Answer:
Fibonacci numbers is a series of numbers in which each number is sum of two preceding numbers.
Step-by-step explanation:
It is a sequence in mathematics denoted F. Fibonacci numbers have important contribution to western mathematics. The first two Fibonacci numbers are 0 and 1, all the numbers are then sum of previous two numbers. Fibonacci sequence is widely used in engineering applications for data algorithms. Fibonacci sequence is basis for golden ratio which is used in architecture and design. It can be seen in petals of flower and snail's shell.
What is the inequality
Answer:
x ≥ 4
Step-by-step explanation:
Well to find the inequality we need to single out x,
4x - 1 ≥ 15
+1 to both sides
4x ≥ 16
Divide 4 by both sides
x ≥ 4
Thus,
x is greater than or equal to 4.
Hope this helps :)
[PLEASE HELP] in the function above, the slope of it will be multiplied by -4, and it’s y value of the y intercept will be decreased by only 1 units, which of these following graphs best represent the new function???
Answer:
Z (The one on the bottom right)
Step-by-step explanation:
You said that the y intercept goes down by 1 unit which makes only W and Z possible.
The slope is 1/2 and if you multiply that by -4 the new slope is -2 which means the change in y is -2 every time the change in x is 1. Which perfectly fits Z and if you have any questions please ask me with the comments!
For the functions f(x)=4x−3 and g(x)=3x2+4x, find (f∘g)(x) and (g∘f)(x).
Answer:
(16x + 21) and (16x - 6)
Step-by-step explanation:
f(g(x)) = f(6 + 4x)
Applying the f(x) function on (6 + 4x) gives
4(6 + 4x) - 3
Which equals 16x + 24 - 3
= 16x + 21
g(f(x)) = g(4x - 3)
Applying the g(x) function on (4x - 3) gives
6 + 4(4x - 3)
Which equals 6 + 16x - 12
= 16x - 6
Answer:
(g∘f)(x)=48x2+48x+10
(g∘f)(x)=12x^2-6
Step-by-step explanation:
To find (f∘g)(x), use the definition of (f∘g)(x),
(f∘g)(x)=f(g(x))
Substituting 3x2−2 for g(x) gives
(f∘g)(x)=f(3x2−2)
Find f(3x2−2), where f(x)=4x+2, and simplify to get
(f∘g)(x)(f∘g)(x)(f∘g)(x)=4(3x2−2)+2=12x2−8+2=12x2−6
To find (g∘f)(x), use the definition of (g∘f)(x),
(g∘f)(x)=g(f(x))
Substituting 4x+2 for f(x) gives
(g∘f)(x)=g(4x+2)
Find g(4x+2), where g(x)=3x2−2, and simplify to get
(g∘f)(x)=3(4x+2)^2−2
(g∘f)(x)=48x2+48x+12−2
(g∘f)(x)=48x2+48x+10
determining the probability of events. please help :)
Answer:
C. 1/8
Step-by-step explanation:
Probability of shooting a goal on a throw is 2/4 = 1/2.
Probability of 3 in a row is (1/2)³ = 1/8.
Need answers ASAP!!!!! (due today)
Answer:
15) 2.08m
Step-by-step explanation:
We kow tanA= p/b
Here, A=33°
b=3.2m
Then,
tan33°=p/3.2
0.65=p/3.2
p=0.65*3.2
p=2.08
So, The height of tree is 2.08m
14) 59.58ft
tan50°=p/b
1.19=p/50
p=59.58ft
So, The height of signpost is 59.58ft
In both of these problems, we will be using trigonometry! Remember, SOH-CAH-TOA.
14. x = 13.5950 ft
Visualization of the problem is attached below.
We want to find out the opposite side to the angle, and we know the adjacent side. Therefore, we should use the tangent function.
tan(50) = x / 50
x = tan(50) * 50
x = 13.5950 ft (round off wherever you need)
15. x = 241.0016 m
The visualization of the problem is already given. We know the same information as we need in the previous problems, an angle and an adjacent side, and we want to find the opposite side. Therefore, we should use the tangent function.
tan(33) = x / 3.2
x = tan(33) * 3.2
x = 241.0016 (round off wherever you need)
Hope this helps!! :)
What is the measure of JOK, given that GH=JK ?
A.
288
B.
108
C.
72
D.
18
Answer:
72 degrees.
Step-by-step explanation:
The angle marked as 72 degrees and the angle of JOK are considered vertically opposite angles in relation to each other. This relationship means that the angles are equal.
Answer:
[tex]\boxed{Option \ C}[/tex]
Step-by-step explanation:
Congruent arcs subtend congruent central angles.
So,
∠GOH ≅ ∠JOK
∠JOK = 72 degrees
A father is 60 years old and his son is half his age. How old was the boy when his father was four times his age?
Hey there! I'm happy to help!
We see that the father is 60 years old, and the son is half of that age, so this means that the son is 30 years old.
We want to see the age the son was at when the father was four times his age. We know that the father is thirty years older than him, so we can write this equation with s representing the age of the son.
s+30=4s (30 years older than the son is equal to to four times the son's age at the time)
We subtract 30 from both sides.
s=4s-30
We subtract 4s from both sides.
-3s=-30
We divide both sides by -3.
s=10
Therefore, the boy was 10 when his father was four times his age. This is because his father would have been 40 because that is 30 more years than 10, and it is four times ten!
Have a wonderful day! :D
Probability of landing on even # on a spinner; probability of rolling an odd # on a die
Answer:
Spinner: 50%
Die: 50%
Step-by-step explanation:
Well for the spinner it depends on the amount of numbers it has,
in this case we’ll use 6.
So The probability of landing on the even numbers in a 6 numbered spinner.
2, 4, 6
3/6
50%
Your average die has 6 sides so the odd numbers are,
1, 3, 5
3/6
50%
Does anyone know the answers to these?
Step-by-step explanation:
a. The point estimate is the mean, 47 days.
b. The margin of error is the critical value times the standard error.
At 31 degrees of freedom and 98% confidence, t = 2.453.
The margin of error is therefore:
MoE = 2.453 × 10.2 / √32
MoE = 4.42
c. The confidence interval is:
CI = 47 ± 4.42
CI = (42.58, 51.42)
d. We can conclude with 98% confidence that the true mean is between 42.58 days and 51.42 days.
e. We can reduce the margin of error by either increasing the sample size, or using a lower confidence level.
The mean rate for cable with Internet from a sample of households was $106.50 per month with a standard deviation of $3.85 per month. Assuming the data set has a normal distribution, estimate the percent of households with rates from $100 to $115.
Answer:
The percent of households with rates from $100 to $115. is [tex]P(100 < x < 115) =[/tex]94.1%
Step-by-step explanation:
From the question we are told that
The mean rate is [tex]\mu =[/tex]$ 106.50 per month
The standard deviation is [tex]\sigma =[/tex]$3.85
Let the lower rate be [tex]a =[/tex]$100
Let the higher rate be [tex]b =[/tex]$ 115
Assumed from the question that the data set is normally
The estimate of the percent of households with rates from $100 to $115. is mathematically represented as
[tex]P(a < x < b) = P[ \frac{a -\mu}{\sigma } } < \frac{x- \mu}{\sigma} < \frac{b - \mu }{\sigma } ][/tex]
here x is a random value rate which lies between the higher rate and the lower rate so
[tex]P(100 < x < 115) = P[ \frac{100 -106.50}{3.85} } < \frac{x- \mu}{\sigma} < \frac{115 - 106.50 }{3.85 } ][/tex]
[tex]P(100 < x < 115) = P[ -1.688< \frac{x- \mu}{\sigma} < 2.208 ][/tex]
Where
[tex]z = \frac{x- \mu}{\sigma}[/tex]
Where z is the standardized value of x
So
[tex]P(100 < x < 115) = P[ -1.688< z < 2.208 ][/tex]
[tex]P(100 < x < 115) = P(z< 2.208 ) - P(z< -1.69 )[/tex]
Now from the z table we obtain that
[tex]P(100 < x < 115) = 0.9864 - 0.0455[/tex]
[tex]P(100 < x < 115) = 0.941[/tex]
[tex]P(100 < x < 115) =[/tex]94.1%
Which of the following points is a solution of y > Ixl + 5?
A. (0, 5)
B. (1, 7)
C. (7, 1)
Answer:
B. (1,7)
Step-by-step explanation:
We can substitute the x and y values of each coordinate into the inequality and test if they work.
Let's start with A, 5 being y and 0 being x .
[tex]5 > |0|+5\\5> 0+5\\5 > 5[/tex]
5 IS NOT greater than 5, they are the exact same, so A is out.
Let's try B, 1 being x and 7 being y.
[tex]7 > |1| + 5\\7 > 1 + 5\\7 > 6[/tex]
7 IS greater than 6, so B. (1,7) does work for this inequality!
Let's do C for fun, when 7 is x and 1 is y.
[tex]1 > |7| + 5\\1>7+5\\1>12[/tex]
1 IS NOT greater than 12, it is quite less than 12, so C doesn't work.
Therefore B. (1,7) works for the inequality of [tex]y > |x|+5[/tex].
Hope this helped!
A necklace was on sale for 20% discount off the original price of
$1250.00. What was the final sale price if 12.5% VAT has to be
paid?
Answer:
= $ [tex] \mathsf{1125}[/tex]Step-by-step explanation:
[tex] \mathrm{Given}[/tex],
[tex] \mathrm{Discount\% = 20\%}[/tex]
[tex] \mathrm{Marked \: price = 1250}[/tex]
[tex] \mathrm{Now \: let's \: find \: the \: discount \: amount}[/tex]
[tex] \mathrm{discount \: amount = dis\% \: of \: MP}[/tex]
[tex] \mathrm { = 20\% \: of \: 1250}[/tex]
[tex] \mathrm{ = 250}[/tex]
[tex] \mathrm{let's \: find \: the \: selling \: price}[/tex]
[tex] \mathrm{ = MP \: - \: discount \: amount}[/tex]
[tex] \mathrm{ = 1250 - 250}[/tex]
= $ [tex] \mathrm{1000}[/tex]
[tex] \mathrm{lets \: find \: the \: Vat \: amount}[/tex]
[tex] \mathrm{vat \: amount = vat\% \: of \: sp}[/tex]
[tex] \mathrm{ = 12.5\% \: of \: 1000}[/tex]
= $ [tex] \mathrm{ 125}[/tex]
[tex] \mathrm{Now \: finally \: let's \: find \: the \: selling \: price \: with \: vat}[/tex]
[tex] \mathrm{selling \: price \: + \: vat \: amount}[/tex]
[tex] \mathrm{ = 1000 + 125}[/tex]
= $ [tex] \mathrm{1125}[/tex]
Therefore, The final sale of the necklace is $ 1125
Hope I helped
Best regards!
The price of a boat that Arthur wants is $29,450. Arthur finances this by paying $6000 down and monthly payment of $792.22 for 36 months.
a. Determine the amount to be financed.15a. _______________
b. Determine the installment price.b. _________________
c. Determine the finance charge.c. _________________
Answer:
see details below
Step-by-step explanation:
The price of a boat that Arthur wants is $29,450. Arthur finances this by paying $6000 down and monthly payment of $792.22 for 36 months.
a. Determine the amount to be financed.15a. ___$23450____________
29450 - 6000 = 23450
b. Determine the installment price.b. ___$792,22______________
"monthly payment of $792.22"
c. Determine the finance charge.c. __$5069.92_______________
A = 792.22
n = 36
finance charge = total paid - amount to be financed
= 36*792.22 - 23450
= 5069.92
[PLEASE HELP] in the function above, the slope of it will be multiplied by 1/2 and it’s y value of its y intercept will be increased by 3 units, which of the graphs below best shows the new function???
Answer:
The graph at the bottom left in your group of possible answers.
Step-by-step explanation:
Notice that the original given graph corresponds to the equation:
[tex]y=2x+1[/tex]
since the line's slope is 2/1 = 2 and the y-intercept is at the point (0, 1).
So if one modifies the equation multiplying the current slope by 1/2, and the y intercept increased by 3 units, Then the new function would be:
[tex]y=x+4[/tex]
A line of slope 1 and y-intercept at (0, 4)
Notice that the graph at the bottom left in your possible answers is representing such function.
Answer:
Answer Y: or Bottom Left of Given Answers
Step-by-step explanation:
by what number 7whole 2/3be divided to get 4whole1/3
Answer: 1 30/39
Step-by-step explanation:
Because y/x=z and y/z=x are true with the same values, simply do 7 2/3 divided by 4 1/3 to get 69/39.
Hope it helps <3
Arrange the cards below to show the solution to 40.091 x 10³
Answer:
40091.
Step-by-step explanation:
Multiply 40.091 by 10 three times to get the answer.
40.091 * 10 = 400.91
400.91 * 10 = 4009.1
4009.1 * 10 = 40091.
The expression 40.091 x 10³ can be represented as 40091.
What are exponents?The term xⁿ, read as x to the power n, shows an exponent n, which implies x is multiplied by itself n times.
How to solve the given question?In the question, we are asked to arrange the cards showing '.', '0', '0', '1', '4', and '9', to show the solution to the expression 40.091 x 10³.
Now, 10³ is 10 to the power 3, where 3 is the exponent, so 10 is multiplied by itself 3 times = 10*10*10 = 1000.
Now, the expression 40.091 x 10³ = 40.091 * 1000 = 40091.
∴ The expression 40.091 x 10³ can be represented as 40091.
Learn more about exponents at
https://brainly.com/question/11975096
#SPJ2
Find the value of n such that 540n is perfect cube.
Answer:
1.35
Step-by-step explanation:
next cube above 540 is 729
to get to 729: 729 / 540 = 1.35
n = 1.35
What will happen to the median height of the outlier is removed?
{75, 63, 58, 59, 63, 62, 56, 59)
Answer:
The meadian decreases by 1.5 when the outlier is removed.
Step-by-step explanation:
Well first we need to find the median of the following data set,
(75, 63, 58, 59, 63, 62, 56, 59)
So we order the set from least to greatest,
56, 58, 59, 59, 62, 63, 63, 75
Then we cross all the side numbers,
Which gets us 59 and 62.
59 + 62 = 121.
121 / 2 = 60.5
So 65 is the median before the outlier is removed.
Now when we remove the outlier which is 75.
Then we order it again,
56, 58, 59, 59, 62, 63, 63
Which gets us 59 as the median.
Thus,
the median height decreases by 1.5 units when the outlier is removed.
Hope this helps :)
A 24-centimeter by 119-centimeter piece of cardboard is used to make an open-top box by removing a square from each corner of the cardboard and folding up the flaps on each side. What size square should be cut from each corner to get a box with the maximum volume
Answer:
The size square removed from each corner = 32.15 cm²
Step-by-step explanation:
The volume of the box = Length * Breadth * Height
Let r be the size removed from each corner
Note that at maximum volume, [tex]\frac{dV}{dr} = 0[/tex]
The original length of the cardboard is 119 cm, if you remove a size of r (This typically will be the height of the box) from the corner, since there are two corners corresponding to the length of the box, the length of the box will be:
Length, L = 119 - 2r
Similarly for the breadth, B = 24 - 2r
And the height as stated earlier, H = r
Volume, V = L*B*H
V = (119-2r)(24-2r)r
V = r(2856 - 238r - 48r + 4r²)
V = 4r³ - 286r² + 2856r
At maximum volume dV/dr = 0
dV/dr = 12r² - 572r + 2856
12r² - 572r + 2856 = 0
By solving the quadratic equation above for the value of r:
r = 5.67 or 42
r cannot be 42 because the size removed from the corner of the cardboard cannot be more than the width of the cardboard.
Note that the area of a square is r²
Therefore, the size square removed from each corner = 5.67² = 32.15 cm²
What is 3/4 improper or proper or mixed
Answer:
proper because the numerator is lower than the denominator
3.01)Which statement best describes the area of the triangle shown below?
9
It is one-half the area of a rectangle of length 4 units and width 2 units.
It is twice the area of a rectangle of length 4 units and width 2 units.
O It is one-half the area of a square of side length 4 units.
Ont is twice the area of a square of side length 4 units.
Answer:
C. It is one-half the area of a square of side length 4 units.
Step-by-step explanation:
Hey there!
Well if a square has side lengths of 4 units,
the area would be 16 because of l*w.
Now the formula for the area of a triangle is,
b*h/2
b = 4
h = 4
4*4=16
16 ÷ 2 = 8
So the area of a square is 16 units^2 whereas the area of a triangle with the same dimensions is 8 units^2,
meaning the area of a triangle is one-half the area of a square.
Hope this helps :)
What is the missing term in this arithmetic sequence? 9, 14, 19, __, 29, 34, …
Answer: 24 because you add 5 for every number ex: 9+5=14
Answer:
24
Step-by-step explanation:
The difference can be calculated by subtracting the second term with the first term.
d = 14 - 9
d = 5
The difference is 5.
Add 5 to 19.
19 + 5 = 24
In a study of the accuracy of fast food drive-through orders, Restaurant A had 302accurate orders and 59that were not accurate.a. Construct a 95%confidence interval estimate of the percentage of orders that are not accurate.b. Compare the results from part (a) to this 95%confidence interval for the percentage of orders that are not accurate at Restaurant B: 0.143less thanpless than0.219.What do you conclude?
Answer:
(a) A 95% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].
(b) We can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.
Step-by-step explanation:
We are given that in a study of the accuracy of fast food drive-through orders, Restaurant A had 302 accurate orders and 59 orders that were not accurate.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of orders that were not accurate = [tex]\frac{59}{361}[/tex] = 0.163
n = sample of total orders = 302 + 59 = 361
p = population proportion of orders that are not accurate
Here for constructing a 95% confidence interval we have used a One-sample z-test for proportions.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]
= [ [tex]0.163 -1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] , [tex]0.163 +1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] ]
= [0.125, 0.201]
(a) Therefore, a 95% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].
(b) We are given that the 95% confidence interval for the percentage of orders that are not accurate at Restaurant B is [0.143 < p < 0.219].
Here we can observe that there is a common area of inaccurate order of 0.058 or 5.85% for both the restaurants.
So, we can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.
A simple random sample of 20 third-grade children from a certain school district is selected, and each is given a test to measure his/her reading ability. You are interested in calculating a 95% confidence interval for the population mean score. In the sample, the mean score is 64 points, and the standard deviation is 12 points. What is the margin of error associated with the confidence interval
Answer:
Margin of Error = ME =± 5.2592
Step-by-step explanation:
In the given question n= 20 < 30
Then according to the central limit theorem z test will be applied in which the standard error will be σ/√n.
Sample Mean = μ = 64
Standard Deviation= S= σ = 12
Confidence Interval = 95 %
α= 0.05
Critical Value for two tailed test for ∝= 0.05 = ±1.96
Margin of Error = ME = Standard Error *Critical Value
ME = 12/√20( ±1.96)=
ME = 2.6833*( ±1.96)= ± 5.2592
The standard error for this test is σ/√n
=12/√20
=2.6833
A sample of 4 different calculators is randomly selected from a group containing 42 that are defective and 20 that have no defects. What is the probability that all four of the calculators selected are defective? No replacement. Round to four decimal places.
Answer: = approx 0.2006
Step-by-step explanation:
The probability that first 1 randomly selected calculator is defective is
P(1st defect)= 42/(42+20)=42/62=21/31
If the first calculator is defective the residual number of defective calculators is 42-1=41. The residual total number number of calculators is 62-1=61
So the probability that second calculator is defected
P(2nd defective)=41/61
If both previous calculators are defective the residual number of defective calculators is 42-2=40. Total residual number of calculators is 62-2=60
So the probability that third calculator is defected
P(3rd defective)=40/60=2/3
Finally the probability that also fourth calculator is defective is 39/59
P(4th defective)=39/59
The resulted probability that all 4 calculators are defective is
P(all 4 are defective)= P(1st defect)* P(2nd defect) * P(3rd defect)* P(4th defect)=21*41*2*39/(31*61*3*59)=67158/334707=0.200647... = approx 0.2006
In △ABC, m∠A=27 °, c=14 , and m∠B=25 °. Find a to the nearest tenth.
Answer:
a = 8.1
Step-by-step explanation:
Firstly, since we have a triangle, automatically, we have 3 interior angles
Mathematically the sum of these angles = 180
A + B + C = 180
27 + 25 + C = 180
52 + C = 180
C = 180-52
C = 128
We use the sine rule to find a
The sine rule posits that the ratio of a side to the sine of the angle facing that side is equal for all the sides of a triangle
Thus, mathematically according to the sine rule;
c/Sin C = a/Sin A
14/sin 128 = a/sin 27
a = 14sin27/sin 128 = 8.0657
which to the nearest tenth is 8.1
what is 1.8÷0.004? using long division
Answer:
Hi! Answer will be below.
Step-by-step explanation:
The answer is 450.
If you divide 1.8 and 0.004 the answer you should get is 450.
Below I attached a picture of how to do long division...the picture is an example.
Hope this helps!:)
⭐️Have a wonderful day!⭐️
3^x = 27^a+b and a^2-b^2/(a-b)=5 What is x?
Which graph best models the inequality y<_ -2/5x+2
Answer:
Step-by-step explanation:
Simplify each term.
y ≤ −2x/5 + 2
Find the slope and the y-intercept for the boundary line.
Slope: -2/5
Y-intercept: 2
Graph a solid line, then shade the area below the boundary line since
y is less than -2x/5 + 2
y ≤ −2x/5 + 2
Hope this can help
x varies directly as y, when x=4,y=3. find Y when x=5
Answer:
Y =4
Step-by-step explanation:
Hope it helps