72 students choose to attend one of three after school activities: football, tennis or running. There are 25 boys. 27 students choose football, of which 17 are girls. 18 students choose tennis. 24 girls choose running. A student is selected at random. What is the probability this student chose running? Give your answer in its simplest form.
Answer:
3/8
Step-by-step explanation:
There are 72 students. 27 students choose football, and 18 choose tennis, which means 27 choose running.
So the probability that a student chooses running is 27/72, which reduces to 3/8.
I really need help on this question
Answer:
d. 38
Step-by-step explanation:
AB = AD - BD = 54 - 36 = 18
AC = AB + BC = 18 + 20 = 38
I really need help on this
Answer:
Congruent
Step-by-step explanation:
I am not 100% sure because there are no measurements but it looks like the two shapes are the same size.
If this helped, please consider giving me brainliest, it will help me a lot :)
Have a good day.
42.
You were given the four numbers below and were asked to find the sum
of the first two numbers, the difference between the last two numbers,
the quotient when the sum is divided by the difference and the product
when the quotient is multiplied by 8. What is the final answer?
6458 2994
7013
6945
Answer:
1112
Step-by-step explanation:
6458 + 2994 = 9452
7013 - 6945 = 68
9452/68 = 139
139 * 8 = 1112
(25 points) PLEASE HELP! Gotta get this done before my mom comes home
1. The owner of an organic fruit stand also sells nuts. She wants to mix cashews worth $5.50 per pound with peanuts worth $2.30 per pound to get a 1/2 pound mixture that is worth $2.80 per pound. How much of each kind of nut should she include in the mixed bag?
A. Cashews: 0.10 lb.; peanuts: 0.40 1b.
B. Cashews: 0.42 lb.; peanuts: 0.08 1b.
C. Cashews: 0.40 lb.; peanuts: 0.10 1b
D. Cashews: 0.27 lb.; peanuts: 0.23 1b.
E. Cashews: 0.23 lb.; peanuts: 0.27 1b.
F. Cashews: 0.08 lb.; peanuts: 0.42 1b
2. A nursery owner has 288 rose bushes. There are 36 fewer red roses than pink roses. How many of each type of roses are there?
A. Red roses: 162; pink roses: 252.
B. Red roses: 162; pink roses: 126.
C. Red roses: 99; pink roses: 126.
D. Red roses: 126; pink roses: 162
E. Red roses: 126; pink roses: 99
F. Red roses: 252; pink roses: 162
3. The sum of the ages of Stephanie and Heather is 46. Heather is two years younger than Stephanie. Write a system of equations to determine the ages of Stephanie and Heather.
A) S + H = 46
H = S + 2
B) S - H = 46
H - 2 = S
C) S + H = 46
H = S - 2
D) S - H = 2
H = S - 46
E) S + H = 2
H = S - 46
F) 2S – H = 46
4. You want to borrow three rock CDs from your friend. She loves math puzzles and she always makes you solve one before you can borrow her stuff. Here’s the puzzle: Before you borrow three CDs, she will have 39 CDs. She will have half as many country CDs as rock CDs, and one-fourth as many soundtracks as country CDs. How many of each type of CD does she have after you borrow three rock CDs?
A. After borrowing 3 rock CDs, your friend will have 21 rock CDs, 12 country CDs, and 3 soundtracks.
B. After borrowing 3 rock CDs, your friend will have 24 rock CDs, 12 country CDs, and 3 soundtracks.
C. After borrowing 3 rock CDs, your friend will have 25 rock CDs, 10 country CDs, and 4 soundtracks.
D. After borrowing 3 rock CDs, your friend will have 21 rock CDs, 9 country CDs, and 3 soundtracks.
E. After borrowing 3 rock CDs, your friend will have 24 rock CDs, 12 country CDs, and no soundtracks.
F. After borrowing 3 rock CDs, your friend will have 18 rock CDs, 15 country CDs, and 3 soundtracks.
5. Three times the width of a certain rectangle exceeds twice its length by two inches. Four times its length is twelve more than its perimeter. Write a system of equations that could be used to solve this problem. (hint: P = 2L + 2W)
A) 3W = 2L + 2
2L = 2W + 12
B) 3W + 2 = 2L
4L = P – 12
C) 3W = 2L + 2
4L + 12 = P
D) 2W + 2 = 2L
4L = 12 + P
E) 3W + 2 = 2L
4L = 12 + P
F) 2L – 2 = 3W
P = 4L - 12
Thank you!!!!
helpp me please will give brralinst
Answer:
0
Step-by-step explanation:
the answer is 0
Have a great day
Use the graph to solve the given system of equations, then enter your solution below. {x−3y=−3x+y=5
Answer:
Step-by-step explanation:
Given the system of equation x−3y=−3 and x+y=5, we can solve for x and y by solving the equation simultaneously using the substitution method.
x−3y=−3_____________ 1
x+y=5 ______________2
From equation 2; x = 5- y ________ 3
Substitute equation 3 into equation 1
Since x - 3y = -3
(5-y)-3y = -3
5-y-3y = -3
5-4y = -3
Subtract 5 from both sides of the equation
5-4y-5 = -3-5
-4y = -8
Divide both sides by -4
-4y/-4 = -8/-4
y = 2
Substitute y = 2 into equation 2 to get the value of y;
From equation 2, x+y = 5
x+2 = 5
Subtract 2 from both sides of the equation
x+2-2 = 5-2
x = 3
Hence the value of x and y from the graph will be 3 and 2 respectively.
A dress regularly sells for $137. The sale price is $102.75. Find the discount & the percent of the discount
Answer:
Discount : $34.25 off. Percent of the discount : 25%
Step-by-step explanation:
137 - 102.75 = 34.25.
34.25/137 x 100 = 25%
prove identity trigonometric equation
[tex]2 \tan(x) = \frac{ \cos(x) }{ \csc(x - 1) } + \frac{ \cos(x) }{ \csc(x + 1) } [/tex]
Explanation:
The given equation is False, so cannot be proven to be true.
__
Perhaps you want to prove ...
[tex]2\tan{x}=\dfrac{\cos{x}}{\csc{(x)}-1}+\dfrac{\cos{x}}{\csc{(x)}+1}[/tex]
This is one way to show it:
[tex]2\tan{x}=\cos{(x)}\dfrac{(\csc{(x)}+1)+(\csc{(x)}-1)}{(\csc{(x)}-1)(\csc{(x)}+1)}\\\\=\cos{(x)}\dfrac{2\csc{(x)}}{\csc{(x)}^2-1}=2\cos{(x)}\dfrac{\csc{x}}{\cot{(x)}^2}=2\dfrac{\cos{(x)}\sin{(x)}^2}{\cos{(x)}^2\sin{(x)}}\\\\=2\dfrac{\sin{x}}{\cos{x}}\\\\2\tan{x}=2\tan{x}\qquad\text{QED}[/tex]
__
We have used the identities ...
csc = 1/sin
cot = cos/sin
csc^2 -1 = cot^2
tan = sin/cos
Find the critical point of the given function and then determine whether it is a local maximum, local minimum, or saddle point.
Answer:
critical point of the given function f(x,y) = x²+y²+2xy is from line y = -x is the critical point of the function f(x0,y0) = 0
and it local minimum.
Step-by-step explanation:
Let the given function be;
f(x,y) = x²+y²+2xy
From above function, we can locate relative minima, maxima and the saddle point
f(x,y) = x²+y²+2xy = (x+y)²
df/dx = 2x+2y = 0 ---- (1)
df/dy =2y+2x = 0 ---- (2)
From eqn 1 and 2 above,
The arbitrary point (x0,y0) from line y = -x is the critical point of the function f(x0,y0) = 0
Then, from f(x,y) >= 0 for arbitrary (x,y) € R^n, the arbitrary point from the line x = -y is local minima of the function f.
A bag of marbles contains 4 green marbles, 3 blue marbles, 2 red marbles, and 5 yellow marbles. How many total possible outcomes are there when choosing a marble from the bag?
Answer:
its 14/C
Step-by-step explanation:
i got i right on edg U^U
Answer:
16
Step-by-step explanation:
i did edge test yea dont be imma fake :***
helpppppppppppppppppppppp i will give star thanks bralienst
Answer:
90/x=70/100 that's my answer
[tex]90 \x = 70 \100[/tex]
Answer:
90/x = 70/100
Step-by-step explanation:
Is means equals and of means multiply
90 = 70% *x
Changing to decimal form
90 = .70x
Changing to fraction form
90 = 70/100 *x
Divide each side by x
90/x = 70/100
Use identities to find values of the sine and cosine functions of the function for the angle measure
a. theta, given that cos2theta=28/53 and 0theta < theta < 90degrees
b. 2theta, given sin theta= - sqrt 7 over 5 and cos theta > 0
c. 2x, given tan x=2 and cos x<0
Answer:
Step-by-step explanation:
a) Given cos2theta=28/53 and 0degrees< theta < 90degrees
From cos2theta=28/53
[tex]2\theta = cos^{-1}\frac{28}{53}[/tex]
[tex]2\theta = cos^{-1}0.5283\\ \\2\theta = 58.12\\\\Dividing\ both \ sides\ by \ 2\\\\\frac{2\theta}{2} = \frac{58.12}{2}\\ \\\theta = 29.06^0[/tex]
b) Given
[tex]sin\theta = \frac{-\sqrt{7} }{5} \\\\\theta = sin^{-1} \frac{-\sqrt{7} }{5}\\\\\\\theta = sin^{-1} \frac{-2.6458}{5}\\\\\theta = sin^{-1} -0.5292\\\\\theta = -31.95^0[/tex]
If cos theta [tex]\gneq[/tex] 0, this means we need to look for the quadrant where sin is negative and cos is positive. That will be the fourth quadrant. In the fourth quadrant, theta = 360 - 31.95° = 328.05°
2theta = 2 * 328.05
2theta = 656.1°
c) Given tan x=2 and cos x<0, lets find the angle of x first.
If tan x = 2
x = tan^-1 2
x = 63.4°
Sine cos is less than 0, then we need to find the angle of x where tan is positive and cos is negative. That will be the third quadrant. In the third quadrant, ew value of x = 180+63.4
x = 243.4°
Since we are to find 2x,
2x = 2(243.4)
2x = 486.8°
What is the solution of log3(3x+2)= log3 (4x-6)?
Answer:
x=8 i got it right on my homework on khan academy
Step-by-step explanation:
Answer: Using logarithms to solve you will get x = 8
Safegate Foods, Inc., is redesigning the checkout lanes in its supermarkets throughout the country and is considering two designs. Tests on customer checkout times conducted at two stores where the two new systems have been installed result in the following summary of the data.
System System B
n1=120 n2=100
x1=4.1 minutes x2=3.4 minutes
σ1=2.2minutes σ2= 1.5 minutes
Test at the 0.05 level of significance to determinewhether the population mean checkout times of the two newsystems differ. Which system is preferred?
Answer:
We conclude that the population means checkout times of the two new systems differ.
Step-by-step explanation:
We are given the result in the following summary of the data;
System System B
n1=120 n2=100
x1=4.1 min x2=3.4 min
σ1=2.2 min σ2= 1.5 min
Let [tex]\mu_1[/tex] = population mean checkout time of the first new system
[tex]\mu_2[/tex] = population mean checkout time of the second new system
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu_1=\mu_2[/tex] {means that the population mean checkout times of the two new systems are equal}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu_1\neq \mu_2[/tex] {means that the population mean checkout times of the two new systems differ}
The test statistics that will be used here is Two-sample z-test statistics because we know about population standard deviations;
T.S. = [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^{2} }{n_1} + \frac{\sigma_2^{2} }{n_2}} }[/tex] ~ N(0,1)
where, [tex]\bar X_1[/tex] = sample mean checkout time of the first new systems = 4.1 min
[tex]\bar X_2[/tex] = sample mean checkout time of the second new systems = 3.4 min
[tex]\sigma_1[/tex] = population standard deviation of the first new systems = 2.2 min
[tex]\sigma_2[/tex] = population standard deviation of the second new systems = 1.5 min
[tex]n_1[/tex] = sample of the first new systems = 120
[tex]n_2[/tex] = sample of the second new systems = 100
So, the test statistics = [tex]\frac{(4.1-3.4)-(0)}{\sqrt{\frac{2.2^{2} }{120} + \frac{1.5^{2} }{100}} }[/tex]
= 2.792
The value of z-test statistics is 2.792.
Now, at 0.05 level of significance, the z table gives a critical value of -1.96 and 1.96 for the two-tailed test.
Since the value of our test statistics does not lie within the range of critical values of z, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the population mean checkout times of the two new systems differ.
Translate and solve: 3x less than two times the sum of 2X and one is equal to the sum of 2 and 5
Answer:
The answer is x = 5Step-by-step explanation:
The statement
3x less than two times the sum of 2X and one is written as
2( 2x + 1) - 3x
the sum of 2 and 5 is written as
2 + 5
Equate the two statements
We have
2( 2x + 1) - 3x = 2+5
Expand
4x + 2 - 3x = 7
Simplify
4x - 3x = 7 - 2
We have the final answer as
x = 5Hope this helps you
Find the mean and standard deviation for each binomial random variable:
Answer: a) Mean = [tex]=37.80[/tex]
Standard deviation=[tex]=1.9442[/tex]
b) Mean = [tex]56.00[/tex]
Standard deviation=[tex]4.0988[/tex]
c) Mean = [tex]=24[/tex]
Standard deviation=[tex]2.4495[/tex]
Step-by-step explanation:
To compute Mean and standard deviation , we use following formula:
Mean = [tex]n\pi[/tex]
Standard deviation=[tex]\sqrt{n\pi(1-\pi)}[/tex]
a. [tex]n=42,\ \pi=0.90[/tex]
Mean = [tex]42\times0.90=37.80[/tex]
Standard deviation=[tex]\sqrt{42(0.90)(0.10)}=\sqrt{3.78}\approx1.9442[/tex]
b. [tex]n=80,\ \pi=0.70[/tex]
Mean = [tex]80\times0.70=56.00[/tex]
Standard deviation=[tex]\sqrt{80(0.70)(0.30)}=\sqrt{16.8}\approx4.0988[/tex]
c. [tex]n=32,\ \pi=0.75[/tex]
Mean = [tex]32\times0.75=24[/tex]
Standard deviation=[tex]\sqrt{32(0.75)(0.25)}=\sqrt{6}\approx2.4495[/tex]
Which of the binomials below is a factor of this trinomial?
5x2-18x+9
O A. 5x-3
O B. X-1
O c. X+1
O D. 5x+3
Answer:
The answer is option A.
Step-by-step explanation:
here, 5x^2-18x+9
=5x^2-(15+3)x+9
=5x^2-15x-3x+9
=5x(x-3)-3(x-3)
=(5x-3)(x-3)
so, the answer from the above options is (5x-3).
hope it helps..
A firm just paid an annual dividend of $1.40 and increases that dividend by 2 percent each year. How do you find the price if the firm's stock at year 4 if the discount rate is 13 percent?
Answer:
14.05
Step-by-step explanation:
We have the following:
Current Dividend = D0 = $ 1.40
g = growth rate = 2%
r = discount rate = 13%
Dividend in Year 5
= D5 = D0 * (1 + g) ^ 5
= $ 1.40 * (1 + 2%) ^ 5
= $ 1.40 * (1.02) ^ 5
Firm Stock Price at the end of year 4 = Dividend in Year 5 / (r - g)
= $ 1.40 * (1.02) ^ 5 / (13% -2%)
= $ 1.40 * (1.02) ^ 5 / (0.13 - 0.02)
Therefore, firm stock at the end of year 4 is
P4 = $ 1.40 * (1.02) ^ 5 / (0.13 - 0.02) = 14.05
2 (3z-4) <16 Which one of the following values of z is a solution for the inequality
Answer:
z < 4
Step-by-step explanation:
2(3z-4) < 16
Divide by 2 on both sides
3z-4 < 8
Add 4 to both sides
3z < 12
Divide by 3 on both sides
z < 4
solve this for me plzzz
Answer: a- steve
Step-by-step explanation:
Answer:
B Emma is correct
Step-by-step explanation:
A soup company puts 12 ounces of soup in each can. The company has determined that 97% of cans have the correct amount. Which of the following describes a binomial experiment that would determine the probability that a case of 36 cans has all cans that are properly filled?
a. n=36, p=0.97, x=1
b. n=12, p=0.36, x=97
c. n=12, p=0.97, x=0
d. n=36, p=0.97, x=36
Answer:
Option d: n = 36, p = 0.97, x = 36.
Step-by-step explanation:
We are given that a soup company puts 12 ounces of soup in each can. The company has determined that 97% of can have the correct amount.
We have to describe a binomial experiment that would determine the probability that a case of 36 cans has all cans that are properly filled.
Let X = Number of cans that are properly filled
The above situation can be represented through binomial distribution;
[tex]P(X = x) = \binom{n}{x} \times p^{x} \times (1-p)^{n-x} ; x = 0,1,2,........[/tex]
where, n = number of trials (samples) taken = 36 cans
x = number of success = all cans are properly filled = 36
p = probabilitiy of success which in our question is probability that
can have the correct amount, i.e. p = 97%
So, X ~ Binom (n = 36, p = 0.97)
Hence, from the options given the correct option which describes a binomial experiment that would determine the probability that a case of 36 cans has all cans that are properly filled is n = 36, p = 0.97, x = 36.
Factories A, B and C produce computers. Factory A produces 4 times as manycomputers as factory C, and factory B produces 7 times as many computers asfactory C. The probability that a computer produced by factory A is defective is0.04, the probability that a computer produced by factory B is defective is 0.02,and the probability that a computer produced by factory C is defective is 0.03. Acomputer is selected at random and found to be defective. What is the probabilityit came from factory A?
Answer:
The probability is [tex]P(A') = 0.485[/tex]
Step-by-step explanation:
Let assume that the number of computer produced by factory C is k = 1
So From the question we are told that
The number produced by factory A is 4k = 4
The number produced by factory B is 7k = 7
The probability of defective computers from A is [tex]P(A) = 0.04[/tex]
The probability of defective computers from B is [tex]P(B) = 0.02[/tex]
The probability of defective computers from C is [tex]P(C) = 0.03[/tex]
Now the probability of factory A producing a defective computer out of the 4 computers produced is
[tex]P(a) = 4 * P(A)[/tex]
substituting values
[tex]P(a) = 4 * 0.04[/tex]
[tex]P(a) = 0.16[/tex]
The probability of factory B producing a defective computer out of the 7 computers produced is
[tex]P(b) = 7 * P(B)[/tex]
substituting values
[tex]P(b) = 7 * 0.02[/tex]
[tex]P(b) = 0.14[/tex]
The probability of factory C producing a defective computer out of the 1 computer produced is
[tex]P(c) = 1 * P(C)[/tex]
substituting values
[tex]P(c) = 1 * 0.03[/tex]
[tex]P(b) = 0.03[/tex]
So the probability that the a computer produced from the three factory will be defective is
[tex]P(t) = P(a) + P(b) + P(c)[/tex]
substituting values
[tex]P(t) = 0.16 + 0.14 + 0.03[/tex]
[tex]P(t) = 0.33[/tex]
Now the probability that the defective computer is produced from factory A is
[tex]P(A') = \frac{P(a)}{P(t)}[/tex]
[tex]P(A') = \frac{ 0.16}{0.33}[/tex]
[tex]P(A') = 0.485[/tex]
plzzz helppppppp 18-5z+6z>3+6
Answer:
z > -9
Step-by-step explanation:
Combine like factors.
18 - 5z + 6z > 3 + 6
18 - 5z + 6z > 9
18 + z > 9
Solve for z.
18 + z > 9
(18 + z) - 18 > 9 - 18
z > -9
2
A student winds a strip of paper eight times
round a cylindrical pencil of diameter 7 mm.
Use the value 22/7 for pie to find the length of
the paper.
Answer:
176 mm
Step-by-step explanation:
The circumference of a circle is the perimeter of a circle (length of a circle). The circumference of a circle is given as:
Circumference (C) = 2πr = πd, where d is the diameter
The circumference of a circle with diameter 7 mm is:
C = πd = 22/7(7) = 22 mm
The length of the paper to round the cylindrical pencil is the same as the perimeter of the pencil which is 22 mm.
To round the pencil 8 times, the length of the paper needed = 8 × 22 mm = 176 mm
Consider the line y=2x-7 What is the slope of a line parallel to this line? What is the slope of a line perpendicular to this line?
Answer:
The slope of the given line is 2
Answer -1/2 is the line perpendicular
Step-by-step explanation:
This can be rewritten in fraction form as 2/1 since x/1 = x.
Which of the following functions best describes this graph ?
Answer:
answer D
Step-by-step explanation:
Lets have a look to the graph and to the each of given functions.
As we can see in graph it intersects X in points (-3;0) and (-6;0) that means the function has the roots x1=-3 and x2=-6
Function A has the roots x1=+3 and x2=+6 => doesn' t fit
Function B has only 1 root x=2 , so can be factorized y=(x-2)^2 => doesn' t fit
Function C has 2 roots x1=4 and x2=-5 => doesn' t fit
Function D can be factotized as y=(x+6)*(x+3) so has 2 roots x1=-6 x2=-3 => exactly what we need!!!
We can also notice that the coefficient near x² is equal to 1 and is positive.
That means the legs of the graph directed up,- this is exactly like in our graph. It gives us extra argument why we choose D.
Assume that y varies directly with
x, then solve.
If y=6 when x=2/3 find x when y=12.
Х=? (It’s a fraction)
Answer:
x = 4/3
Step-by-step explanation:
Direct variation:
y = kx
We use the given x-y point to find k.
6 = k * 2/3
k = 6 * 3/2
k = 9
The equation is
y = 9x
For y = 12,
12 = 9x
x = 12/9
x = 4/3
Question 2 of 6
2 Points
The word problem below has too much information. Which facts are not
needed to solve the problem? Check all that apply.
On Tuesday, the wait to ride the roller coaster was 40 minutes. The roller
coaster is the fastest ride at the fair. The line of people waiting was 100
meters long. How long would you expect to wait if the line was 50 meters
long?
A. The wait to ride the roller coaster was 40 minutes.
B. The line of people was 100 meters long.
C. The roller coaster is the fastest ride at the fair.
D. It was Tuesday.
R
SUBMIT
fPREVIOUS
Answer:
C. and D.
Step-by-step explanation:
In the word problem, the two facts to solve the problem are:
A. The wait to ride the roller coaster was 40 minutes and
B. The line of people was 100 meters long
Because the length of waiters has an effect on the time. Thus, if the line is reduced to 50 meters, then the waiting time would reduce i.e 20 minutes.
Therefore, the facts that are not required to solve the word problem are:
C. The roller coaster is the fastest ride at the fair.
D. It was Tuesday.
-2x(x+3)-(x+1)(x-2)=
Answer:
-3x^2 -5x +2
Step-by-step explanation:
-2x(x+3)-(x+1)(x-2)=
Distribute
-2x^2 -6x -(x+1)(x-2)
Foil
-2x^2 -6x -(x^2 -2x +x -2)
Combine like terms
-2x^2 -6x -(x^2 -x -2)
Distribute the minus sign
-2x^2 -6x -x^2 +x +2
Combine like terms
-2x^2 -x^2 -6x +x +2
-3x^2 -5x +2
Answer:
[tex]\huge\boxed{-2x(x+3)-(x+1)(x-2)=-3x^2-5x+2}[/tex]
Step-by-step explanation:
[tex]-2x(x+3)-(x+1)(x-2)[/tex]
Use the distributive property: a(b + c) = ab + ac
and FOIL: (a + b)(c + d) = ac + ad + bc + bd
[tex]=(-2x)(x)+(-2x)(3)-\bigg[(x)(x)+(x)(-2)+(1)(x)+(1)(-2)\bigg]\\\\=-2x^2-6x-\bigg(x^2-2x+x-2\bigg)=-2x^2-6x-x^2-(-2x)-x-(-2)\\\\=-2x^2-6x-x^2+2x-x+2[/tex]
Combine like terms:
[tex]=(-2x^2-x^2)+(-6x+2x-x)+2=-3x^2+(-5x)+2\\\\=-3x^2-5x+2[/tex]