Answer:
Triangle D is your answer.
Answer:
Hey there!
Triangle C is unique, as one side and two angles determine a unique triangle.
Hope this helps :)
Which parent function is represented by the graph?
A. The quadratic parent function
B. The absolute value parent function
C. An exponential parent function
D. The linear parent function
Answer:
D. The linear parent function
Step-by-step explanation:
Linear functions are always characterized by a straight line graph with or without an intercept on the vertical or horizontal axis. A linear function usually has an independent variable and a dependent variable. The independent variable is commonly depicted as x while the dependent variable is y.
Thus a linear equation is an equation of the type y=ax where a is a constant term. The equation of a straight line graph his y=mx +c, where;
m= gradient of the straight line graph
x= the independent variable
y= the dependent variable
c= the vertical intercept
Answer:
The linear parent function :)
Step-by-step explanation:
The value of x that will make L and M
Greetings from Brasil...
Here we have internal collateral angles. Its sum results in 180, so:
(6X + 8) + (4X + 2) = 180
6X + 4X + 8 + 2 = 180
10X + 10 = 180
10X = 180 - 10
10X = 170
X = 170/10
X = 17Evaluate the expression 23^0-15^1+18^0+(43-12)
Answer:
18
Step-by-step explanation:
23^0 - 15^1 + 18^0 + (43 - 12) =
= 1 - 15 + 1 + 31
= -14 + 1 + 31
= -13 + 31
= 18
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
What are some key words used to note addition operations?
Answer:
The correct answer is
For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.
Step-by-step explanation:
hope this helps u!!!
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 5, s(0) = 6, v(0) = −5
Answer:
The position of the particle is described by [tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Step-by-step explanation:
The position function is obtained after integrating twice on acceleration function, which is:
[tex]a(t) = 2\cdot t + 5[/tex], [tex]\forall t \geq 0[/tex]
Velocity
[tex]v(t) = \int\limits^{t}_{0} {a(t)} \, dt[/tex]
[tex]v(t) = \int\limits^{t}_{0} {(2\cdot t + 5)} \, dt[/tex]
[tex]v(t) = 2\int\limits^{t}_{0} {t} \, dt + 5\int\limits^{t}_{0}\, dt[/tex]
[tex]v(t) = t^{2}+5\cdot t + v(0)[/tex]
Where [tex]v(0)[/tex] is the initial velocity.
If [tex]v(0) = -5[/tex], the particular solution of the velocity function is:
[tex]v(t) = t^{2} + 5\cdot t -5, \forall t \geq 0[/tex]
Position
[tex]s(t) = \int\limits^{t}_{0} {v(t)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_{0} {(t^{2}+5\cdot t -5)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_0 {t^{2}} \, dt + 5\int\limits^{t}_0 {t} \, dt - 5\int\limits^{t}_0\, dt[/tex]
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + s(0)[/tex]
Where [tex]s(0)[/tex] is the initial position.
If [tex]s(0) = 6[/tex], the particular solution of the position function is:
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Answer:
Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex]
Step-by-step explanation:
Given information:
The particle is moving with an acceleration that is function of:
[tex]a(t)=2t+5[/tex]
To find the expression for the position of the particle first integrate for the velocity expression:
AS:
[tex]V(t)=\int\limits^0_t {a(t)} \, dt\\v(t)= \int\limits^0_t {(2.t+5)} \, dt\\\\v(t)=t^2+5.t+v(0)\\[/tex]
Where, [tex]v(0)[/tex] is the initial velocity.
Noe, if we tale the [tex]v(0) =-5[/tex] ,
So, the velocity equation can be written as:
[tex]v(t)=t^2+5.t-5[/tex]
Now , For the position of the particle we need to integrate the velocity equation :
As,
Position:
[tex]S(t)=\int\limits^0_t {v(t)} \, dt \\S(t)=\int\limits^0_t {(t^2+5.t-5)} \, dt\\S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+s(0)[/tex]
Where, [tex]S(0)[/tex] is the initial position of the particle.
So, we put the value [tex]s(0)=6[/tex] and get the position of the particle.
Hence, Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex].
For more information visit:
https://brainly.com/question/22008756?referrer=searchResults
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below 15 and 39
Answer:
36
Step-by-step explanation:
You did not attach a picture, so I just assumed where the lengths of 15 and 39 were.
You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth
Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
PLEASE ANSWER FAST PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The point (1, −1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.
Answer:
sin = -√2 / 2
cos = √2 / 2
tan = -1
Step-by-step explanation:
Θ is in quad IV
sin = -√2 / 2
cos = √2 / 2
tan = -1
here is the picture pls answer another for my lil friend lol
Answer:
Hey there!
The perimeter can be expressed as 140+140+68[tex]\pi[/tex]
This is equal to 493.52 m
Hope this helps :)
Solve for x in the equation X^2-16^x=0
Answer:
-1/2
Step-by-step explanation:
x^2- 16^x = 0x^2 = 16^xx^2 = 4^2xx = 4^xlogx = xlog41/x×logx = log4log(x^1/x) = log4x^(1/x) = 4At this point you can guess and try. And it seems that x = -1/2, lets check:
(-1/2)^(1 /-1/2)= (-1/2)^-2= 2^2= 4So, this is correct: x= -1/2
Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105
Answer:
8 and 9
Step-by-step explanation:
If x is the smaller integer, and x + 1 is the larger integer, then:
(x + 1)² + 3x = 105
x² + 2x + 1 + 3x = 105
x² + 5x − 104 = 0
(x + 13) (x − 8) = 0
x = -13 or 8
Since x is positive, x = 8. So the two integers are 8 and 9.
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
I need to know if the following questions are true or false
Answer:
False
Step-by-step explanation:
To find <A, we can do 5x - 80 = 3x + 20.
As we simplify, we will get 2x = 100, which is x = 50
Therefore, <A will be 50 degrees and not 45 degrees.
Also, if you need y, you can do:
3y - 7 = y + 7
2y = 14
y = 7
Solving exponential functions
Answer:
approximately 30Step-by-step explanation:
[tex]f(x) = 4 {e}^{x} [/tex]
[tex]f(2) = 4 {e}^{2} [/tex]
[tex]f(2) = 4 \times 7.389[/tex]
[tex]f(2) = 29.6[/tex]
( Approximately 30)
Hope this helps..
Good luck on your assignment..
Answer:
approximately 30
Step-by-step explanation:
[tex]f(x)=4e^x[/tex]
Put x as 2 and evaluate.
[tex]f(2)=4e^2[/tex]
[tex]f(2)=4(2.718282)^2[/tex]
[tex]f(2)= 29.556224 \approx 30[/tex]
Help please!! Thank you
Answer:
D. 6
Step-by-step explanation:
here, as given set Q consists { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}
and set Z contains {3, 6, 9, 12, 15, 18, 21,24, 27, 30, 33, 36, .... }
so be comparing both, we can see that the numbers 6, 12, 18, 24, 30 and 36 is repeated.
odd function definition
Find the solution(s) of the quadratic equation 2x2 – 3x – 35 = 0
Answer: x = 5, x = -7/2
Step-by-step explanation:
2x² - 3x - 35 = 0
Step 1: Find two values whose product = 2(-35) and sum = -3: -10 & 7
Step 2: Replace the b-value of -3x with -10x + 7x:
2x² - 10x + 7x - 35 = 0
Step 3: Factor the first two terms and the second two terms:
2x(x - 5) +7(x - 5) = 0
Step 4: Write the factored form:
Notice that the parenthesis are identical. This is one of the factors. The outside values are the other factor:
Parenthesis: (x - 5)
Outside: (2x + 7)
Factored form: (x - 5)(2x + 7) = 0
Step 5: Set each factor each to zero and solve for x:
x - 5 = 0 2x + 7 = 0
x - 5 [tex]x=-\dfrac{7}{2}[/tex]
The solutions of the quadratic equation given as 2x² - 3x - 35 = 0 are x=5 and x =-3.5.
Given that:
2x² - 3x - 35 = 0
This is a quadratic equation.
It is required to find the solutions of this equation.
The solution of the quadratic equation of the form ax² + bx + c = 0 can be found using the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
From the given equation:
a = 2
b = -3
c = -35
Substitute to the quadratic formula.
[tex]x=\frac{-(-3)\pm \sqrt{(-3)^2-4(2)(-35)}}{2(2)}[/tex]
[tex]=\frac{3\pm \sqrt{9+280}}{4}[/tex]
[tex]=\frac{3\pm \sqrt{289}}{4}[/tex]
[tex]=\frac{3\pm 17}{4}[/tex]
So, the solutions are:
[tex]x=\frac{3+ 17}{4}=5[/tex], and [tex]x=\frac{3-17}{4}=-3.5[/tex]
Hence, the solutions are x =5, -3.5.
Learn more about Quadratic Formula here :
https://brainly.com/question/22364785
#SPJ6
Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2
The graph which shows the solution to the system of inequalities is attached in the picture below :
Given the inequalities :
y ≥ 2x + 1
y ≤ 2x - 2
From y ≥ 2x + 1 ;
Since the inequality sign is ≥, a solid line is used to draw the straight line graph of y ≥ 2x + 1
From :
y = mx + c
Where, m = slope ; c = intercept
Hence, a straight line graph with ;
Intercept, c = 1 (where the line crosses the y-intercept)
Slope, m = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality :
0 ≥ 2(0) + 1
0 ≥ 0 + 1
0 ≥ 1
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
From : y ≤ 2x - 2
Since the inequality sign is ≤, a solid line is used to draw the straight line graph of y ≤ 2x - 2
Graph the line y ≤ 2x - 2, with ;
Intercept, c = - 2
Slope = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality y ≤ 2x - 2:
0 ≤ 2(0) - 2
0 ≤ 0 - 2
0 ≤ - 2
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
Learn more : https://brainly.com/question/19670553
Answer:
Its graph B on edge 2022
Step-by-step explanation:
7987.1569 to the nearest thousandth
Answer:
7987.1569 to the nearest thousandths is 7987.157
Step-by-step explanation:
If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 8?
NO
54
оо
96
Answer:
2/3
Step-by-step explanation:
The equation for direct variation is: y = kx, where k is a constant.
Here, we see that y varies directly with x when y = 6 and x = 72, so let's plug these values into the formula to find k:
y = kx
6 = k * 72
k = 6/72 = 1/12
So, k = 1/12. Now our formula is y = (1/12)x. Plug in 8 for x to find y:
y = (1/12)x
y = (1/12) * 8 = 8/12 = 2/3
Thus, y = 2/3.
~ an aesthetics lover
Answer:
Step-by-step explanation: I hope i'm right
[tex]y \alpha x\\y=kx....(1)\\6=72k\\\frac{6}{72} =\frac{72k}{72} \\\\1/12 =k\\y = 1/12x=relationship-between;x-and;y\\x =8 , y =?\\y = \frac{8}{12} \\Cross-Multiply\\12y =8\\12y/12 = 8/12\\\\y = 2/3[/tex]
Identify the P-VALUE used in a hypothesis test of the following claim and sample data:
Claim: "The proportion of defective tablets manufactured in this factory is less than 6%."
A random sample of 500 tablets from this factory is selected, and it is found that 20 of them were defective. Test the claim at the 0.05 significance level.
Answer:
The calculated value Z = 2 > 1.96 at 0.05 level of significance
Alternative Hypothesis is accepted
The proportion of defective tablets manufactured in this factory is less than 6%."
Step-by-step explanation:
Step(i):-
Given Population proportion P = 0.06
Sample size 'n' = 500
A random sample of 500 tablets from this factory is selected, and it is found that 20 of them were defective.
Sample proportion
[tex]p^{-} = \frac{x}{n} = \frac{20}{500} =0.04[/tex]
Null hypothesis :H₀: P = 0.06
Alternative Hypothesis :H₁:P<0.06
Level of significance = 0.05
Z₀.₀₅ = 1.96
Step(ii):-
Test statistic
[tex]Z = \frac{p^{-} -P}{\sqrt{\frac{P Q}{n} } }[/tex]
[tex]Z = \frac{0.04 -0.06}{\sqrt{\frac{0.06 X 0.94}{500} } }[/tex]
Z = - 2
|Z|= |-2| = 2
Step(iii):-
The calculated value Z = 2 > 1.96 at 0.05 level of significance
Null hypothesis is rejected
Alternative Hypothesis is accepted
The proportion of defective tablets manufactured in this factory is less than 6%."
Translate the phrase into a variable expression. Use the letter sto name the
variable. If necessary, use the asterisk (*) for multiplication and the slash
(1) for division.
the product of 60 and the number of seconds...
Answer:
The statement
the product of 60 and the number of seconds is written as
60 * s
Hope this helps you
please answer me question 3 solving part
Answer:
1. D
2. B
3. A
Step-by-step explanation:
Question 1:
The pair of <JKL and <LKM can be referred to as linear pairs. They are two adjacent angles that are formed from the intersecting of two lines.
Question 2:
Given that <KLM = x°
<KML = 50°
<JKL = (2x - 15)°
According to the exterior angle theorem, exterior ∠ JKL = <KLM + KML.
2x - 15 = x + 50
Solve for x
2x - x = 15 + 50
x = 65
Therefore, <KLM = 65°
QUESTION 3:
<JKL = 2x - 15
Plug in the value of x
<JKL = 2(65) - 15
= 130 - 15
<JKL = 115°
Explain how to write an equivalent expression using the
associative property.
2+(11 + y)
Answer:
2+(11+y)=(2+11)+y=11+(2+y)
Answer:
Sample Response: The associative property allows you to keep the order of the terms and change the position of the parentheses. So you can rewrite the terms in the same order and then move the parentheses so that the 2 + 11 is now inside. The equivalent expression is (2 + 11) + y.
Step-by-step explanation:
E d g e n u i t y
According to the histogram below, how many people took the test? 39 9 16 23
The correct answer is D. 23
Explanation:
Histograms similar to other graphs represent numerical information, usually by using bars, as well as ranges. For example, in the case presented the information presented belongs to the scores obtained in a test, which are shown using ranges. Moreover, it is possible to know the total of people that took the test by adding each of the frequencies, as the frequency in the y-axis shows the number of times the range repeated and it is expected each grade registered belongs to 1 person. This means the total of people is equal to 2 (score from 60-69) + 9 (score from 70-79) + 7 (score from 80-89) + 5 (score from 90-99) = 23 people.
Answer:
the answer is 23
Step-by-step explanation:
hopes this helps:)
What value of x is I the solution set of 3(x-4)>5x+2
Answer:
-7 > x
Step-by-step explanation:
3(x-4)>5x+2
Distribute
3x-12>5x+2
Subtract 3x from each side
3x-12-3x>5x-3x+2
-12 > 2x+2
Subtract 2 from each side
-12-2>2x+2-2
-14 > 2x
Divide by 2
-14/2 > 2x/2
-7 > x
Answer:
[tex]\boxed{x<-7}[/tex]
Step-by-step explanation:
3(x-4)>5x+2
Expand brackets.
3x - 12 > 5x+2
Subtract 3x and 2 on both sides.
-12 - 2 > 5x - 3x
-14 > 2x
Divide both sides by 2.
-7 > x
Switch sides.
x < -7
Solve the equation for X. 2(2x-4)=3(x+4) A -4 B 4 C 20 D 6
Answer:
X=20
Step-by-step explanation:
The answer is C