Answer:
Light travels as a wave. But unlike sound waves or water waves, it does not need any matter or material to carry its energy along. This means that light can travel through a vacuum—a completely airless space. It speeds through the vacuum of space at 186,400 miles (300,000 km) per second.
Explanation:
Hope this helps :))
the question is in a picture
Answer:
same for all objects
Explanation:
earth pulls every object by same force of gravity
HELP right awayyy !!!
Answer:
Question 4 is actually Acceleration
Is electricity matter?
EXPLAIN.
Answer:
Yes it is matter
Explanation:
In physics, usually the word "electricity" isn't really used. "Electric current" is more common, and is defined as the flow of charges, where the charges are held by particles (electrons). Electrons have mass, so they are definitely matter.
What is the period of an object that makes 6 revolutions a minute?
Answer:
T = 10 s
Explanation:
First, we need to find the frequency of the object as follows:
[tex]Frequency = f = \frac{Speed\ in\ rpm}{60}[/tex]
where,
Speed = Angular Speed = 6 rpm
Therefore,
[tex]f = \frac{6\ rpm}{60}\\\\f = 0.1\ Hz[/tex]
Now, for time period (T):
[tex]Time\ Period = T = \frac{1}{f}\\\\T = \frac{1}{0.1\ Hz}\\\\[/tex]
T = 10 s
Energy stored because of an object's height above the Earth's surface is_____energy.
nuclear
gravitational
electrical or chemical
A water-skier of mass 75.0 kg initially at rest is being pulled due east by a horizontal towrope. The rope exerts a force of 365 N (east). The water (and air) exerts a combined average frictional force of 190 N (in the opposite direction). How fast will the skier be moving after a distance of 38.0 m?
Answer:
The skier will be moving at 13.31 m/s.
Explanation:
To calculate the velocity of the skier we need to find the acceleration, as follows:
[tex] \Sigma F = ma [/tex]
[tex] F_{r} - F_{f} = ma [/tex]
Where:
[tex] F_{r}[/tex]: is the force due to the rope = 365 N
[tex] F_{f}[/tex]: is the combined average frictional force = 190 N
m: is the mass = 75.0 kg
[tex] a = \frac{365 N - 190 N}{75.0 kg} = 2.33 m/s^{2} [/tex]
Now, we can calculate the velocity of the skier by using the following kinematic equation:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]
Where:
[tex] v_{f}[/tex]: is the final velocity =?
[tex] v_{0}[/tex]: is the initial velocity = 0 (the skier is initially at rest)
d: is the distance = 38.0 m
[tex] v_{f} = \sqrt{2*2.33 m/s^{2}*38.0 m} = 13.31 m/s [/tex]
Therefore, the skier will be moving at 13.31 m/s.
I hope it helps you!
Please help meeeee
For a velocity versus time graph how do you know what the velocity is at a certain time? How do you know the acceleration at a certain time?
Answer:
Explained below
Explanation:
For a velocity time graph, the y - axis will represent velocity while the x - axis will represent time.
Now, to calculate velocity at a certain time t, we will draw a perpendicular line from the time on the x-axis to the graph line and trace the horizontal line from that point to the y-axis which will give the corresponding velocity at that time.
Now, for the acceleration at a time t. After getting the velocity like explained above, we now divide the velocity by the time.
what is the main cause of seafloor spreading?
Answer:
As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense.
Explanation:
Answer: The main cause of sea floor spreading are the directions and force of the moving tectonic plates.
Explanation:
Conveyor belts are often used to move packages around warehouses. The conveyor shown below moves packages at a steady 4.0 m/s. A 500 N employee decides to catch a ride by sitting on a 1,000 N box for a 50 m trip as shown below:
What is the work done by the employee on the box?
Answer:
0 j
Explanation:
The work done by the employee on the box at the given zero displacement is 0 J.
The given parameters;
Constant velocity of the conveyor, v = 4 m/sWeight of the employee, W = 500 NWeight of the box, W = 1,000 NDistance of the trip, h = 50 mThe work done by the employee on the box is calculated as follows;
W = Fd
where;
F is the applied force on the box by employee = weight of the employeed is the distance through which the box is movedSince the employee sits on the box without moving it, the distance moved by the box = 0
W = 500 x 0
W = 0 J
Thus, the work done by the employee on the box is 0 J.
Learn more about work done and displacement here: https://brainly.com/question/8635561
Alex, parked by the side of an east-west road, is watching car P, which is moving in a westerly direction. Barbara, driving east at a speed 52 km/h, watches the same car. Take the easterly direction as positive. If Alex measures a speed of 78 km/h for car P, what velocity will Barbara measure?
Answer:
[tex]v_{PB} = 130\ km/h[/tex]
Explanation:
Since, Alex is at rest. Therefore, the speed measured by him will be the absolute speed of car P. Therefore, taking easterly direction as positive:
[tex]Absolute\ Velocity\ of\ Car\ P = v_{P} = -78\ km/h[/tex]
And the absolute velocity of Barbara's Car is given as:[tex]Absolute\ Velocity\ of\ Barbara's\ Car = v_{B} = 52\ km/h[/tex]
Now, for the velocity of Car p with respect to the velocity of Barbara's Car can be given s follows:
[tex]Velocity\ of\ Car\ P\ measured\ by\ Barbara = v_{PB} = v_{B}-v_{P}\\\\v_{PB} = 52\ km/h-(-78\ km/h)[/tex]
[tex]v_{PB} = 130\ km/h[/tex]
A student adds two vectors of magnitudes 48 m and 22 m. What are the maximum and minimum possible values for the resultant of these two vectors.
Answer:
Maximum=70 m
Minimum=26 m
Explanation:
Vector Addition
Since vectors have magnitude and direction, adding them takes into consideration not only the magnitudes but also their respective directions. Two vectors can be totally collaborative, i.e., point to the same direction, or be totally opposite. In the first case, the magnitude of the sum is at maximum. Otherwise, it's at a minimum.
Thus, the maximum magnitude of the sum is 48+22 = 70 m and the minimum magnitude of the sum is 48-22= 26 m
At 3.00 m from a source that is emitting sound uniformly in all directions, the sound level (b) is 60.0 dB.
How many meters from the source would the sound level be one-fourth the sound level at 3.00 m?
Given that,
At 3.00 m from a source that is emitting sound uniformly in all directions, the sound level is 60.0 dB.
To find,
The distance from the source would the sound level be one-fourth the sound level at 3.00 m.
Solution,
The intensity from a source is inversely proportional to the distance.
Let I₁ = 60 dB, r₁ = 3 m, I₂ = 60/4 = 15 dB, r₂ =?
Using relation :
[tex]\dfrac{I_1}{I_2}=\dfrac{r_2^2}{r_1^2}\\\\r_2^2=\dfrac{I_1r_1^2}{I_2}\\\\r_2^2=\dfrac{60\times (3)^2}{15}\\\\r_2=6\ m[/tex]
So, at a distance of 6 m the sound level will be one fourth of the sound level at 3 m.