How much of a radioactive kind of sodium will be left after 9 years if you start with 96 grams and the half-life is 3 years?

Answers

Answer 1

Answer:

9 years = 12 grams

Step-by-step explanation:

0 years = 96 grams

After 3 years , the amount left is 1/2 of what you started with

3 years = 1/2 *96 = 48 grams

After 3 years , the amount left is 1/2

6 years = 1/2 (48) = 24 grams

After 3 years , the amount left is 1/2

9 years = 1/2 ( 24) = 12 grams


Related Questions

The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.

Answers

Answer:

[tex]79591.8872 in^3/s[/tex]

Step-by-step explanation:

we know that the volume of a right circular cone is give as

[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]

Therefore differentiating partially  with respect to  r and h we have

[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]

[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]

[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]

17. What is the most likely outcome of decreasing the wavelength of incident light on a diffraction grating? A. lines become narrower B. distance between lines increases C. lines become thicker D. distance between lines decreases

Answers

When the wavelength of a diffraction grating is decreased,  the distance between lines decreases.

What is a diffraction grating?

The diffraction grating is used to carry out interference experiments. It consists of a  number of small lines that are constructed to be close to each other and produce an interference pattern.

The outcome of decreasing the wavelength of incident light on a diffraction grating is that the distance between lines decreases.

Learn more about diffraction grating:https://brainly.com/question/13902808

#SPJ1

Help please!! Thank you

Answers

Answer:

D. 6

Step-by-step explanation:

here, as given set Q consists { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}

and set Z contains {3, 6, 9, 12, 15, 18, 21,24, 27, 30, 33, 36, .... }

so be comparing both, we can see that the numbers 6, 12, 18, 24, 30 and 36 is repeated.

odd function definition

Answers

A function is "odd" when: −f(x) = f(−x) for all x. Note the minus in front of f(x): −f(x).

Which point is a solution to the inequality shown in this graph?

Answers

Answer: A, (0, -3)

Step-by-step explanation:

Inequalities, once graphed, take the form of the image you attached:

Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.

Any point in the shading is a correct solution to the inequality.

When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.

In this case, the line is solid, so any point on the line is a solution to the inequality.

Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.

The correct choice is A.

A college student completed some courses worth 3 credits and some courses worth 4 credits. The student earned a total of 59 credits after completing 18 courses. How many courses worth 3 credits did the student complete?

Answers

Answer:

They completed 13, 3 credit classes

Step-by-step explanation:

1. Make 2 formulas. In this case: x+y=18

and 3x+4y=59

2. Then multiply x+y=18 by 3 and subtract the two equations.

Find y which is 5 and input into the equations. Then find your answer.

Solving exponential functions

Answers

Answer:

approximately 30

Step-by-step explanation:

[tex]f(x) = 4 {e}^{x} [/tex]

[tex]f(2) = 4 {e}^{2} [/tex]

[tex]f(2) = 4 \times 7.389[/tex]

[tex]f(2) = 29.6[/tex]

( Approximately 30)

Hope this helps..

Good luck on your assignment..

Answer:

approximately 30

Step-by-step explanation:

[tex]f(x)=4e^x[/tex]

Put x as 2 and evaluate.

[tex]f(2)=4e^2[/tex]

[tex]f(2)=4(2.718282)^2[/tex]

[tex]f(2)= 29.556224 \approx 30[/tex]

Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105

Answers

Answer:

8 and 9

Step-by-step explanation:

If x is the smaller integer, and x + 1 is the larger integer, then:

(x + 1)² + 3x = 105

x² + 2x + 1 + 3x = 105

x² + 5x − 104 = 0

(x + 13) (x − 8) = 0

x = -13 or 8

Since x is positive, x = 8.  So the two integers are 8 and 9.

Please answer this correctly without making mistakes

Answers

Answer: 3/11

Explanation:

There are 11 equal parts

He did 3 on Saturday

Which mean he did 3/11 of the total parts

Answer:

3/11

Step-by-step explanation:

There are eleven equal parts.

So the denominator is 11.

He copies 8 parts on Sunday.

11-8=3.

He copied 3 parts on Saturday.

Hope this helps ;) ❤❤❤

You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth

Answers

Answer:

0.078

Step-by-step explanation:

The probability P(A) of an event A happening is given by;

P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]

From the question;

There are two events;

(i) Drawing a first card which is a king: Let the event be X. The probability is given by;

P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]

Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.

Also, the total number of sample space = 52, since there are 52 cards in total.

P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]

(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;

P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]

Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4

But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.

P(Y) = [tex]\frac{4}{51}[/tex]

Therefore, the probability of selecting a first card as king and a second card as queen is;

P(X and Y) = P(X) x P(Y)

= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078

Therefore the probability is 0.078

What are some key words used to note addition operations?

Answers

Answer:

The correct answer is

For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.

Step-by-step explanation:

hope this helps u!!!

An oil company is interested in estimating the true proportion of female truck drivers based in five southern states. A statistician hired by the oil company must determine the sample size needed in order to make the estimate accurate to within 2% of the true proportion with 99% confidence. What is the minimum number of truck drivers that the statistician should sample in these southern states in order to achieve the desired accuracy?

Answers

Answer: n = 2401

Step-by-step explanation:

Given;

Confidence level = 2% - 99%

n = ? ( which is the sample size is unknown ).

Solution:

Where;

n = [z/E]^2*pq

Since no known value for ( p ) estimate is given, the "least biased" estimate is p = 1/2

Substituting the given data into the formula.

n = [1.96/0.02]^2(1/2)(1/2)

n = 2401

The minimum number of truck drivers the statistician needs to sample for an accurate result is 2401

I need to know if the following questions are true or false

Answers

Answer:

False

Step-by-step explanation:

To find <A, we can do 5x - 80 = 3x + 20.

As we simplify, we will get 2x = 100, which is x = 50

Therefore, <A will be 50 degrees and not 45 degrees.

Also, if you need y, you can do:

3y - 7 = y + 7

2y = 14

y = 7

(SAT Prep) In the given figure, a║b. What is the value of x? A. 70° B. 45° C. 80° D. 65° I NEED THIS FAST PLZZZZZZ!!!!!!!!!!!!

Answers

Answer:

70

Step-by-step explanation:

You have to find the vertical of x. To the right of the vertical, we see that there is an angle of 25 (since the 25 up top corresponds to that blank angle). Once you add 25 + 85 + x = 180 (since this is a straight line), we see that x is 70, and its vertical is also 70.

In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50

Answers

Answer:

H0 :

a. mu is greater than or equal to $108.50

Ha:

c. mu is less than or equal to $108.50

Step-by-step explanation:

The correct order of the steps of a hypothesis test is given following  

1. Determine the null and alternative hypothesis.

2. Select a sample and compute the z - score for the sample mean.

3. Determine the probability at which you will conclude that the sample outcome is very unlikely.

4. Make a decision about the unknown population.

These steps are performed in the given sequence

In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.

Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2

Answers

The graph which shows the solution to the system of inequalities is attached in the picture below :

Given the inequalities :

y ≥ 2x + 1

y ≤ 2x - 2

From y ≥ 2x + 1 ;

Since the inequality sign is , a solid line is used to draw the straight line graph of  y ≥ 2x + 1

From :

y = mx + c

Where, m = slope ; c = intercept

Hence, a straight line graph with ;

Intercept, c = 1 (where the line crosses the y-intercept)

Slope, m = 2

Consider a point, which isn't on the line ;

Take point (0,0) and use it to test the inequality :

0 ≥ 2(0) + 1

0 ≥ 0 + 1

0 ≥ 1

This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.

From : y ≤ 2x - 2

Since the inequality sign is , a solid line is used to draw the straight line graph of  y ≤ 2x - 2

Graph the line y ≤ 2x - 2, with ;

Intercept, c = - 2

Slope = 2

Consider a point, which isn't on the line ;

Take point (0,0) and use it to test the inequality y ≤ 2x - 2:

0 ≤ 2(0) - 2

0 ≤ 0 - 2

0 ≤ - 2

This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.

Learn more : https://brainly.com/question/19670553

Answer:

Its graph B on edge 2022

Step-by-step explanation:

A ball is thrown straight down from the top of a 435-foot building with an initial velocity of -27 feet per second. Use the position function below for free-falling objects. s(t) = -16t^2 + v_0t + s_0 What is its velocity after 2 seconds? v(2) = -91 ft/s What is its velocity after falling 364 feet? v = 1.61 ft/s Find an equation of the parabola y = ax^2 + bx + c that passes through (0, 1) and is tangent to the line y = 5x - 5 at (1, 0). Y = 5x + 10

Answers

Answer:

a) The velocity of the ball after 2 seconds is -91 feet per second, b) The velocity of the ball after falling 364 feet is 155 feet per second, c) The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].

Step-by-step explanation:

a) The velocity function is obtained after deriving the position function in time:

[tex]v (t) = -32\cdot t -27[/tex]

The velocity of the ball after 2 seconds is:

[tex]v(2\,s) = -32\cdot (2\,s) -27[/tex]

[tex]v(2\,s) = -91\,\frac{ft}{s}[/tex]

The velocity of the ball after 2 seconds is -91 feet per second.

b) The time of the ball after falling 364 feet is found after solving the position function as follows:

[tex]435\,ft - 364\,ft = -16\cdot t^{2}-27\cdot t + 435\,ft[/tex]

[tex]-16\cdot t^{2} - 27\cdot t + 364 = 0[/tex]

The solution of this second-grade polynomial is represented by two roots:

[tex]t_{1} = 4\,s[/tex] and [tex]t_{2} = -5.688\,s[/tex].

Only the first root is physically reasonable since time is a positive variable. Now, the velocity of the ball after falling 364 feet is:

[tex]v(4\,s) = -32\cdot (4\,s) - 27[/tex]

[tex]v(4\,s) = -155\,\frac{ft}{s}[/tex]

The velocity of the ball after falling 364 feet is 155 feet per second.

c) Let consider the equation for a second order polynomial that passes through (0, 1) and its first derivative that passes through (1, 0) and represents the give equation of the tangent line. That is to say:

Second-order polynomial evaluated at (0, 1)

[tex]c = 1[/tex]

Slope of the tangent line evaluated at (1, 0)

[tex]5 = 2\cdot a \cdot (1) + b[/tex]

[tex]2\cdot a + b = 5[/tex]

[tex]b = 5 - 2\cdot a[/tex]

Now, let evaluate the second order polynomial at (1, 0):

[tex]0 = a\cdot (1)^{2}+b\cdot (1) + c[/tex]

[tex]a + b + c = 0[/tex]

If [tex]c = 1[/tex] and [tex]b = 5 - 2\cdot a[/tex], then:

[tex]a + (5-2\cdot a) +1 = 0[/tex]

[tex]-a +6 = 0[/tex]

[tex]a = 6[/tex]

And the value of b is: ([tex]a = 6[/tex])

[tex]b = 5 - 2\cdot (6)[/tex]

[tex]b = -7[/tex]

The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].

About 9% of the population has a particular genetic mutation. 600 people are randomly selected.

Find the standard deviation for the number of people with the genetic mutation in such groups of 600.

Answers

Answer:

The mean for all such groups randomly selected is 0.09*800=72.

Step-by-step explanation:

The value of the standard deviation is 7.

What is the standard deviation?

Standard deviation is defined as the amount of variation or the deviation of the numbers from each other.

The standard deviation is calculated by using the formula,

[tex]\sigma = \sqrt{Npq}[/tex]

N = 600

p = 9%= 0.09

q = 1 - p= 1 - 0.09= 0.91

Put the values in the formulas.

[tex]\sigma = \sqrt{Npq}[/tex]

[tex]\sigma = \sqrt{600 \times 0.09\times 0.91}[/tex]

[tex]\sigma[/tex] = 7

Therefore, the value of the standard deviation is 7.

To know more about standard deviation follow

https://brainly.com/question/475676

#SPJ2

The ratio of boys to girls in Jamal's class is 3:2. If four more girls join the class, there will be the same number of boys and girls. What is the number of boys in the class?

Answers

Answer:

4 boys

Step-by-step explanation:

Let x represent boys and y represent girls

Hence, x : y = 3 : 2

x/y = 3/2  

2x = 3y ------ (1)

x/y + 4 = 3/3

3x = 3(y + 4)

3x = 3y + 12 --------- (2)

From (1): x = 3y/2

Substitute x into (2) we have:

9y/2 = 3y + 12

9y = 6y + 24

9y - 6y = 24

3y = 24

∴ y = 8

From (2) : 3x = 24 - 12 = 12

∴ x = 4

Hence there Four boys

Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below 15 and 39

Answers

Answer:

36

Step-by-step explanation:

You did not attach a picture, so I just assumed where the lengths of 15 and 39 were.

Answer: approximately 42

Explanation:

39^2 + 15^2 = C^2
1521 + 225 = C^2
1746 = C^2
Sqrt 1746 = C
41.785...= C

C is approximately 42 where C is the length of the hypotenuse

At the city museum, child admission is $ 5.30 and adult admission is $ 9.40 . On Sunday, three times as many adult tickets as child tickets were sold, for a total sales of $ 1206.00 . How many child tickets were sold that day?

Answers

Answer:

36 tickets

Step-by-step explanation:

At a city museum, child tickets are sold for $5.30, and adult tickets are sold for $9.40

The total sales that were made are $1206

Let x represent the number of child tickets that were sold

Let y represent the number of adult tickets that was sold

5.30x +9.40y= 1206

The number of adult tickets sold was three times greater than the child tickets

y= 3x

Substitute 3x for y in the equation

5.30x + 9.40y= 1206

5.30x + 9.40(3x)= 1206

5.30x + 28.2x= 1206

33.5x= 1206

Divide both sides by the coefficient of x which is 33.5

33.5x/33.5= 1206/33.5

x = 36

Hence the number of child tickets that were sold that day is 36 tickets

how to simplify this expression ?

Answers

Answer:

[tex]\large \boxed{\sf \ \ \dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{2x+1}{x^2(x+1)} \ \ }[/tex]

Step-by-step explanation:

Hello,

This is the same method as computing for instance:

[tex]\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{3+2}{2*3}=\dfrac{5}{6}[/tex]

We need to find the same denominator.

Let's do it !

For any x real different from 0, we can write:

[tex]\dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{1}{x^2}+\dfrac{1}{x(x+1)}\\\\=\dfrac{x+1+x}{x^2(x+1)}=\dfrac{2x+1}{x^2(x+1)}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Solve for x in the equation X^2-16^x=0

Answers

Answer:

-1/2

Step-by-step explanation:

x^2- 16^x = 0x^2 =  16^xx^2 = 4^2xx = 4^xlogx = xlog41/x×logx = log4log(x^1/x) = log4x^(1/x) = 4

At this point you can guess and try. And it seems that x = -1/2, lets check:

(-1/2)^(1 /-1/2)= (-1/2)^-2= 2^2= 4

So, this is correct: x= -1/2

The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D

Answers

Answer:

  181.8 yd

Step-by-step explanation:

The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...

  c^2 = a^2 +b^2 -2ab·cos(C)

For the given geometry, this is ...

  c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75

  c ≈ √33037.75 ≈ 181.8 . . . yards

Marsha's ball is about 181.8 yards from the hole.

Answer:

181.8 yds

Step-by-step explanation:

I got it correct on founders edtell

A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon

Answers

Hey there! I'm happy to help!

We want to find the volume of this  rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.

7×5×1=35 cubic feet

Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.

[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]

In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.

0.13g=35

We divide both sides by 0.13/

g≈269.23

When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.

I hope that this helps! Have a wonderful day! :D

Answer:

Step-by-step explanation:

Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as

Volume = length × width × height

Therefore,

Volume of waterbed = 7 × 5 × 1 = 35 cubic feet

1 US gallon = 0.133680556 cubic feet

Therefore, converting 35cubic feet to gallons, it becomes

35/0.133680556 = 261.81818094772 gallons

Rounding up to whole gallon, it becomes 262 gallons

What are the expressions for length, width, and height?

Volume = length width height
V = _____ _____ _____
For odyyseyware

Answers

Answer:

[tex]\boxed{V=lwh}[/tex]

Step-by-step explanation:

The formula for volume of a cuboid is:

[tex]V=lwh[/tex]

[tex]volume = length \times width \times height[/tex]

Answer:

V = l w h

Step-by-step explanation:

Volume of a Cuboid = Length × Width × Height

Where l = length, w = width and h = height

how do you find the x- and y-intersepts of an equation​

Answers

Answer:

To find the x-intercept, simply plug in the value y = 0 into your equation and then solve for x. To find the y-intercept, plug in x = 0 and solve for y.

A box with a hinged lid is to be made out of a rectangular piece of cardboard that measures 3 centimeters by 5 centimeters. Six squares will be cut from the cardboard: one square will be cut from each of the corners, and one square will be cut from the middle of each of the -5 centimeter sides . The remaining cardboard will be folded to form the box and its lid . Letting x represent the side-lengths (in centimeters) of the squares, to find the value of that maximizes the volume enclosed by this box. Then give the maximum volume. Round your responses to two decimal places.

Answers

Answer:

x = 0.53 cm

Maximum volume = 1.75 cm³

Step-by-step explanation:

Refer to the attached diagram:

The volume of the box is given by

[tex]V = Length \times Width \times Height \\\\[/tex]

Let x denote the length of the sides of the square as shown in the diagram.

The width of the shaded region is given by

[tex]Width = 3 - 2x \\\\[/tex]

The length of the shaded region is given by

[tex]Length = \frac{1}{2} (5 - 3x) \\\\[/tex]

So, the volume of the box becomes,

[tex]V = \frac{1}{2} (5 - 3x) \times (3 - 2x) \times x \\\\V = \frac{1}{2} (5 - 3x) \times (3x - 2x^2) \\\\V = \frac{1}{2} (15x -10x^2 -9 x^2 + 6 x^3) \\\\V = \frac{1}{2} (6x^3 -19x^2 + 15x) \\\\[/tex]

In order to maximize the volume enclosed by the box, take the derivative of volume and set it to zero.

[tex]\frac{dV}{dx} = 0 \\\\\frac{dV}{dx} = \frac{d}{dx} ( \frac{1}{2} (6x^3 -19x^2 + 15x)) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\0 = \frac{1}{2} (18x^2 -38x + 15) \\\\18x^2 -38x + 15 = 0 \\\\[/tex]

We are left with a quadratic equation.

We may solve the quadratic equation using quadratic formula.

The quadratic formula is given by

[tex]$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$[/tex]

Where

[tex]a = 18 \\\\b = -38 \\\\c = 15 \\\\[/tex]

[tex]x=\frac{-(-38)\pm\sqrt{(-38)^2-4(18)(15)}}{2(18)} \\\\x=\frac{38\pm\sqrt{(1444- 1080}}{36} \\\\x=\frac{38\pm\sqrt{(364}}{36} \\\\x=\frac{38\pm 19.078}{36} \\\\x=\frac{38 + 19.078}{36} \: or \: x=\frac{38 - 19.078}{36}\\\\x= 1.59 \: or \: x = 0.53 \\\\[/tex]

Volume of the box at x= 1.59:

[tex]V = \frac{1}{2} (5 – 3(1.59)) \times (3 - 2(1.59)) \times (1.59) \\\\V = -0.03 \: cm^3 \\\\[/tex]

Volume of the box at x= 0.53:

[tex]V = \frac{1}{2} (5 – 3(0.53)) \times (3 - 2(0.53)) \times (0.53) \\\\V = 1.75 \: cm^3[/tex]

The volume of the box is maximized when x = 0.53 cm

Therefore,

x = 0.53 cm

Maximum volume = 1.75 cm³

If C(x) is the cost of producing x units of a commodity, then the average cost per unit is c(x) = C(x)/x. Consider the cost function C(x) given below. C(x) = 54,000 + 130x + 4x3/2 (a) Find the total cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ (b) Find the average cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (c) Find the marginal cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (d) Find the production level that will minimize the average cost. (Round your answer to the nearest whole number.) units (e) What is the minimum average cost? (Round your answer to the nearest dollar.) $ per unit

Answers

Answer:

Step-by-step explanation:

Given that:

If C(x) =  the cost of producing x units of a commodity

Then;

then the average cost per unit is c(x)  = [tex]\dfrac{C(x)}{x}[/tex]

We are to consider a given function:

[tex]C(x) = 54,000 + 130x + 4x^{3/2}[/tex]

And the objectives are to determine the following:

a) the total cost at a production level of 1000 units.

So;

If C(1000) = the cost of producing 1000 units of a commodity

[tex]C(1000) = 54,000 + 130(1000) + 4(1000)^{3/2}[/tex]

[tex]C(1000) = 54,000 + 130000 + 4( \sqrt[2]{1000^3} )[/tex]

[tex]C(1000) = 54,000 + 130000 + 4(31622.7766)[/tex]

[tex]C(1000) = 54,000 + 130000 + 126491.1064[/tex]

[tex]C(1000) = $310491.1064[/tex]

[tex]\mathbf{C(1000) \approx $310491.11 }[/tex]

(b) Find the average cost at a production level of 1000 units.

Recall that :

the average cost per unit is c(x)  = [tex]\dfrac{C(x)}{x}[/tex]

SO;

[tex]c(x) =\dfrac{(54,000 + 130x + 4x^{3/2})}{x}[/tex]

Using the law of indices

[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]

[tex]c(1000) = \dfrac{54000}{1000}+ 130 + {4(1000)^{1/2}}[/tex]

c(1000) =$ 310.49 per unit

(c) Find the marginal cost at a production level of 1000 units.

The marginal cost  is C'(x)

Differentiating  C(x) = 54,000 + 130x + 4x^{3/2} to get  C'(x) ; we Have:

[tex]C'(x) = 0 + 130 + 4 \times \dfrac{3}{2} \ x^{\dfrac{3}{2}-1}[/tex]

[tex]C'(x) = 0 + 130 + 2 \times \ {3} \ x^{\frac{1}{2}}[/tex]

[tex]C'(x) = 0 + 130 + \ {6}\ x^{\frac{1}{2}}[/tex]

[tex]C'(1000) = 0 + 130 + \ {6} \ (1000)^{\frac{1}{2}}[/tex]

[tex]C'(1000) = 319.7366596[/tex]

[tex]\mathbf{C'(1000) = \$319.74 \ per \ unit}[/tex]

(d)  Find the production level that will minimize the average cost.

the average cost per unit is c(x)  = [tex]\dfrac{C(x)}{x}[/tex]

[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]

the production level that will minimize the average cost is c'(x)

differentiating [tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex] to get c'(x); we have

[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{4}{2 \sqrt{x} }[/tex]

[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{2}{ \sqrt{x} }[/tex]

Also

[tex]c''(x)= \dfrac{108000}{x^3} -x^{-3/2}[/tex]

[tex]c'(x)= \dfrac{54000}{x^2} + \dfrac{4}{2 \sqrt{x} } = 0[/tex]

[tex]x^2 = 27000\sqrt{x}[/tex]

[tex]\sqrt{x} (x^{3/2} - 27000) =0[/tex]

x= 0;  or  [tex]x= (27000)^{2/3}[/tex] = [tex]\sqrt[3]{27000^2}[/tex] = 30² = 900

Since  production cost can never be zero; then the production cost = 900 units

(e) What is the minimum average cost?

the minimum average cost of c(900) is

[tex]c(900) =\dfrac{54000}{900} + 130 + 4(900)^{1/2}[/tex]

c(900) = 60 + 130 + 4(30)

c(900) = 60 +130 + 120

c(900) = $310 per unit

Need answer now in 10 min!!!

Answers

Answer:

40 deg

Step-by-step explanation:

The vertical sides of the rectangle are parallel, so the triangle is a right triangle.

The triangle is a right triangle, so the acute angles are complementary.

The bottom right angle of the triangle measures 90 - 50 = 40 deg.

The bottom line and the top side of the rectangle are parallel, so corresponding angles are congruent. x and the 40-deg angle are corresponding angles, so they are congruent.

x = 40 deg.

Other Questions
The selling price of a car is $15,000. Each year, it loses 12% of its value.Which function gives the value of the cart years after its purchase?Select the correct answer below:f(t) = 15,000(0.12)f(t) = 15,000(1.12)f(t) = 15,000(1.88)f(t) = 15,000(0.88)f(t) = 15,000 (0.12) She was pulling black veins out of the backs of fleshy prawns.The description in this sentence uses Precise language To describe what tan sawContains a detail that appeals to the sense of tasteUses figurative language to describe the prawnsContains a simile that compares prawns to flesh There were some pieces of candy in a bowl. Shirley took half of them. Then Rose took half of the pieces left in the bowl. After that, Susan took half of the remaining pieces of candy. In the end there were 8 pieces of candy left in the bowl. How many candies were there in the bowl at the beginning? Last season, a softball team played 18 games. The team won 15 of these games. What is the ratio of the softball team's wins to its total number of games played ? When lithium metal reacts with fluorine gas it forms the ionic compound lithium fluoride (LiF). What is the correct electron configurations of the ions formed Determine what type of model best fits the given situation: An Internet phone company presently provides service to 5,000 customers at a monthly rate of $20 per month. After a market survey, it was determined that for each $1 decrease in the monthly rate an increase of 500 new customers would result. A. linear B. quadratic C. none of these D. exponential If the variance of a variable is 16, what is the standard deviation? I believe that the Union can only be preserved by maintaining inviolate the Constitution of the United States as our fathers have made it. That Constitution guarantees to the people of every State the right to have slavery or not have iteach State being left free to decide for itself. The framers of that Constitutionwell understood that each one of the thirteen States had distinct and separate interests, and required distinct and separate local laws and local institutions. What number :Increased by 130% is 69 i rlly need help!!! NEED ANWSER ASAP! WILL GIVE BRAINLIEST! An ant needs to travel along a 20cm 20cm cube to get from point A to point B. What is the shortest path he can take, and how long will it be (in cm)? Any of a large group of diseases characterized by a condition in which the immune system produces antibodies against its own tissues, mistaking healthy cells, tissues, or organs for antigens is called a/an ABG Corporation has the following dividend forecasts for the next three years: Year Expected Dividend 1 $ .25 2 $ .50 3 $ 1.25 After the third year, the dividend will grow at a constant rate of 5% per year. The required return is 10%. What is the price of the stock today? For each of the following, state the equation of a perpendicular line that passes through (0, 0). Then using the slope of the new equation, find x if the point P(x, 4) lies on the new line. y=3x-1 y=1/4 x+2 John wants to nail a thumbtack on his circular board, pictured below. If the thumbtack is equally likely to be placed anywhere on the board, what is the probability that the thumbtack will be placed on the inner circle? Use 3.14 for , and round your answer to the nearest whole percent. A. 51% B. 55% C. 57% D. 60% Your Competitive Intelligence team is predicting that the Chester Company will invest in adding capacity to their Cute product this year. Assume Chester's product Cute invests in increasing its capacity by 10% this year. Because of this new information, your company anticipates all other products in the Core segment will increase their capacity by the same amount. How much can the industry produce in the Core segment the next year? Consider only products primarily in the Core segment last year. Ignore current inventories. Figures in thousands (000). A monopoly's cost function is CQ and its the demand for its product is pQ where Q is output, p is price, and C is the total cost of production. Determine the profit-maximizingLOADING... price and output for a monopoly. A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the spheres radius is 50.0 cm and it carries a total charge of (a) Calculate the potential of the spheres surface. (b)You want to draw equipotential surfaces at intervals of 500 V outside the spheres surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces. (c) What does the changing spacing of the surfaces tell you about the electric field? 1)The average lethal dose of Valium is 1.52 mg/kg of body weight. Estimate how many grams of Valium would be lethal for a 200.-lb woman. Show all your calculations. (1lb = 453.6 g) 2) A patient in hospital is receiving the antibiotic amoxcillin IV at the rate of 50. mL/h. The IV contains 1.5 g of the antibiotic in 1000. mL. (IV stands for intravenous). Calculate the mg/min of the drip. Show all your calculations WILL MARK BRAINLIEST! Which of the following is a discrete random variable? a) length of time you play in a baseball game b) length of a car c) volume of water in a tank d) number of candies in a box Pour aller au Parc Louis Pasteur, ________. va droite et tourne gauche. va tout droit, tourne gauche et passe sur le pont. tourne droite et tourne gauche. va tout droit et passe sur le pont, tourne gauche.