Answer:
shape AREA= 35cm^2
Step-by-step explanation:
you should know that this shape is a combination of triangle and trapezoid. therefore you have to find the area of each shape and add them.
A=h/2(b1 + b2) for trapezoid
A=2/2((4+4)+4)
A=1*12
A=12cm^2
A=bh/2. for TRIANGLE
A=1/2((4+4)*5.75)
A=1/2(46)
A=23cm^2
shape AREA= triangle AREA + trapezoid AREA
shape AREA=12cm^2 + 23cm^2
shape AREA= 35cm^2
What is the value of x
Answer:
4
Step-by-step explanation:
For the first triangle which is triangle <KJL
Hypotenuse= 8✓2
Angle=30°
Opposite = ?
Therefore we will use Sine formula
Sin30° = Y/8✓2
Y=4✓2
For the second triangle which is triangle <JML
Hypotenuse= 4✓2
Opposite=X
Angle=45°
Therefore we will use Sine formula again
Sin45°=X/4✓2
X=4
Answer:
x = 4Step-by-step explanation:
ΔJKL is half of equilateral triangle and ΔJML is half of square.
We can use properties of these triangles (picture):
m∠KJL=90° and m∠JKL = 30° ⇒ JL = 0.5KL = 0.5•8√2 = 4√2
m∠JML=90° and m∠MJL = 45° ⇒ JL = ML√2
4√2 = x√2
x = 4
What is 5,000 - 245( 30/2))?
Answer:
1,325
Step-by-step explanation:
30 /2
= 155,000 - 245(15)
= 5,000 - 3,675
= 1,325
Answer:
1,325
Step-by-step explanation:
My state's lottery has 30 white balls numbered from 1 through 30 and 20 red balls numbered from 1 through 20. In each lottery drawing, 3 of the white balls and 2 of the red balls are drawn. To win, you must match all 3 white balls and both red balls, without regard to the order in which they were drawn. How many possible different combinations may be drawn?
Answer:
I dont give you the answer right away so you will read what i write and fully understand :D
Step-by-step explanation:
We are picking 3 balls from 30 balls, so its C(30,3) because the order of picking the balls doesnt matter. We also need to pick 2 balls from 20 balls, which is C(20,2). So the answer is C(30,3) * C(20,2).
Find the center and radius of x^2 – 18x + y^2 -10y = -6. part two write x2 – 18x + y2 -10y = -6 in standard form
Answer:
see explanation
Step-by-step explanation:
I will begin with part two, first.
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius.
Given
x² - 18x + y² - 10y = - 6
Using the method of completing the square
add ( half the coefficient of the x/ y terms )² to both sides
x² + 2(- 9)x + 81 + y² + 2(- 5)y + 25 = - 6 + 81 + 25, that is
(x - 9)² + (y - 5)² = 100 ← in standard form
with centre = (9, 5 ) and r = [tex]\sqrt{100}[/tex] = 10
Write 4x2 + 16x - 9 in vertex form. Write 5x2 - 10x + 4 in vertex form.
Hi king,
Write [tex]4x^{2} + 16x - 9[/tex] in vertex form:
f(x)=[tex]4x^{2} + 16x - 9[/tex]
f(x)=[tex]4(x+2)^{2} -25[/tex]
Write [tex]5x^{2} - 10x + 4[/tex] in vertex form:
g(x)=[tex]5x^{2} - 10x + 4[/tex]
g(x)=[tex]5(x-1)^{2} -1[/tex]
Have a great day.
Translate into an algebraic expression and simplify if possible. C It would take Maya x minutes to rake the leaves and Carla y minutes, what portion of the leaves do they rake in one minute if they work together?
Answer:
in one minute they rake [tex]\frac{y+x}{xy}[/tex] leaves working together.
Step-by-step explanation:
If Maya rakes the leaves in x minutes, then, in one minute she rakes [tex]\frac{1}{x}[/tex] leaves.
In the case of Carla, if she rakes the leaves in y minutes, in one minute she rakes [tex]\frac{1}{y}[/tex] leaves.
Therefore, to know the portion of leaves they can rake in one minute working together, we need to sum up both of the portions each one of them rake in one minute, this gives us: [tex]\frac{1}{x}+ \frac{1}{y}[/tex]
Now, to simplify this expression:
[tex]\frac{1}{x}+ \frac{1}{y} =\frac{y+x}{xy}[/tex]
Thus, in one minute they rake [tex]\frac{y+x}{xy}[/tex] leaves.
Which of the following options could represent a possible set of interior angles of a triangle? 100°, 130°, and 130° 30°, 70°, and 80° 25°, 3°, and 35° 45°, 105°, and 120°
Answer:
2) 30, 70, 80
Step-by-step explanation:
Well there has to be 3 angles that all add up to 180°.
1)
100+130+130
=360
2)
30+70+80
= 180
3)
25+3+35
=63
4)
45 + 105 + 120
=150
150+120
270
Audrey charges a flat fee of $4 for each delivery plus a certain amount,in dollars per mile, for each mile she drives. For a distance of 30 miles, Curtis and Audrey charge the same amount
2.) Evaluate 6a² if a = 4
Answer:
96
Step-by-step explanation:
We simply need to plug in a = 4 so 6a² = 6 * 4² = 6 * 16 = 96.
What is the difference? StartFraction 2 x + 5 Over x squared minus 3 x EndFraction minus StartFraction 3 x + 5 Over x cubed minus 9 x EndFraction minus StartFraction x + 1 Over x squared minus 9 EndFraction StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction StartFraction (x + 5) (x + 4) Over x cubed minus 9 x EndFraction StartFraction negative 2 x + 11 Over x cubed minus 12 x minus 9 EndFraction StartFraction 3 (x + 2) Over x squared minus 3 x EndFraction
Answer:
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]First option is the correct option.
Step-by-step explanation:
[tex] \frac{2x + 5}{ {x}^{2} - 3x } - \frac{3x + 5}{ {x}^{3} - 9x } - \frac{x + 1}{ {x}^{2} - 9 } [/tex]
Factor out X from the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x( {x}^{2} - 9)} - \frac{x + 1}{ {x}^{2} - 9} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] , factor the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x(x - 3)(x + 3) } - \frac{x + 1}{(x - 3)(x + 3)} [/tex]
Write all numerators above the Least Common Denominators x ( x - 3 ) ( x + 3 )
[tex] \frac{(x + 3) \times (2x - 5) - (3x + 5) - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Multiply the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - (3x + 5) - x(x + 1)}{x(x - 3)(x + 3)} [/tex]
When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Distribute -x through the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x }{x(x - 3)(x + 3)} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a + b)(a - b)[/tex] , simplify the product
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x}{x( {x}^{2} - 9)} [/tex]
Collect like terms
[tex] \frac{ {x}^{2} + 7x + 15 - 5}{x( {x}^{2} - 9)} [/tex]
Subtract the numbers
[tex] \frac{ {x}^{2} + 7x + 10}{ x({x}^{2} - 9)} [/tex]
Distribute x through the parentheses
[tex] \frac{ {x}^{2} + 7x + 10}{ {x}^{3} - 9x} [/tex]
Write 7x as a sum
[tex] \frac{ {x}^{2} + 5x +2x + 10 }{ {x}^{3} - 9x } [/tex]
Factor out X from the expression
[tex] \frac{x(x + 5) + 2x + 10}{ {x}^{3} - 9x} [/tex]
Factor out 2 from the expression
[tex] \frac{x( x + 5) + 2(x + 5)}{ {x}^{3} - 9x } [/tex]
Factor out x + 5 from the expression
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]
Hope this helps...
Best regards!!
The difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
The expression is given as:
[tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex]
Factorize the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x^2 - 9)} - \frac{x + 1}{x^2 - 9}[/tex]
Apply the difference of two squares to the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x - 3)(x + 3)} - \frac{x + 1}{(x - 3)(x + 3)}[/tex]
Take LCM
[tex]\frac{(2x + 5)(x + 3) - 3x - 5 -x(x + 1) }{x(x - 3)(x + 3)}[/tex]
Expand the numerator
[tex]\frac{2x^2 +6x + 5x + 15 - 3x - 5 -x^2 - x }{x(x - 3)(x + 3)}[/tex]
Collect like terms
[tex]\frac{2x^2 -x^2 - x +6x + 5x - 3x+ 15 - 5 }{x(x - 3)(x + 3)}[/tex]
Simplify
[tex]\frac{x^2+7x+ 10 }{x(x - 3)(x + 3)}[/tex]
Factorize the numerator
[tex]\frac{(x+5)(x+ 2) }{x(x - 3)(x + 3)}[/tex]
Expand the denominator
[tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Hence, the difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
What is the slope of the line shown below? (-2,3) (-4,-9)
Answer:
6Step-by-step explanation:
Let the points be A and B
A ( - 2 , 3 ) -------> ( x1 , x2 )
B ( -4 , -9 ) -------> ( x2 , y2 )
Now, finding the slope:
[tex]slope \: (m) = \frac{y2 - y1}{x2 - x1} [/tex]
Plug the values
[tex] = \frac{ - 9 - 3}{ - 4 - ( - 2)} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 4 - ( - 2)} [/tex]
When there is a (-) in front of an expression in parentheses , change the sign of each term in expression
[tex] = \frac{ - 12}{ - 4 + 2} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 2} [/tex]
Reduce the fraction with -2
[tex] = 6[/tex]
Hope this helps..
Best regards!!
In a local ice sculpture contest, one group sculpted a block into a rectangular based pyramid. The dimensions of the base were 3 m by 5 m, and the pyramid was 3.6 m high. Calculate the amount of ice needed for this sculpture.
Answer:
18m square
Step-by-step explanation:
Formula for rectangular- based pyramid is L x W x H divided by 3
= 3 x 5 x 3.6 divided by 3 = 18
So you would need 18 m square for the sculpture
What is the value of discontinuity of x^2+8x+4/x^2-x-6? Choices:
Answer:
-2
Step-by-step explanation:
Hello,
First of all, let's check the denominator.
[tex]x^2-x-6 \ \ \text{ *** How to factorise it ...? ***}\\\\\text{*** The product of the roots is -6=-2*3 and their sum is 1 ***}\\\\x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x+2)(x-3)[/tex]
Now, let's see the numerator.
[tex]x^2+8x+4 \ \text{ *** -2 is not a zero as ***}\\\\(-2)^2+8*(-2)+4=4-16+8=-4\\\\\text{*** 3 is not a zero as ***}\\\\3^2+8*3+4=9+24+4=37\\[/tex]
So we cannot factorise the numerator with (x+2) or (x-3)
Then, -2 and 3 are the the discontinuities of the expression.
There is only -2 in the list, this is the correct answer.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Help me please
I’m having so much trouble
Answer:
Step-by-step explanation:
5 * 45 = 225
225+75=300
300/500=0.6
The tank will be 60% full.
If this helped, make sure to mark it as brainliest :D
Answer:
C.60%
Step-by-step explanation:
45 x 5 = 225 225 + 75 = 300
300 / 500 = 0.6 = 60%
7 3/8 + (-4 1/2) ÷ (-5 2/3) Please Explain
Answer:
7 3/8 + (-4 1/2) ÷ (-5 2/3) = 8 23/136
Step-by-step explanation:
1) First I turned all the mix numbers into improper fractions:
7 3/8 ----> ( 7(8)+3/8) = 59/8, 4 1/2 ----> (4(2)+1/2) = 9/2, 5 2/3 ----> (5(3)+2/3) = 17/3
So now it should look like this: 59/8 + (-9/2)÷(-17/3)
2) Now our goal is to divide both of the improper fractions (-9/2)÷(-17/3),
- We first apply our fraction rule: -a/-b = a/b (when we have two negatives they cancel out each other and make a positive)
Our Case, From this:-9/2 ÷ -17/3 = To This: 9/2 ÷ 17/3
3) Now we can divide the fractions using this rule: a/b ÷ c/d = a times d / b times
Our Case, From This: 9/2 ÷ 17/3 To This: 9(3)/2(17) Which Gives Us: 27/34
(9 x 3 = 27, 2 x 17= 34)
So now it looks like this: 59/8 +27/34
4) Our look goal is to have the same denominator (which is the bottom part of the fraction) which are 8 and 34
To find it we find the LCM or Least Common Multiple of 8 and 34
(The LCM of a, b is the smallest positive number that is divisible by both a and b) which in this case a and b are 8 and 34
LCM is 136
5) We adjust our two fractions based on the LCM,
(Multiply each numerator ( top part of the fraction) by the same amount of needed to multiply its corresponding denominator to turn it to the LCM 136.
From This: 59/8 and 27/34 To This: 1003/136 and 108/36 ( 59(17)/8 (17) = 1003/136, 27(4)/34(4) = 108/306
6) Finally we can add the numerator (1003 and 108) together: 1003+108= 1111 and now we are left with 1111/136
Then we turn our improper fraction back into a mix number: 1111/138= 8 23/136
Answer:
[tex]\frac{1111}{136} = 8 \frac{23}{136}[/tex]
Step-by-step explanation:
We want to simplify:
[tex]7 \frac{3}{8} + \frac{ -4 \frac{1}{2} }{ -5 \frac{2}{3} }[/tex]
First, convert all the fractions to improper fractions:
[tex]\frac{59}{8} + \frac{ - \frac{9}{2} }{ - \frac{17}{3} } \\\\= \frac{59}{8} + \frac{27}{34}[/tex]
Find the LCM of the denominators:
[tex]\frac{(17 * 59) + (4 * 27)}{136} \\\\ = \frac{1003 + 108}{136}\\ \\= \frac{1111}{136} \\\\= 8 \frac{23}{136}[/tex]
In a school, half of the 300 students saw Zootopia, 180 students saw Finding Dory, and 45 students did not see either movie. How many students saw both movies?
Answer:
150
Step-by-step explanation:
Answer:
150 = half of 300
± 180
230
soooo 230 students
Step-by-step explanation:
How many real solutions In this problem
Answer:
D
Step-by-step explanation:
Given
y = x² + 1
y = x
Equating gives
x² + 1 = x ( subtract x from both sides )
x² - x + 1 = 0
Consider the discriminant Δ = b² - 4ac
with a = 1, b = - 1 and c = 1
b² - 4ac = (- 1)² - (4 × 1 × 1) = 1 - 4 = - 3
Since b² - 4ac < 0 then there are no real solutions
Look at picture to see question
Which equation represents a line that is perpendicular to line FG? A. y=-1/2x+5 B. y=1/2x+2 C. y=-2x-3 D. y=2x-6
The equation of line which is perpendicular to the line FG is
y = -2x -3.
What is equation of line?
The equation of line is an algebraic form of representing the set of points, which together form a line in a coordinate system.
Formula for finding the equation of line from two points [tex](x_{1} ,y_{1} ) and (x_{2}, y_{2} )[/tex][tex](y -y_{1}) = \frac{y_{2}-y_{1} }{x_{2} -x_{1} } (x-x_{1} )[/tex]
What is the slope of two perpendicular lines?If [tex]m_{1}[/tex] be the slope of one line, then the slope of the perpendicular line is [tex]\frac{-1}{m_{1} }[/tex].
What is the slope intercept form of a line ?The slope intercept form of the line is given by y = mx + b
Where, m is the slope of a line.
According to the given question
We have a line FG and the coordinates of points F and G are (-5,1) and (9,8) respectively.
Therefore, the slope of the line FG = [tex]\frac{8-1}{9+5}=\frac{7}{14} =\frac{1}{2}[/tex]
⇒ The slope of the line which is parallel to line FG is -2
Now, from the given option of the equation of line , y = -2x -3 has a slope of -2 .
Hence, the equation of line which is perpendicular to the line FG is
y = -2x -3.
Learn more about the equation of a perpendicular line here:
https://brainly.com/question/20712656
#SPJ2
3. In the diagram, PRST and PQWV are rectangles. Q, V
and U are midpoints of PR, PU and PT respectively.
Find the area of the shaded region.
======================================================
Work Shown:
A = area of trapezoid RSTU
A = height*(base1+base2)/2
A = ST*(UT+RS)/2
A = 14*(5+10)/2
A = 105 square cm
-----------------------
B = area of rectangle PQWV
B = length*width
B = WV*PV
B = 7*2.5
B = 17.5 square cm
If you're curious how I got PV = 2.5, you basically cut PT = 10 in half twice. So you go from 10 to 5, then from 5 to 2.5; which works because we have a bunch of midpoints.
-----------------------
C = total shaded area
C = A + B
C = 105 + 17.5
C = 122.5
The principal feature of the redesigned checks is a series of printed instructions that the company hopes will help merchants confirm a check’s authenticity, which includes reminders to watch the endorsement, compare signatures, and view the watermark while holding the check to the light.
(A) which includes reminders to watch the endorsement, compare signatures, and view
(B) which include reminders for watching the endorsement, to compare signatures and view
(C) by including reminders for watching the endorsement, comparing signatures, and viewing
(D) including reminders to watch the endorsement, comparing signatures and viewing
(E) including reminders to watch the endorsement, compare signatures, and view
Answer:
(E) including reminders to watch the endorsement, compare signatures, and view
Step-by-step explanation:
The principle features that will help the company to confirms checks authenticity. It include endorsements and compare the signatures with the designated signatories. If the signatures are matched correctly with the assigned signatories the check is hold in light to view the watermark on it.
Large samples of women and men are obtained, and the hemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2:
negative 1.76 g divided by dL less than mu 1 minus mu 2 less than minus 1.62 g divided by dL
−1.76 g/dL<μ1−μ2<−1.62 g/dL. Complete parts (a) through (c) below.
a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?
Answer:
a) Because the confidence interval does not include 0 it appears that there
is a significant difference between the mean level of hemoglobin in women and the mean level of hemoglobin in men.
b)There is 95% confidence that the interval from −1.76 g/dL<μ1−μ2<−1.62 g/dL actually contains the value of the difference between the two population means μ1−μ2
c) 1.62 < μ1−μ2< 1.76
Step-by-step explanation:
a) What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?
Given:
95% confidence interval for the difference between the two population means:
−1.76g/dL< μ1−μ2 < −1.62g/dL
population 1 = measures from women
population 2 = measures from men
Solution:
a)
The given confidence interval has upper and lower bound of 1-62 and -1.76. This confidence interval does not contain 0. This shows that the population means difference is not likely to be 0. Thus the confidence interval implies that the mean hemoglobin level in women and the mean hemoglobin level in men is not equal and that the women are likely to have less hemoglobin than men. This depicts that there is significant difference between mean hemoglobin level in women and the mean hemoglobin level in men.
b)
There is 95% confidence that the interval −1.76 g/dL<μ1−μ2<−1.62 g/dL actually contains the value of the difference between the two population means μ1−μ2.
c)
If we interchange men and women then
confidence interval range sign will become positive.μ1 becomes the population mean of the hemoglobin level in menμ2 becomes the population mean of the hemoglobin level in women So confidence interval becomes:1.62 g/dL<μ1−μ2<1.76 g/dL.
There is a significant difference between the mean level of hemoglobin in women and in men.
How to interpret the confidence intervalThe confidence interval of the mean is given as:
[tex]-1.76 g/dL < \mu_1-\mu_2 < -1.62 g/dL[/tex]
The above confidence interval shows that the confidence interval is exclusive of 0.
This means that 0 is not part of the confidence interval
Since the confidence interval is exclusive of 0, then there is a significant difference between the mean level of hemoglobin in women and in men.
Read more about confidence intervals at:
https://brainly.com/question/17097944
Gemma wants to draw a triangle with side lengths of 4 inches, 12 inches, and 17 inches. Which statement is true? This triangle exists because the sum of any two side lengths is greater than the length of the third side. This triangle exists because the sum of 4 and 12 is less than 17. This triangle does not exist because the sum of any two side lengths is greater than the length of the third side. This triangle does not exist because the sum of 4 and 12 is less than 17.
Answer:
The triangle inequality states that the sum of the lengths of the two shortest sides of a triangle must be greater than the length of the largest side. Because 4 + 12 > 17 is not a true statement, the answer is "This triangle does not exist because the sum of 4 and 12 is less than 17."
Answer:
This triangle does not exist due to the fact that the sum of 4 and 12 is less than 17
Step-by-step explanation:
The triangle formaction rule states that the 2 smaller sides must be able to combine and be greater than the greatest side.
Triangle
Sides - 3, 4, 5
3+4=7
Meaning the two smaller sides add up to because greater than 5.
Non-Triangle
Sides - 5, 6, 13
5+6=11
This means that this is not a triangle because the smaller sides ‘5 and 6’ do not add up to become greater than 13.
Gemma’s Triangle
Sides - 4, 12, 17
4+12=16
Hence, Gemma‘s figure is not a triangle because the 2 smaller sides ‘4 and 12’ don‘t add up to be greater than 17.
8 7 12 7 11
10 7 12
Find:
a)the median
b) the range
c)the mode
Answer:
a) Median: 9
b) Range: 5
c) Mode: 7
Step-by-step explanation:
The median is the number in the middle.
First, you put the numbers in order: 7, 7, 7, 8, 10, 11, 12, 12
The middle of this is 8 and 10, so you plus them and divide by to 2, then it gives 9, so the median is 9.
To find the range, you minus the highest number and the lowest number, 12-7=5.
Mode is the most occurring and repetitive number, in this case, 7, because it is written 3 times.
Hope this helps!!!
Answer:
[tex]\boxed{\mathrm {Median = 9}}[/tex]
[tex]\boxed{\mathrm{Range = 5}}[/tex]
[tex]\boxed{\mathrm{Mode = 7}}[/tex]
Step-by-step explanation:
The observations are:
8,7,12,7,11,10,7,12
In ascending order:
=> 7,7,7,8,10,11,12,12
A) Median => Middlemost no.
Median = 8,10
=> [tex]\frac{8+10}{2}[/tex]
=> [tex]\frac{18}{2}[/tex]
Median = 9
B) Range = Highest No. = Lowest No.
RANGE = 12-7
Range = 5
C) Mode => frequently occurring number
Mode = 7
If a watch store paid $125 per watch for a shipment of watches, and sold all but 15 watches from the shipment for $150 per watch, then, in terms of the number of watches in the shipment, y, what function describes the watch store’s profit, P, from the sales?
A) P(y) = 125(y – 15) – 150y
B) P(y) = 15(125 – y) – 150y
C) P(y) = 150(y – 15) – 125y
D) P(y) = 15(150 – y) – 125y
Answer: C) P(y) = 150(y – 15) – 125y
Step-by-step explanation:
Hi, to answer this question we have to write an equation:
Profit = revenue - cost
Cost: a watch store paid $125 per watch for a shipment of watches
Cost = 125 y
Where y is the number of watches in the shipment
Revenue: sold all but 15 watches from the shipment for $150 per watch
Revenue = 150(y-15)
Profit(y) = 150(y – 15) – 125y
So, the correct option is:
C) P(y) = 150(y – 15) – 125y
Feel free to ask for more if needed or if you did not understand something.
A smaller number is 3 less than half a larger number. The larger number is 10 times 1 less than the smaller number. Let x represent the smaller number, and let y represent the larger number. Which equations can be used to model the situation? Check all that apply. x = one-half y minus 3 2 x minus y = negative 6 2 x minus y = negative 3 x = one-half (y minus 3) y = 10 (x minus 1)
Answer: x=one-half y minus
Step-by-step explanation:
Answer:
x=1/2 y-3
Step-by-step explanation:
Drag a statement or reason to each box to complete this proof.
If -5(x + 8) = -25, then x =
-3
What is the approximate angle between two position vectors if their terminal points are (5, -2) and (7, 3)?
Hi,
Answer:
[tex]Angle=\frac{pi}{4}[/tex] = π/4 = 45°
Have a good day.
n the diagram below, points $A,$ $E,$ and $F$ lie on the same line. If $ABCDE$ is a regular pentagon, and $\angle EFD=90^\circ$, then how many degrees are in the measure of $\angle FDE$?
[asy]
size(5.5cm);
pair cis(real magni, real argu) { return (magni*cos(argu*pi/180),magni*sin(argu*pi/180)); }
pair a=cis(1,144); pair b=cis(1,72); pair c=cis(1,0); pair d=cis(1,288); pair e=cis(1,216);
pair f=e-(0,2*sin(pi/5)*sin(pi/10));
dot(a); dot(b); dot(c); dot(d); dot(e); dot(f);
label("$A$",a,WNW);
label("$B$",b,ENE);
label("$C$",c,E);
label("$D$",d,ESE);
label("$E$",e,W);
label("$F$",f,WSW);
draw(d--f--a--b--c--d--e);
draw(f+(0,0.1)--f+(0.1,0.1)--f+(0.1,0));
[/asy]
Answer:
18
Step-by-step explanation:
Each interior angle of a regular pentagon is 108 degrees. So Angle AED is 108 degrees. Since Angle AEF is a straight line (180 degrees), Angle FED is 72. This is because 180-108 = 72. Now, since a triangle has a total of 180 degrees, we add 72 and 90, because those are the 2 degrees we have calculated. This gives us a total of 162. Now, we subtract 162 from 180 to find out the degree of Angle FDE. This is 18. So our final answer is 18.
Sidenote: I hope this answer helps!
The properties of a pentagon and the given right triangle formed by
segments EF and FD give the measure of ∠FDE.
Response:
∠FDE = 18°Which properties of a pentagon can be used to find ∠FDE?The given parameters are;
A, E, F are points on the same line.
ABCDE is a regular pentagon
∠EFD = 90°
Required:
The measure of ∠FDE
Solution:
The points A and E are adjacent points in the pentagon, ABCDE
Therefore;
line AEF is an extension of line side AE to F
Which gives;
∠DEF is an exterior angle of the regular pentagon = [tex]\frac{360 ^{\circ}}{5}[/tex] = 72°∠EFD = 90°, therefore, ΔEFD is a right triangle, from which we have;
The sum of the acute angles of a right triangle = 90°
Therefore;
∠DEF + ∠FDE = 90°
Which gives;
72° + ∠FDE = 90°
∠FDE = 90° - 72° = 18°
∠FDE = 18°
Learn more about the properties of a pentagon here:
https://brainly.com/question/15392368
If a equals 15, then what number does 2a - 5 equal?
Answer:
25
Step-by-step explanation:
a=15
2(15)-5=25
30-5=25
Answer:
25
Step-by-step explanation:
The problem substituting a for 15 would be 2(15)-5
2*15 is 30, then -5 is 25.