g 940 The beam AB has a negligible mass and thickness and is subjected to a triangular distributed loading. It is supported at one end by a pin and at the other end by a post having a mass of 50 kg and negligible thickness. Determine the two coefficients of static friction at B and at C so that when the magnitude of the applied force is increased to P

Answers

Answer 1

Answer:

μb = 0.096

μc  = 0.073

Explanation:

member AB:

-800( 4/3 ) + Nb (2) = 0

Nb (2) = 3200/3

Nb = 533.3N

Post BC:

summation of force along the y axis=0

Nc + Nb + 150(3/5 ) -50(9.81)=0

Nc + 533.3 + 150(3/5 ) -50(9.81)=0

Nc = 933.83 N

Also (-4/5)(150)(3) + Fb(0.7)= 0

Fb = (4/5)(150)(3)/0.7 = 51.429 N

Likewise alog the x axis,

4/5(150) - Fc -Fb = 0

4/5(150) - Fc -51.429 = 0

Fc = 4/5(150)  -51.429 =68.571 N

μb = Fb/Nb = 51.429/533.3  = 0.096

μc = Fc/Nc = 68.571 / 933.83 = 0.073

G 940 The Beam AB Has A Negligible Mass And Thickness And Is Subjected To A Triangular Distributed Loading.
G 940 The Beam AB Has A Negligible Mass And Thickness And Is Subjected To A Triangular Distributed Loading.
G 940 The Beam AB Has A Negligible Mass And Thickness And Is Subjected To A Triangular Distributed Loading.

Related Questions

A car radiator is a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.05 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 200 W/m2-K, what is the required heat transfer surface area?

Answers

Answer:

Explanation:

Known: flow rate and inlet temperature for automobile radiator.

Overall heat transfer coefficient.

Find: Area required to achieve a prescribed outlet temperature.

Assumptions: (1) Negligible heat loss to surroundings and kinetic and

potential energy changes, (2) Constant properties.

Analysis: The required heat transfer rate is

q = (m c)h (T h,i - T h,o) = 0.05 kg/s (4209J / kg.K) 70K = 14,732 W

Using the ε-NTU method,

Cmin = Ch = 210.45 W / K

Cmax = Cc = 755.25W / K

Hence, Cmin/Cmx(Th,i - Th,o) = 210.45W / K(100K) = 21,045W

and

ε=q/qmax = 14,732W / 21,045W = 0.700

NTU≅1.5, hence

A=NTU(cmin / U) = 1.5 x 210.45W / K(200W) / m² .K) = 1.58m²

1. the air outlet is..

Tc,o = Tc,i + q / Cc = 300K + (14,732W / 755.25W / K) = 319.5K

2. using the LMTD approach ΔTlm = 51.2 K,, R=0.279 and P=0.7

hence F≅0.95 and

A = q/FUΔTlm = (14,732W) / [0.95(200W / m².K) 51.2K] = 1.51m²

A 60-Hz 220-V-rms source supplies power to a load consisting of a resistance in series with an inductance. The real power is 1500 W, and the apparent power is 4600 VA.
a. Determine the value of the resistance.
b. Determine the value of the inductance.

Answers

Answer:

(a) The value of the resistance is 3.431 Ω

(b) The value of the inductance is 0.0264 H

Explanation:

Given;

frequency of the source, f = 60 Hz

rms voltage, V-rms = 220 V

real power, Pr = 1500 W

apparent power, Pa = 4600 VA

(a). Determine the value of the resistance

[tex]P_r = I_{rms}^2R[/tex]

where;

R is resistance

[tex]I_{rms} = \frac{Apparent \ Power}{V_{rms}} \\\\I_{rms} = \frac{P_a}{V_{rms}}\\\\I_{rms}= \frac{4600}{220} \\\\I_{rms}= 20.91 \ A[/tex]

Resistance is calculated as;

[tex]R = \frac{P_r}{I_{rms}^2} \\\\R = \frac{1500}{(20.91)^2} \\\\R = 3.431 \ ohms[/tex]

(b). Determine the value of the inductance.

[tex]Q_L = I_{rms}^2 X_L[/tex]

where;

[tex]Q_L[/tex] is reactive power

[tex]X_L[/tex] is inductive reactance

[tex]Apparent \ power = \sqrt{Q_L^2 + P_r^2} \\\\P_a^2 = Q_L^2 + P_r^2\\\\Q_L^2 = P_a^2 - P_r^2\\\\Q_L^2 = 4600^2 - 1500^2\\\\Q_L^2 = 18910000\\\\Q_L = \sqrt{18910000}\\\\Q_L = 4348.56 \ VA[/tex]

inductive reactance is calculated as;

[tex]X_L = \frac{Q_L}{I_{rms}^2} \\\\X_L = \frac{4348.56}{(20.91)^2} \\\\X_L = 9.95 \ ohms[/tex]

inductance is calculated as;

[tex]X_L = \omega L\\\\X_L = 2\pi f L\\\\L = \frac{X_L}{2\pi f} \\\\L = \frac{9.95}{2\pi *60} \\\\L = 0.0264 \ H\\\\L = 26.4 \ mH[/tex]

Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 26.0 MPa m0.5. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

Answers

Answer: 164.2253 MPa

Explanation:

First we find the half internal crack which is  = length of surface crack /2

so α = 8.6 /2 = 4.3mm ( 4.3×10⁻³m )

Now we find the dimensionless parameter using the critical stress crack propagation equation

∝ = K / Y√πα

stress level ∝ = 112Mpa

fracture toughness K = 26Mpa

dimensionless parameter Y = ?

SO working the formula

Y = K / ∝√πα

Y = 26 / 112 (√π × 4.3× 10⁻³)

Y = 1.9973

We are asked to find stress level for internal crack length of  4m

so half internal crack is  = length of surface crack /2

4/2 = 2mm ( 2 × 10⁻³)

from the previous formula critical stress crack propagation equation

∝ = K / Y√πα

∝ = 26 / 1.9973 √(π × 2 × 10⁻³)

∝ = 164.2253 Mpa

A single-phase transformer has 480 turns on the primary and 90 turns on the secondary. The mean length of the flux path in the core is 1.8 m and the joints are equivalent to an airgap of 0.1 mm. The value of the magnetic field strength for 1.1 T in the core is 400 A/m, the corresponding core loss is 1.7 W/kg at 50 Hz and the density of the core is 7800 kg/m3. If the maximum value of the flux density is to be 1.1 T when a p.D. Of 2200 V at 50 Hz is applied to the primary, calculate: a. The cross-sectional area of the core; b. The secondary voltage on no load; c. The primary current and power factor on no load.

Answers

Answer:

a) cross sectional area of the core = 0.0187 m²

b) The secondary voltage on no-load = 413 V

c) The primary currency and power factor on no load is 1.21 A and 0.168 lagging respectively.

Explanation:

See attached solution.

an adiabatic compressor receives 1.5 meter cube per second of air at 30 degrees celsius and 101 kpa. The discharge pressure is 505 kpa and the power supplied is 325 kW, what is the discharge temperature

Answers

Answer:

The discharge temperature is 259.82 K

Explanation:

In this question, we are concerned with calculating the discharge temperature

Please check attachment for complete solution

how can we prevent chemical hazards in labotary

Answers

Answer:

We can prevent it by:

a) By wearing GOOGLES.

b) By wearing our Lab coat.

c) Fire extinguisher should always be present in the lab.

d) Hand Gloves must be worn.

e) No playing in the lab.

f) No touching of things/equipment's e.g bottles, in the lab.

g) No eating/snacking in the lab.

h) Always pay attention, no gisting.

i) Adult/qualified person must be present in the lab with pupils/students.

Explanation:

Hope it helps.

A car travels from A, due north to a town B 4 km away. It then travels due east until it arrives town C 5 km from B. determine the distance of town C from A​

Answers

Answer:

A to C = 6.4 km

Explanation:

A to B = 4 km

B to C = 5 km

A to C =  using pythagorean theorem

a² + b² = c²

a = A to B = 4

b = B to C = 5

c = A to C

c² = 4² + 5²

c = 6.4 km (A to C)

According to the scenario, the distance between town C from town A is found to be 6.40 Km.

Which background does this question depend on?

The background that this question depends on is known as the direction-based question. These types of questions completely depend on the distance of moving bodies like cars, persons, or any other objects as well with respect to the initial position.

According to the question,

The distance between town A to town B = 4 km.

The distance between town B to town C = 5 km.

Now, according to the Pythagoras theorem, the distance between town C to town A is as follows:

[tex]AC^2[/tex] = [tex]AB^2 +BC^2[/tex].

[tex]AC^2[/tex] = [tex]4^2+5^2[/tex]

[tex]AC^2[/tex] = 16 + 25 = 41.

AC = √41 = 6.40 km.

Therefore, the distance between town C from town A is found to be 6.40 Km.

To learn more about Pythagoras' theorem, refer to the link:

https://brainly.com/question/343682

#SPJ5

A quartz window of thickness L serves as a viewing port in a furnace used for annealing steel. The inner surface (x=0) of the window is irradiated with a uniform heat flux q''o due to emission from hot gases in the furnace. A fraction, β, of this radiation may be assumed to be absorbed at the inner surface, while the remaining radiation is partially absorbed as it passes through the quartz. The volumetric heat generation due to this absorption may be described by an expression of the form q˙(x)=(1−β)q''oα^e−αx where α is the absorption coefficient of the quartz. Convection heat transfer occurs from the outer surface (x=L) of the window to ambient air at T[infinity] and is characterized by the convection coefficient h. Convection and radiation emission from the inner surface may be neglected, along with radiation emission from the outer surface.

Required:
Determine the temperature distribution in the quartz, expressing your result in terms of the foregoing parameters.

Answers

Answer:

Assuming steady state condition the temperature distribution is calculated as expressed in the attached solution below

Explanation:

Given data :

thickness : L , inner surface (x) : 0,  uniform flux : q"o

fraction : β  

volumetric heat generation :  q˙(x)=(1−β)q''oα^e−αx

determine the temperature distribution in the quartz

attached below is the detailed solution

Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 26.0 MPa m0.5. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

Answers

Answer:

the required stress level  at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa

Explanation:

From the given information; the objective is to compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

The Critical Stress for a maximum internal crack can be expressed by the formula:

[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]

[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]

where;

[tex]\sigma_c[/tex] = critical stress required for initiating crack propagation

[tex]K_{lc}[/tex] = plain stress fracture toughness = 26 Mpa

Y = dimensionless parameter

a = length of the internal crack

given that ;

the maximum internal crack length is 8.6 mm

half length of the internal  crack will be 8.6 mm/2 = 4.3mm

half length of the internal  crack a = 4.3 × 10⁻³ m

From :

[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]

[tex]Y= \dfrac{26}{112 \times \sqrt{\pi \times 4.3 \times 10 ^{-3}}}[/tex]

[tex]Y= \dfrac{26}{112 \times0.1162275716}[/tex]

[tex]Y= \dfrac{26}{13.01748802}[/tex]

[tex]Y=1.99731315[/tex]

[tex]Y \approx 1.997[/tex]

For this same component and alloy, we are to also compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

when the length of the internal crack a = 3mm

half  length of the internal  crack will be 3.0 mm / 2 = 1.5 mm

half length of the internal  crack a =1.5 × 10⁻³ m

From;

[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]

[tex]\sigma_c = \dfrac{26}{1.997 \sqrt{\pi \times 1.5 \times 10^{-3}}}[/tex]

[tex]\sigma_c = \dfrac{26}{0.1370877444}[/tex]

[tex]\sigma_c =189.6595506[/tex]

[tex]\sigma_c =[/tex] 189.66 MPa

Thus; the required stress level  at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa

A concentric tube heat exchanger is used to cool a solution of ethyl alcohol flowing at 6.93 kg/s (Cp = 3810 J/kg-K) from 65.6 degrees C to 39.4 degrees C using water flowing at 6.30 kg/s at a temperature of 10 degrees C. Assume that the overall heat transfer coefficient is 568 W/m2-K. Use Cp = 4187 J/kg-K for water.
a. What is the exit temperature of the water?
b. Can you use a parallel flow or counterflow heat exchanger here? Explain.
c. Calculate the rate of heat flow from the alcohol solution to the water.
d. Calculate the required heat exchanger area for a parallel flow configuration
e. Calculate the required heat exchanger area for a counter flow configuration. What happens when you try to do this? What is the solution?

Answers

A, I believe is correct

. A belt drive is desired to couple the motor with a mixer for processing corn syrup. The 25-hp electric motor is rated at 950 rpm and the mixer must operate as close to 250 rpm as possible. Select an appropriate belt size, commercially available sheaves, and a belt for this application. Also calculate the actual belt speed and the center distance.

Answers

Answer:

Hello the table which is part of the question is missing and below are the table values

For a 5V belt the available diameters are : 5.5, 5.8, 5.9, 6.2, 6.3, 6.6, 12.5, 13.9, 15.5, 16.1, 18.5, 20.1

Answers:

belt size = 140 in with diameter of 20.1n

actual speed of belt = 288.49 in/s

actual center distance = 49.345 in

Explanation:

Given data :

Electric motor (driver sheave) speed (w1) = 950 rpm

Driven sheave speed (w2) = 250 rpm

pick D1 ( diameter of driver sheave)  = 5.8 in  ( from table )

To select an appropriate belt size we apply the equation for the velocity ratio to get the diameter first

VR = [tex]\frac{w1}{w2}[/tex] = 950 / 250

also since the speed of  belt would be constant then ;

Vb = w1r1 = w2r2 ------- equation 1

r = d/2

substituting the value of r into equation 1

equation 2 becomes : [tex]\frac{w1}{w2} = \frac{d2}{d1}[/tex]    = VR

Appropriate belt size ( d2) can be calculated as

d2 = [tex]\frac{w1d1}{w2}[/tex] = [tex]\frac{950 * 5.8}{250}[/tex] = 22.04

From the given table the appropriate belt size would be : 20.1 because it is the closest to the calculated value

next we have to determine the belt length /size

[tex]L = 2C + \frac{\pi }{2} ( d1+d2) + \frac{(d2-d1)^2}{4C}[/tex]

inputting  all the values into the above equation including the value of C as calculated below

L ≈ 140 in

Calculating the center distance

we use this equation to get the ideal center distance

[tex]d2< C_{ideal} < 3( d1 +d2)[/tex]

22.04 < c < 3 ( 5.8 + 20.1 )

22.04 < c < 77.7

the center distance is between 22.04 and 77.7  but taking an average value

ideal center distance would be ≈ 48 in

To calculate the actual center distance we use

[tex]C = \frac{B+\sqrt{B^2 - 32(d2-d1)^2} }{16}[/tex] -------- equation 3

B = [tex]4L -2\pi (d2 + d1 )[/tex]

inputting all the values into (B)

B = 140(4) - 2[tex]\pi[/tex]( 20.01 + 5.8 )

B ≈ 399.15 in

inputting all the values gotten Back to equation 3 to get the actual center distance

C = 49.345 in ( actual center distance )

Calculating the actual belt speed

w1 = 950 rpm = 99.48 rad/s

belt speed ( Vb) = w1r1 = w1 * [tex]\frac{d1}{2}[/tex]

                           = 99.48 * 5.8 / 2 = 288.49 in/s

If you see a red, a green, and a white light on another boat, what does this tell you?

Answers

A boat is approaching you head on.

The red and green lights are sidelights that are positioned on the port side (red) (left as facing the bow) and starboard (green) (right as facing the bow) side of the boat. Various white lights are required depending on the size of the boat, but generally, a white masthead light and stern light are required. See the US Coast Guard site in the link below for more specific information.

Hope this helps

Compute the volume percent of graphite, VGr, in a 2.5 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively.

Answers

Answer:

The volume percent of graphite is 91.906 per cent.

Explanation:

The volume percent of graphite ([tex]\% V_{Gr}[/tex]) is determined by the following expression:

[tex]\%V_{Gr} = \frac{V_{Gr}}{V_{Gr}+V_{Fe}} \times 100\,\%[/tex]

[tex]\%V_{Gr} = \frac{1}{1+\frac{V_{Gr}}{V_{Fe}} }\times 100\,\%[/tex]

Where:

[tex]V_{Gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

[tex]V_{Fe}[/tex] - Volume occupied by the ferrite phase, measured in cubic centimeters.

The volume of each phase can be calculated in terms of its density and mass. That is:

[tex]V_{Gr} = \frac{m_{Gr}}{\rho_{Gr}}[/tex]

[tex]V_{Fe} = \frac{m_{Fe}}{\rho_{Fe}}[/tex]

Where:

[tex]m_{Gr}[/tex], [tex]m_{Fe}[/tex] - Masses of the graphite and ferrite phases, measured in grams.

[tex]\rho_{Gr}[/tex], [tex]\rho_{Fe}[/tex] - Densities of the graphite and ferrite phases, measured in grams per cubic centimeter.

Let substitute each volume in the definition of the volume percent of graphite:

[tex]\%V_{Gr} = \frac{1}{1 +\frac{\frac{m_{Gr}}{\rho_{Gr}} }{\frac{m_{Fe}}{\rho_{Fe}} } } \times 100\,\%[/tex]

[tex]\%V_{Gr} = \frac{1}{1+\left(\frac{m_{Gr}}{m_{Fe}} \right)\cdot \left(\frac{\rho_{Fe}}{\rho_{Gr}} \right)}\times 100\,\%[/tex]

Let suppose that 100 grams of cast iron are available, masses of each phase are now determined:

[tex]m_{Gr} = \frac{2.5}{100}\times (100\,g)[/tex]

[tex]m_{Gr} = 2.5\,g[/tex]

[tex]m_{Fe} = 100\,g - 2.5\,g[/tex]

[tex]m_{Fe} = 97.5\,g[/tex]

If [tex]m_{Gr} = 2.5\,g[/tex], [tex]m_{Fe} = 97.5\,g[/tex], [tex]\rho_{Fe} = 7.9\,\frac{g}{cm^{3}}[/tex] and [tex]\rho_{Gr} = 2.3\,\frac{g}{cm^{3}}[/tex], the volume percent of graphite is:

[tex]\%V_{Gr} = \frac{1}{1+\left(\frac{2.5\,gr}{97.5\,gr} \right)\cdot \left(\frac{7.9\,\frac{g}{cm^{3}} }{2.3\,\frac{g}{cm^{3}} } \right)} \times 100\,\%[/tex]

[tex]\% V_{Gr} = 91.906\,\%[/tex]

The volume percent of graphite is 91.906 per cent.

A small still is separating propane and butane at 135 °C, and initially contains 10 kg moles of a mixture whose composition is x = 0.3 (x = mole fraction butane). Additional mixture (x = 0.3) is fed at the rate of 5 kg mole/hr. The total volume of the liquid in the still is constant, and the concentration of the vapor from the still (xp) is related to x, as follows: Xp = How long will it take for X, to change from 0.3 to 0.35.​

Answers

Answer:

Hello the needed relation is missing below is the required relation

[tex]X_{p} = \frac{x_{s} }{1+x_{s} }[/tex]   composition : propane = 0.70, butane = 0.3

Answer : ≈ 5.75 hrs

Explanation:

Applying the data given in regards to the material balance

Butane balance input into the still = 5 mole feed/hr | 0.30 mol butane/molfeed

since the total volume of the liquid in the still is constant

The output from the still is = 5mol condensed/hr | x[tex]_{p}[/tex] mol butane/mol condensed

unsteady state equation = [tex]\frac{dx_{s} }{dt}[/tex] = 0.15 - [tex]0.5X_{p}[/tex]

note : to reduce the equation a single dependent variable we have to substitute for [tex]x_{p}[/tex]

[tex]\frac{dx_{s} }{dt}[/tex] [tex]= 0.15 + x_{s} / 1 + (0.5)x_{s}[/tex]

In order to find the time it will take for X to change from 0.3 to 0.35

integrate the above equation using the limits : t = 0, x[tex]_{s}[/tex] = 0.3 and t = Ф,

x[tex]_{s} = 0.35[/tex]

= [tex][ - (x_{s} /0.35 - (1/(0.35)^2)* In(0.15 - 0.35x_{s} ) ]_{0.3} ^{0.35}[/tex]

hence t = Ф ≈ 5.75 hrs

‏What is the potential energy in joules of a 12 kg ( mass ) at 25 m above a datum plane ?

Answers

Answer:

E = 2940 J

Explanation:

It is given that,

Mass, m = 12 kg

Position at which the object is placed, h = 25 m

We need to find the potential energy of the mass. It is given by the formula as follows :

E = mgh

g is acceleration due to gravity

[tex]E=12\times 9.8\times 25\\\\E=2940\ J[/tex]

So, the potential energy of the mass is 2940 J.

Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to the maximum shear stress.

Answers

The shear stress at any given point y1 along the height of the cross section is calculated by: where Ic = b·h3/12 is the centroidal moment of inertia of the cross section. The maximum shear stress occurs at the neutral axis of the beam and is calculated by: where A = b·h is the area of the cross section.

In this exercise we have to calculate the formula that will be able to determine the length of the cantilevered, like this:

[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]

So to determinated the maximum tensile and compreensive stress due to bending we can describe the formula as:

[tex]\sigma_b = \frac{MC}{I}[/tex]

Where,

[tex]\sigma_b[/tex] is the compressive stress or tensile stress[tex]M[/tex] is the B.M [tex]C[/tex] is the N.A distance[tex]I[/tex] is the moment of interior

So making this formula for the max, we have:

[tex]\sigma_c=\frac{MC}{I} \\\sigma_T=-\sigma_c=-\frac{MC}{I}\\\sigma_{max}=M_{max}\\[/tex]

With all this information we can put the formula as:

[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]

See more about stress in the beam at brainly.com/question/23637191

1. How many PWM generator blocks are there in LM3S1968? What are they? 2. How many independent PWM outputs can be generated on an LM3S1968? 3. List at least two applications for PWM. 4. What does NVIC in a timer stand for? Explain its significance. 5. Where does the counter/timer derive its time period from? 6. Draw the waveforms (square wave) with duty cycles (on) 25%, 50%, 75%.One of the purpose of the lab is to generate a PWM signal in one of the ports using systick timer. a. Given a signal with 1 KHz, find out the time period of each cycle. Find out the time span of the high signal and the low signal given 10%, 20%, 30% and 90% duty cycles. b. We would like to generate a signal with a certain frequency (ex. 100 Hz, 1 KHz, etc.) and certain duty cycle (10%, 20%, etc.), find out the values we need to load into the timer register? Given that the XTAL = 8 MHz.

Answers

Answer:

1) There are  three (3) PWM generator blocks in LM3S1968 and they are

PWM signal generatorADC trigger selectorPWM dead-band generator

2)  Two (2) independent  PWM outputs can be generated on an LM3S1968

3) Applications for PWM

Control Brightness of LED using  Duty Cycle controlSpeed Control of DC Motor

4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller

its significance is that it is used to handle  and give priorities to exception and Interrupts

5) The counter/timer derive its time period from  counting the output pulses for one cycle which is the duration over which gate is open

Explanation:

1) There are  three (3) PWM generator blocks in LM3S1968 and they are

PWM signal generatorADC trigger selectorPWM dead-band generator

2)  Two (2) independent  PWM outputs can be generated on an LM3S1968

3) Applications for PWM

Control Brightness of LED using  Duty Cycle controlSpeed Control of DC Motor

4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller

its significance is that it is used to handle  and give priorities to exception and Interrupts

5) The counter/timer derive its time period from  counting the output pulses for one cycle which is the duration over which gate is open

6) THE WAVEFORM DIAGRAMS IS ATTACHED BELOW

it can be seen  that 50 % rises and goes down at half interval. 75 % goes down at half more of 50% and 25% goes down at half less of 50%

An exothermic reaction releases 146 kJ of heat energy and 3 mol of gas at 298 K and 1 bar pressure. Which of the following statements is correct?
A) ΔU=-138.57 kJ and ΔH=-138.57 kJ
B) ΔU=-153.43 kJ and ΔH=-153.43 kJ
C) ΔU=-138.57 kJ and ΔH=-146.00 kJ
D) ΔU=-153.43 kJ and ΔH=-146.00 kJ

Answers

Answer:

D) ΔU = -153.43 kJ and ΔH = -146.00 kJ

Explanation:

Given;

heat energy released by the exothermic reaction, ΔH = -146 kJ

number of gas mol, n = 3 mol

temperature of the gas, T = 298 K

Apply first law of thermodynamic

Change in the internal energy of the system, ΔU;

ΔU = ΔH- nRT

where;

R is gas constant = 8.314 J/mol.K

ΔU = -146kJ - (3 x 8.314 x 298)

ΔU = -146kJ - 7433 J

ΔU = -146kJ - 7.433 kJ

ΔU = -153.43 kJ

Therefore, the enthalpy change of the reaction ΔH is -146 kJ and change in the internal energy of the system is -153.43 kJ

D) ΔU = -153.43 kJ and ΔH = -146.00 kJ

4. ""ABC constriction Inc."" company becomes the lowest in the bed process to get a $21 million construction project for ""Northern Inc."". Now ""ABC construction Inc."" planning to make a formal contract agreement

Answers

Answer:

hello your question is incomplete here is the complete question

. “ABC construction Inc.” company becomes the lowest in the bed process to get a $21 million construction project for “Northern Inc.”. Now “ABC construction Inc.” planning to make a formal contract agreement with the “Northern Inc.”. What are the main elements of this agreement to consider it as a legal contract?

Answer : elements of the agreement

offeracceptancecapacity certaintyconsiderationintention to create legal relation

Explanation:

Offer : an offer is the beginning element for any valid agreement to be started or reached between two or more bodies. ABC construction would have to make an offer first for the agreement to be valid

Acceptance: This is part where by the company "Northern Inc" after receiving the offer from ABC construction Inc would have to consent to the approval of the offer made.

capacity : This the element of the agreement that helps to ensure that both parties have the legal and financial backings to embark on the contract agreement .

certainty : This element ensures that both parties understands the terms and conditions attached to the agreement and this to ensure that there are no bogus conditions

Consideration : This is a very vital element because the both parties have to give something in return while going into a valid agreement

Intention to create legal relation : Legal relations are applied to contract agreements whereby both parties want the contract agreement to b legally enforced and this is important in order to prevent contract breach by any party involved in the agreement

Some characteristics of clay products such as (a) density, (b) firing distortion, (c) strength, (d) corrosion resistance, and (e) thermal conductivity are affected by the extent of vitrification. Will they increase or decrease with increasing degree of vitrification?

1. (a) increase (b) decrease (c) increase (d) decrease (e) increase
2. (a) decrease (b) increase (c) increase (d) increase (e) decrease
3. (a) decrease (b) decrease (c) increase (d) decrease (e) decrease
4. (a) increase (b) increase (c) increase (d) increase (e) increase
5. (a) increase (b) decrease (c) decrease (d) increase (e) decrease

Answers

Explanation:

1. increase This due to increase in the pore volume.

2.increase . This is due to the fact that more liquid phase will be present at the firing.

3. Increase. This increase is because of the fact that clay on cooling forms glass.Thus, gaining more strength as the liquid phase formed fills in pore volume.

4. Increase, Rate of corrosion depends upon the surface area exposed.Since, upon vitrification surface area would increase, therefore corrosion increases.

5. Increase , glass has higher thermal conductivity than the pores it fills.

Be-16 a garbage dumping placard must be prominently posted on boats longer than what size?

Answers

Answer:

26 feet and longer boats that have garbage dumping placard must be prominently posted and the boats which are 40 feet and longer must have the written waste management plan.

Who plays a role in the financial activities of a company?
O A. Just employees
O B. Just managers
O C. Only members of the finance and accounting department
O D. Everyone at the company, including managers and employees

Answers

Hey,

Who plays a role in the financial activities of a company?

O D. Everyone at the company, including managers and employees

Answer:

Everyone at the company, including managers and employees

Explanation:

An inventor claims to have developed a heat pump that produces a 200-kW heating effect for a 293 K heatedzone while only using 75 kW of power and a heat source at 273 K. Justify the validity of this claim.

Answers

Answer:

From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.

Explanation:

Heat generated Q = 200 kW

power input W = 75 kW

Temperature of heated region [tex]T_{h}[/tex] = 293 K

Temperature of heat source [tex]T_{c}[/tex] = 273 K

For this engine,

coefficient of performance COP = Q/W  = 200/75 = 2.67

The maximum theoretical COP obtainable for a heat pump is given as

COP = [tex]\frac{T_{h} }{T_{h} - T_{c} }[/tex] =  [tex]\frac{293 }{293 - 273 }[/tex] = 14.65

From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.

what's the maximum shear on a 3.0 m beam carrying 10 kN/m?

Answers

Answer:

max shear = R = V = 15 kN

Explanation:

given:

load = 10 kn/m

span = 3m

max shear = R = V = wL / 2

max shear = R = V = (10 * 3) / 2

max shear = R = V = 15 kN

An AISI/SAE 4340-A steel rod with the yield strength of 450 MPa, 2.0 m long will be subjected to a tensile force, must have the minimum weight possible, and must behave elastically for this load. The elastic modulus of steel is 207 GPa. What is the engineering strain of the rod

Answers

Answer: 0.002174

Explanation:

Given that the

Yield strength rho = 450 MPa

Length = 2 m

Elastic modulus E= 207 GPa

According to Hook's law, if the elastic limits is not reached, the elastic modulus is the ratio of elastic strength to the elastic strain ə

E = rho/ə

Make ə the subject of formula

ə = rho/ E

ə = (450 × 10^6) / (207 × 10^9)

ə = 2.174 × 10^-3

Therefore, the engineering strain which depends on engineering stress and elastic modulus is 2.174 × 10^-3

Elastic Strain has no S.I Units.

Technician A says that proper footwear may include both leather and steel-toed shoes. Technician B says that leather-soled shoes provide slip resistance. Who is correct

Answers

Given:

We have given two statements.

Statement 1: Proper footwear may include both leather and steel-toed shoes.

Statement 2:  Leather-soled shoes provide slip resistance.

Find:

Which statement is true.

Solution:

A slip-resistant outsole is smoother and more slip-resistant than other outsole formulations when exposed to water and oil. A smoother outsole in rubber ensures a slip-resistant shoe can handle a slippery floor more effectively.

Slip resistant shoes have an interlocked tread pattern that does not close the water in, enabling the slip resistant sole to touch the floor to provide better slip resistance.

Leather-soled shoes don't provide slop resistance.

Therefore, both the Technicians are wrong.

From the statements made by both technician A and Technician B, we can say that; both technicians are wrong.

We are given the statements made by both technicians;

Technician A: Proper footwear may include both leather and steel-toed shoes.

Technician B: Leather-soled shoes provide slip resistance.

Now, they are talking about safety shoes to be worn in workshops.

A shoe that is Slip resistant will have rubber soles and tread patterns that can help to have better grip of wet or greasy floors.

This is the type of shoe that should be worn by technicians in the workshop.

Thus, Technician A is wrong because proper footwear does not include leather shoes.

Similarly, technician B is also wrong because leather shoes are not safety shoes.

Read more about slip resistant shoes at; https://brainly.com/question/17411739

Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, surface finish to be achieved, linear and geometric tolerances, electronic components, weld symbols and profiles, pressure and flow characteristics, torque values, imperial and metric systems of measurement, tolerancing and fixed reference points)

Answers

Answer:

Engineering drawing abbreviations and symbols are used to communicate and detail the characteristics of an engineering drawing.

There are many abbreviations common to the vocabulary of people who work with engineering drawings in the manufacture and inspection of parts and assemblies.

Technical standards exist to provide glossaries of abbreviations, acronyms, and symbols that may be found on engineering drawings. Many corporations have such standards, which define some terms and symbols specific to them; on the national and international level, like BS8110 or Eurocode 2 as an example.

Explanation:

steep safety ramps are built beside mountain highway to enable vehichles with fedective brakes to stop safely. a truck enters a 1000 ft ramps at a high speed vo and travels 600ft in 7 s at constant deceleration before its speed is reduced to uo/2. Assuming the same constant deceleration.

Determine:
a. The additional time required for the truck to stop.
b. The additional distance traveled by the truck.

Answers

Answer:

a. 6 seconds

b. 180 feet

Explanation:

Images attached to show working.

a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero  is when it stops.

b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.

A drilling operation is to be performed with a 12.7 mm diameter drill on cast iron. The hole depth is 60 mm and the drill point angle is 118∘. The cutting speed is 25 m/min and the feed is 0.30 mm/rev. Calculate:___________.
a) The cutting time (min) to complete the drilling operation
b) Material removal rate (mm3/min) during the operation, after the drill bit reaches full diameter.

Answers

Answer:

a. Tm = 0.3192min.

b. MRR = 396.91mm^{3}/s.

Explanation:

Given the following data;

Drill diameter, D = 12.7mm

Depth, L = 60mm

Cutting speed, V = 25m/min = 25,000m

Feed, F = 0.30mm/rev

To find the cutting time;

Cutting time, Tm =?

[tex]Tm = \frac{L}{Fr}[/tex] .......eqn 1

We would first solve for the feed rate (F);

[tex]Fr = NF[/tex] .......eqn 2

But we need to find the rotational speed (N);

[tex]N= \frac{V}{\pi *D}[/tex]

[tex]N= \frac{25000}{3.142*12.7}[/tex]

[tex]N= \frac{25000}{39.90}[/tex]

N = 626.57rev/min.

Substiting N into eqn 2;

[tex]Fr = NF[/tex]

Fr = 626.57 * 0.30

Fr = 187.97mm/min.

Substiting F into eqn 1;

[tex]Tm = \frac{L}{Fr}[/tex]

[tex]Tm = \frac{60}{187.97}[/tex]

Tm = 0.3192min.

Therefore, the cutting time is 0.3192 minutes.

For the material removal rate (MRR);

[tex]MRR = \frac{\pi *D^{2}Fr}{4}[/tex]

[tex]MRR = \frac{3.142*12.7^{2}*187.97}{4}[/tex]

[tex]MRR = \frac{3.142*161.29*187.97}{4}[/tex]

[tex]MRR = \frac{95258.16}{4}[/tex]

[tex]MRR = 23814.54mm^{3}/min[/tex]

Time in seconds, we divide by 60;

MRR = 23814.54/60 =396.91mm^{3}/s.

Therefore, the material removal rate (MRR) is 396.91mm^{3}/s.

A vertical bar consists of three prismatic segments A1, A2, and A3 with cross-sectional areas of 6000 mm2, 5000 mm2, and 4000 mm2, respectively. The bar is made of steel with E 5 200 GPa. Calculate the displacements at points B, D, and E. Ignore the weight of the bar. Goodno, Barry J.. Statics and Mechanics of Materials (p. 609). Cengage Learning. Kindle Edition.

Answers

Answer + Explanation:

For computing the displacement at point B and D we need to determine the following calculations

Pnet = Pc + Pe + Pb

Pnet = 250 + 350 - 50

Pnet = 550 N

Now the deflection for bar AB is

           PLab

δab = -------------

            ae

     550 * 500

= -------------------------

     6,000 * 200 x 10³

= 2.292 x 10⁻⁴mm

Now for bar BC it is

           PLbc

δbc = ------------

             ae

  (550 + 50) * 250

=  ----------------------

   5,000 * 200 x 10³

= 1.5 x 10⁻⁴mm

And for bar CD it is

           PLcd

δcd = ------------

             ae

  (550 - 250 + 50) * 250

=  --------------------------------

   5,000 * 200 x 10³

= 0.875 x 10⁻⁴mm

Now the displacement is as follows

For B = 2.292 × 10⁻⁴ mm

For D = 4.667 × 10⁻⁴ mm

= 2.292 × 10⁻⁴ + 1.5 × 10⁻⁴ + 0.875 × 10⁻⁴

= 4.667 × 10⁻⁴ mm

We simply applied the above formulas for determining the  displacements at points B, D and the same is to be considered

Other Questions
Three identical resistors are connected in series to a battery. If the current of 12 A flows from the battery, how much current flows through any one of the resistors HELP!! this is due today A data set is summarized in the frequency table below. Using the table, determine the number of values less than or equal to 6. History of Indian classical music in 3 parts Tom throws a ball into the air. The ball travels on a parabolic path represented by the equation , where represents the height of the ball above the ground and represents the time in seconds. The maximum value achieved by the function is represented by the vertex. Use factoring to answer the following: How many seconds does it take the ball to reach its highest point At the end of any year a car is worth 5%less than what it was worth at the beginningof the year. If a car was worth $9 500 inDecember 2016, then its value in January2016 was what type of root found in the bryophyllum ? The radius of circle is 11 miles. What is the area of a sector bounded by a300 arc? Factory Overhead Rates, Entries, and Account Balance Eclipse Solar Company operates two factories. The company applies factory overhead to jobs on the basis of machine hours in Factory 1 and on the basis of direct labor hours in Factory 2. Estimated factory overhead costs, direct labor hours, and machine hours are as follows: Factory 1 Factory 2 Estimated factory overhead cost for fiscal year beginning August 1 $18,500,000 $44,000,000 Estimated direct labor hours for year 800,000 Estimated machine hours for year 1,250,000 Actual factory overhead costs for August $1,515,800 $3,606,300 Actual direct labor hours for August 64,500 Actual machine hours for August 105,000 a. Determine the factory overhead rate for Factory 1. Round your answer to two decimal places. Nidal Company reported inventory in the 2020 year-end balance sheet, using the FIFO method, as $185,000. In 2021, the company decided to change its inventory method to average cost. If the company had used the average cost method in 2020, ending inventory would have been $171,000. What adjustment would Nidal make for this change in inventory method Read the word pair nervous/worry Which type of word relationship does this word pair represent? what is the area of the triangle in the diagram? Suppose that Vera wants to test the hypothesis that women make less money than men doing the same job. According to the Bureau of Labor Statistics (BLS), the median weekly earnings for men in the professional and related occupation sector in 2015 was $1343. Vera collected median weekly earnings data for women in 2015 from a random subset of 18 positions in the professional and related occupation sector. The following is the sample data. $1811, $728, $1234, $966, $953, $1031, $990, $633, $796, $1325, $1448, $1125, $1144, $1082, $1145, $1256, $1415, $1170 Vera assumes that the women's median weekly earnings data is normally distributed, so she decides to perform a t-test at a significance level of = 0.05 to test the null hypothesis, H0:=1343H0:=1343 against the alternative hypothesis, H1: A contractor can spend at most $250 a day on operating costs and payroll. It costs $45 each day to operate the forklift and $60 a day for each crew member. Write an inequality to represent the contractor's budget for the day. Which lists all of the y-intercepts of the graphed function? (0, 3) (1, 0) and (3, 0) (0, 1) and (0, 3) (1, 0), (3, 0), and (0, 3) Help can you pls number 2 to 4 A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be Ethylene, a gas found in nature, is commonly used to ripen bananas and other fruits. Which compound is ethylene?H2C CH20 Which is NOT a benefit of good cardiovascular health? stronger bone mass increasing your self-esteem the ability to manage stress improvement in appearance Do you know best way to know WiFi password which you are connected to?