamide + NH₄Cl

Molar mass of benzoyl chloride: 140.57 g/mol. Density 1.21g/mL

Molar mass benzamide: 121.14g/mol.

To know percent yield you must know the theoretical yield of the reaction (How many grams are produced assuming a yield of 100%). Percent yield will be (Actual yield / Theoretical Yield) ₓ 100

Moles of 2.83mL of benzoyl chloride are:

2.83mL ₓ (1.21g/mL) ₓ (1mol / 140.57g) = 0.02436 moles of benzoyl chloride.

As 1 mole of benzoyl chloride produce 1 mole of benzamide (Theoretical yield), theoretical moles of benzamide produced are 0.02436. In mass:

0.02436 moles ₓ (121.14g / mol) = 2.95g of benzoyl chloride

As there are produced just 1.95, percent yield is:

(1.95g / 2.95g) ₓ 100 = 66.1%

Calculate the amount of HCl in grams required to react with 3.75 g of CaCO3 according to the following reaction: CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)

Answers

Answer:

The correct answer is 2.75 grams of HCl.

Explanation:

The given balanced equation is:  

CaCO₃ (s) + 2HCl (aq) ⇒ CaCl₂ (aq) + H₂O (l) + CO₂ (g)

Based on the given information, one mole of calcium carbonate is reacting with two moles of HCl. The molecular mass of HCl is 36.5 grams, thus, the mass of 2 moles of HCl will be, 36.5 × 2 = 73 grams

The molecular mass of CaCO₃ is 100 gram per mole, that is, the mass of 1 mole of CaCO₃ is 100 grams, therefore, the mass of HCl required for reacting with 3.75 grams of CaCO₃ will be,  

= 3.75 × 2 × 36.5 / 100 = 2.74 grams of HCl.  

A compound containing only C, H, and O, was extracted from the bark of the sassafras tree. The combustion of 32.3 mg produced 87.7 mg of CO2 and 18.0 mg of H2O. The molar mass of the compound was 162 g/mol. Determine its empirical and molecular formulas.

Answers

Answer:

Empirical formula: C₅H₅O

Molecular formula: C₁₀H₁₀O₂

Explanation:

When a compound containing C, H and O elements is combusted, the general reaction is:

CₐHₓOₙ + O₂ → a CO₂ + X/2 H₂O

Thus, you can find moles of carbon and hydrogen knowing moles of CO₂ and H₂O that are produced.

Moles CO₂ = Moles C = 0.0877g × (1mol / 44g) =

2.0x10⁻³ moles of CO₂ = moles C

Moles H₂O = 1/2 Moles H = 0.018g × (1mol / 18g) =

1x10⁻³ moles of H₂O; 2.0x10⁻³ moles H

The mass of the moles of C and H are:

2x10⁻³ moles C ₓ (12g / mol) = 0.024g C

2x10⁻³ moles H ₓ (1g / mol) = 0.002g H

Thus, mass of Oxygen is 32.3mg - 24mg C - 2mg O = 6.3mg O

Moles are:

0.0063g O ₓ (1mol / 16g) = 4x10⁻⁴ moles O

Empirical formula is the simplest ratio of atoms in a compound. Dividing each amount of moles for each atom in the 4x10⁻⁴ moles of oxygen (The lower moles), you will obtain:

C: 2.0x10⁻³ / 4x10⁻⁴ = 5

H: 2.0x10⁻³ / 4x10⁻⁴ = 5

O:  4x10⁻⁴ / 4x10⁻⁴ = 1

Thus, empirical formula is:

C₅H₅O

The molar mass of the empirical formula is:

12×5 + 1×5 + 16×1 = 81g/mol

As molar mass of the compound is 162g/mol, molecular formula is twice empirical formula:

C₁₀H₁₀O₂

Which Group is in the second column of the periodic table?
A. Noble gases
B. Halogens
C. Alkali metals
D. Alkaline earth metals

Answers

Answer:

Hey there!

That would be the alkaline earth metals.

Hope this helps :)

Answer: alkaline earth metals

Explanation:

Content attribution
QUESTION 2 • 1 POINT
Which anion would bond with K+ in a 1: 1 ratio to form a neutral ionic compound?​

Answers

The given question is incomplete. The complete question is :

Which anion would bond with K+ in a 1: 1 ratio to form a neutral ionic compound?​

a) [tex]O^{2-}[/tex]

b)  [tex]F^{-}[/tex]

c)  [tex]N^{3-}[/tex]

d)  [tex]S^{2-}[/tex]

Answer: b)  [tex]F^{-}[/tex]

Explanation:

For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.  

Here potassium is having an oxidation state of +1 called as  cation and thus is an anion must have an oxidation state of -1 if they have to combine in 1: 1 ratio to  give neutral ionic compound.

Thus the anion has to be [tex]F^-[/tex] which combines with [tex]K^+[/tex] in 1: 1 ratio to give [tex]KF[/tex]

bleaching powder reaction, mechanism, use

Answers

Answer:

Bleaching Powder's chemical formula is CaOCl2 and is called Calcium Oxychloride. It is prepared on dry slaked lime by chlorine gas. 2. ... It gives calcium chloride, chlorine and water when bleaching powder reacts with hydrochloric acid.

Explanation:

What was Ernest Rutherford experiment

Answers

Geiger marsdent expirement
Other Questions
Find the volume of a rectangular prism with a height of 18 if the base has a length of 9 and a width of 17.Select one:O a. 2678 units cubedO b. 2049 units cubedO c. 2754 units cubedO d. 2957 units cubed Which value makes the inequality x^2 x false? A. -1/4 B. 0 C. 1/4 D. 1 Line 'L' is horizontal and passes through (-5,8). Line 'L is vertical and passes through $(4,-1)$. Find the point of intersection of $\ell_1$ and $\ell_2$. Please answer this question now Find the product.(6a + 3b)(a - b)Enter the correct answer. What impact did World War II have on Americans at home? Describe at least two ways Americans' lives were impacted directly. Kini and Duke are each working during the summer to earn money in addition to their weekly allowance, and they are saving all of their money. Kini earns $9 an hour at her job, and her allowance is $8 per week. Duke earns $7.50 an hour, and his allowance is $17 per week. How many hours do Kini and Duke need to work in order to save the same amount of money in one week? Based on sex assigned at birth, if a man and a woman who weigh the same consume the same amount of alcohol: The man's BAC will likely be higherThe woman's BAC will likely be higherTheir BAC levels would be the sameNone of the above A department store expects to have 225 customers and 20 employees at peak times in summer. Determine the contribution of people to the total cooling load of the store. The average rate of heat generation from people doing light work is 115 W, and 70% of it is in sensible form. A bit shift is a procedure whereby the bits in a bit string are moved to the left or to the right. For example, we can shift the bits in the string 1011 two places to the left to produce the string 1110. Note that the leftmost two bits are wrapped around to the right side of the string in this operation. Define two scripts, shiftLeft.py and shiftRight.py, that expect a bit string as an input. The script shiftLeft shifts the bits in its input one place to the left, wrapping the leftmost bit to the rightmost position. The script shiftRight performs the inverse operation. Each script prints the resulting string. An example of shiftLeft.py input and output is shown below: Enter a string of bits: Hello world! ello world!H An example of shiftRight.py input and output is shown below: Enter a string of bits: Hello world! !Hello world A taste test asks people from Texas and California which pasta they preferred brand a or brand b this table shows the results. A person is randomly selected for those tested. What is the probability that the person is from Texas given that the person prefers Brand b? Round your answer to two decimal places. Look at photo please don't understand Does anyone understand thisPlease answer quickly! A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70 Fill in the blank with a verb that agrees with the indefinite pronoun. Each of the dancers __________ solos. A compound containing oxygen and group 16 and/or group 17 elements contains one of the following elements. The compound dissolves in water. Which element doesthe compound contain?A. Magnesium B. PotassiumC. BariumD. Strontium PQR shown in the figure below is transformed into STU by a dilation with center (0, 0) and a scale factor of 3 which statement best describes how the enlightenment influenced latin american events during the 19th century?ill give brainliest to the first person who answers correctly Which group supported the French Revolution?the Democratic-Republicansthe Federaliststhe British Construct the confidence interval for the population mean mu. c = 0.90, x = 16.9, s = 9.0, and n = 45. A 90% confidence interval for mu is:______. prove that 2sin A/cos 3A + 2 sin3A/cos 9A +2sin9A/cos27A = tan 27A-tanA