Answer:
A right scalene triangle would have a 90 degree angle and 3 non congruent sides
Step-by-step explanation:
Cheryl is planning to go to a four-year college in two years. She develops a monthly savings plan using the estimates shown. What should her monthly savings be? (rounded to the nearest cent)
Answer:
$541.67 per month
Step-by-step explanation:
Tuition and other expenses = $8,250 per semester.
There are two semesters in a year
She has 4 years to spend
Total semester=4years*2semesters
=8 semesters
4 years in college which is a total of 8 semesters.
Total Tuition and other expenses = $8,250 * 8
= $66,000
She needs a total of $66,00 to complete her college
Assistance from parents=$15,000
Financial aid(per semester)=$4750
Total financial aid=$38,000
Total assistance=
Assistance from parents+ financial aid
=$15000+$38,000
=$53,000
Total savings=Total amount needed - Total assistance
=$66,000 - $53,000
=$13,000
She needs to save $13,000 in two years
There are 12 months in one year
2 years=2*12=24 months
Monthly savings=Total savings/24 months
=$13,000/24
=$541.666666
To the nearest cent
=$541.67
Answer: $541.67
Step-by-step explanation: Got it right on TTM.
HELPPPP The equation 2x = 3y – 5 when written in slope-intercept form is: y = 2x – 5. y = -2x + 5. y = 2x + 5. None of these choices are correct.
Answer:
Y= 2/3x +(5/3)
Step-by-step explanation:
First, have to get Y alone on one side 3y=2x+5
Second, have to get read of the 3 with the Y so divide each side by three.
Suppose your car has hhh liters of engine oil in the morning. During the day, some oil may have leaked, you may have added more oil, or both. The oil level in the evening is ggg liters.
Answer:
g = (h+a) - l
None of them
Step-by-step explanation:
Suppose your car has h liters of engine oil in the morning. During the day, some oil may have leaked, you may have added more oil, or both. The oil level in the evening is g liters. Which of the following expressions always represents how far away the new oil level is from the previous oil level? H+G lGl none of them
Let
h = liters of oil in the morning
l= liters that has leaked
a= liters that were added during the day
g= amount of liters at the end of the evening
Total liters of oil in the evening= (litres of oil in the morning + litres of oil added during the day) - litres of oil that leaked
Substituting each variable into the formula, we have
g = (h+a) - l
Convert 50 degrees into radians (NEED ASAP)
Answer:
0.872665
Step-by-step explanation:
Which of the following is a factor of x3+ 6x2 + 5x – 12?
A.X + 1
B. x - 3
C. x + 2
D. x + 4
1,3,4 that is the answer
Answer:
The answer is option D.Step-by-step explanation:
x³ + 6x² + 5x - 12
A factor of the polynomial is the value of x when substituted into the expression will make it zero
Choosing x + 4
x = - 4
We have
(- 4)³ + 6(- 4)² + 5(- 4) - 12
-64 + 96 - 20 - 12 = 0
Since the result is zero
x + 4 is a factor of the polynomial
Hope this helps you
50 Pts!!! Answer ASAP.
Answer:
0.8
Step-by-step explanation:
because the template should be axr^n-1
where r is the common ratio
r=0.8
Answer:
0.8
Step-by-step explanation:
Pls solve ASAP!! Review the attachment and solve. Pls hurry!
Answer:
A. 3
Step-by-step explanation:
ΔDEC is bigger than ΔABC by 5. For the hypotenuse, 25 is 5 times bigger than 5.
So, side DE on ΔDEC has to be 5 times bigger than side AB on ΔABC.
If side AB equals 3, side DE equals 18 - 3, which is 15.
15 is five times bigger than 3, so the answer is A. 3.
Hope that helps.
find the zeros or x-intercepts (values of r and s) of a quadratic relation y=x^2-5x+6 by factoring using the sum and product method
Answer:
[tex] y = x^2 -5x +6[/tex]
And for this case we want to find the zeros or x interceps r and s so we want to rewrite the function on this way:
[tex] y = (x-r) (x-s)[/tex]
The reason why we have two zeros is because the degree of the polynomial is 2. If we find two numbers that adding we got -5 and multiplied 6 we solve the problem. For this case the solution is r =3, s =2
[tex] y=(x -2)) (x-3)[/tex]
Step-by-step explanation:
For this problem we have the following polynomial given:
[tex] y = x^2 -5x +6[/tex]
And for this case we want to find the zeros or x interceps r and s so we want to rewrite the function on this way:
[tex] y = (x-r) (x-s)[/tex]
The reason why we have two zeros is because the degree of the polynomial is 2. If we find two numbers that adding we got -5 and multiplied 6 we solve the problem. For this case the solution is r =3, s =2
[tex] y=(x -2)) (x-3)[/tex]
One angle of an isosceles triangle is 80º. What are the other two angles?
Answer:
80 and 20
Step-by-step explanation:
80+80+20=180
The slope of the line below is -3 which is the following is the point - slope from the line ?
Answer:
D. y + 6 = -3(x - 2)
Step-by-step explanation:
To find the equation in point-slope form, you need to use the slope and a point from that line. The slope is -3 and the point given is (2, -6).
Point-slope form is y - y₁ = m(x - x₁). Plug in the slope and point.
y - (-6) = -3(x - 2)
y + 6 = -3(x - 2)
Answer:
D. [tex]y - 2 = -3(x+6 )[/tex]
Step-by-step explanation:
Well point slope form is,
[tex]y - y_{1} = m(x-x_{1} )[/tex]
So we already have slope meaning we can plug that in for m.
[tex]y - y_{1} = -3(x-x_{1} )[/tex]
And with the given point (2,-6),
we can create point slope form.
[tex]y - 2 = -3(x+6 )[/tex]
Therefore,
the answer is d. [tex]y - 2 = -3(x+6 )[/tex].
Hope this helps :)
Antonio's toy boat is bobbing in the water next to a dock. Antonio starts his stopwatch, and measures the vertical distance from the dock to the height of the boat's mast, which varies in a periodic way that can be modeled approximately by a trigonometric function. The vertical distance from the dock to the boat's mast reaches its highest value of -27 \text{ cm}−27 cmminus, 27, space, c, m every 333 seconds. The first time it reaches its highest point is after 1.31.31, point, 3 seconds. Its lowest value is -44\text{ cm}−44 cmminus, 44, space, c, m. Find the formula of the trigonometric function that models the vertical height HHH between the dock and the boat's mast ttt seconds after Antonio starts his stopwatch. Define the function using radians.
Answer:
Step-by-step explanation:
Since we're given a time at which the height is maximum, we can use a cosine function for the model.
The amplitude is half the difference between the maximum and minimum: (-27 -(-44))/2 = 8.5 cm.
The mean value of the height is the average of the maximum and minimum: (-27 -44)/2 = -35.5 cm.
The period is given as 3 seconds, and the right shift is given as 1.31 seconds.
This gives us enough information to write the function as ...
H(t) = (amplitude)×cos(2π(t -right shift)/period) + (mean height)
H(t) = 8.5cos(2π(t -1.31)/3) -35.5 . . . . cm
Which table represents a direct variation function? A table with 6 columns and 2 rows. The first row, x, has the entries, negative 3, negative 1, 2, 5, 10. The second row, y, has the entries, negative 4.5, negative 3.0, negative 1.5, 0.0, 1.5. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 5.5, negative 4.5, negative 3.5, negative 2.5, negative 1.5. The second row, y, has the entries, 10, 8, 6, 4, 2. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 5.5, negative 5.5, negative 5.5, negative 5.5, negative 5.5. The second row, y, has the entries, negative 3, negative 1, 2, 5, 10. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 3, negative 1, 2, 5, 10. The second row, y, has the entries, negative 7.5, negative 2.5, 5.0, 12.5, 25.0.
Answer:
The correct option is;
A table with 6 columns and 2 rows. The first row, x, has entries, negative 3, negative 1, 2, 5, 10. The second row, y, has entries, negative 7.5, negative 2.5, 5.0, 12.5, 25
Please find attached the graphs of the table data
Step-by-step explanation:
Each of the given table data of in the tables are analysed to find direct variation;
Table 1
x, -3, -1, 2, 5, 10
y, -4.5, -3.0, -1.5, 0.0, 1.5
-4.5/-3 = 1.5 ≠ -3.0/-1 = 3
No direct variation
Table 2
x, -5.5, -4.5, -3.5, -2.5, -1.5
y, 10, 8, 6, 4, 2
10/(-5.5) = -20/11 ≠ 8/(-4.5) = -16/9
However, 10/(-5.5 + 0.5) = -2 = 8/(-4.5 + 0.5) = -2
Adjusted direct variation
Table 3
x, -5.5, -5.5, -5.5, -5.5, -5.5
y, -3, -1, 2, 5 , 10
-3/(-5.5) ≠ -1/-5.5
No direct variation
Table 4
x, -3, -1, 2, 5, 10
y, -7.5, -2.5, 5.0 , 12.5, 25
-7.5/-3 = 2.5 = -2.5/(-1) = 5.0/2 = 12.5/5 =25/10
Direct variation exists
Answer:
so D
Step-by-step explanation:
describe the end behavior f(x)=5x^4+3x^2-1.
Can someone help me with this problem?
━━━━━━━☆☆━━━━━━━
▹ Answer
Slope = 1
▹ Step-by-Step Explanation
y = mx + b
'm' represents the slope. since there is no number before the x, the coefficient will always be 1. therefore, the slope is 1.
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Two cars leave an intersection. One car travels north: the other east. When the car traveling north had gone 15 miles, the distance between the cars was 5 miles more than the distance traveled by the car heading east. How far had the eastbound car traveled?
Answer:
20 miles
Step-by-step explanation:
Given that :
When the car traveling north 'N' had gone 15 miles, the distance between the cars was 5 miles more than the distance traveled by the car heading east
Let the distance moved by the east bound car be e,
therefore, distance between the cars when the northbound car had traveled a distance of 15 miles = e + 5
Using Pythagoras rule:
(Hypotenus)^2 = (adjacent)^2 + (Opposite)^2
(e+5)^2 = 15^2 + e^2
(e+5)(e+5) = 225 + e^2
e^2 + 5e + 5e + 25 = 225 + e^2
e^2 + 10e + 25 = 225 + e^2
e^2 - e^2 + 10e = 225 - 25
10e = 200
e = 200 / 10
e = 20 miles
Check attached picture for solution diagram
Simplify. Your answer should contain only positive exponents.
9) 3^-1 • 3^0
Answer:
1 / 3^1
Step-by-step explanation:
3^-1 • 3^0
When multiplying exponents with the same base, we add the exponents
3^ (-1+0)
3 ^-1
We know that a^ - b = 1/a^b
3 ^ -1 = 1/3^1
Select the number of solutions for each system of two linear equations.
Answer:
work is shown and pictured
C, infinitely many solutions.
B, one solution.
C, infinitely many solution.
A system of linear equations:A system of linear equations is a collection of one or more linear equations involving the same variables.
A system of linear equation has
one solution when the graph intersect at a point.no solution when the graphs are parallel.infinitely many solutions when the graphs are exact same line.According to the given questions
the given system of equations
(1). 2x+2y=3 and 4x+4y=6
if we see the graph of the above system of linear equations, the graphs are the" exact at same line".
Hence, they have infinitely many solution.
(2). 7x+5y=8 and 7x+7y =8
if we see the graph of the above system of linear equations, the graphs are intersecting at a single point.
Hence, there is only one solution.
(3). -2x+3y=7 and 2x-3y=-7
if we see the graph of the above system of linear equations, the graphs are exact at same line.
Hence, there is infinitely many solutions.
Learn more about the system of linear equations here:https://brainly.in/question/5130012
#SPJ2
On a coordinate plane, a line goes through (negative 4, negative 1) and (0, 1). Square a is around (negative 5, negative 2), square b is around (negative 1, 1), square c is around (1, 2), and square d is around (4, 4). The linear equation y = one-half x + 1 is represented by the graphed line. A second linear equation is represented by the data in the table. A 2-column table with 4 rows. Column 1 is labeled x with entries negative 2, 0, 2, 4. Column 2 is labeled y with entries 7, 6, 5, 4. In which square is the solution located?
Answer: D
Step-by-step explanation:
The solution of the two equations does not exist since they are parallel.
What is Slope?Slope of a line is the ratio of the change in y coordinates to the change in x coordinates of two points.
Equation of a line in slope intercept form is y = mx + b, where m is the slope and b is y intercept.
Given linear equation of a line in slope intercept form as,
y = 1/2 x + 1
Here slope = 1/2 and y intercept = 1
y intercept is the y value of a point where it touches the y axis.
A second linear equation is to be found by using the values in the table.
Taking two points (2, 7) and (0, 6).
Slope = (6 - 7) / (0 - 2) = (-1) / (-2) = 1/2
Since the point (0, 6) is given, 6 is the y coordinate when the line touches the Y axis.
y intercept = 6
Equation of the second line is,
y = 1/2 x + 6
Since the slopes of two lines are equal, they are parallel.
There is no solution for two parallel lines.
Hence there is no solution for the linear equations given.
To learn more about Slope, click on the link :
https://brainly.com/question/19131126
#SPJ3
Find the domain of each function: g(x)= 1/x−9
Answer:
x ∈ R, x ≠ 9
Step-by-step explanation:
Given
f(x) = [tex]\frac{1}{x-9}[/tex]
The denominator of f(x) cannot be zero as this would make f(x) undefined.
To find the value that x cannot be, equate the denominator to zero and solve for x
x - 9 = 0 ⇒ x = 9 ← excluded value
Thus the domain is x ∈ R, x ≠ 9
URGENT!!!!!!
Identify the sequence graphed below and the average rate of change from n = 0 to n = 3 . (2, 10) (3, 5) (4, 2.5) (5, 1.25)
A) a_n=8(1/2)^(n-2); average rate of change is -3
B) a_n=10(1/2)^(n-2); average rate of change is -(35/3)
C) a_n=8(1/2); average rate of change is 3
D) a_n=10(1/2)^(n-2); average rate of change is 35/3
Answer: Choice B
a_n = 10(1/2)^(n-2) is the nth term
average rate of change = -35/3
=======================================================
Explanation:
Each time x increases by 1, y is cut in half. For instance, going from (2,10) to (3,5) shows this.
If we want to go in reverse, decreasing x by 1 will double the y value. So (1,20) is another point and (0,40) is another. We'll be using (0,40) and (3,5) because we want the average rate of change from x = 0 to x = 3. I'm using x in place of n here.
Use the slope formula to find the slope of the line through (0,40) and (3,5)
m = (y2-y1)/(x2-x1)
m = (5-40)/(3-0)
m = -35/3
The negative slope means the line goes downhill as you read it from left to right. The average rate of change from n = 0 to n = 3 is -35/3
The nth term of this geometric sequence is 20(1/2)^(n-1) since 20 is the first term (corresponds to n = 1) and 1/2 is the common ratio. Your teacher has done a bit of algebraic manipulation to change the n-1 into n-2. This means the 20 has to change to 10 to counterbalance.
In other words, 20(1/2)^(n-1) is equivalent to 10(1/2)^(n-2) when n starts at n = 1.
Which transformations can be used to carry ABCD onto itself? The point of rotation is (3, 2). Check all that apply. A. Reflection across the line y = 2 B. Rotation of 180 C. Rotation of 90 D. Translation two units up
Answer: rotate 180 degrees and reflection across the line y=2
Step-by-step explan
Answer:
Step-by-step explanation:
You are testing the claim that the mean GPA of night students is greater than the mean GPA of day students. You sample 30 night students, and the sample mean GPA is 2.36 with a standard deviation of 0.96 You sample 60 day students, and the sample mean GPA is 2.19 with a standard deviation of 0.66 Calculate the test statistic, rounded to 2 decimal places
Answer:
Z = 0.87
Explanation:
Given the following data;
Sample 1:
n1 = 30
Mean, X = 2.36
Standard deviation, Ox = 0.96
Sample 2:
n2 = 60
Mean, Y = 2.19
Standard deviation, Oy = 0.66
The formula for test statistics for two population is;
[tex]Z = \frac{X-Y}{\sqrt{(\frac{Ox^2} {n_1} } +\frac{Oy^2}{n_2} )}}[/tex]
Substituting the values, we have;
[tex]Z = \frac{2.36-2.19}{\sqrt{(\frac{0.96^2} {30} +\frac{0.66^2}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(\frac{0.9216} {30} +\frac{0.4356}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(0.03072 +0.00726)}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{0.03798}}[/tex]
[tex]Z = \frac{0.17}{0.19488}[/tex]
Z = 0.8723
The test statistics to 2 d.p is 0.87
Therefore, Z = 0.87
Find the value of this expression if x=3 x^2 + 3/x-1
Answer: 9
Step-by-step explanation:
[tex]3^2 + \frac{3}{3}-1\\\\=9+1-1\\\\=9[/tex]
What is the domain of the function f(x) = x + 1/ x^2 - 6 + 8?
Answer:
The domain is all values but x=4 and x=2
Step-by-step explanation:
f(x) = (x+1) / ( x^2-6x+8)
Factor the function
f(x) = (x+1) / ( (x-4) ( x-2))
The domain of the function is all values of x except where the function does not exist
This is where the denominator goes to zero
(x-4) ( x-2) =0
Using the zero product property
x-4 =0 x-2 =0
x=4 x=2
The domain is all values but x=4 and x=2
Answer:
Hey there!
This, is the graph of your function:
Thus the domain, or all the possible x values would be all real numbers except 2 and 4, because the lines will only reach 2 and 4 when y is infinity.
Hope this helps :)
please help!!!!! idk how to do this
Answer:
30 seconds.
Step-by-step explanation:
So, we have the equation:
[tex]h(t)=-16t^2+h[/tex]
Where t is the time in seconds and h is the initial height.
A barometer falls from a weather balloon at a height of 14,400 feet. In other words, the initial height is 14,400. Substitute for h:
[tex]h(t)=-16t^2+14400[/tex]
We need to find when the barometer hits the ground. Ground level is 0 feet. Therefore, we can substitute h(t) for 0 and solve for the equation (solve for t) in order to find how long (in seconds) it took for the barometer to fall:
[tex]0=-16t^2+14400\\-14400=-16t^2\\900=t^2\\t=\pm\sqrt{900} \\\text{Time cannot be negative.}\\t=\sqrt{900}\\ t=30 \text{ seconds}[/tex]
Therefore, it took 30 seconds for the barometer to hit the ground when it fell at a height of 14,400 feet.
Edit: Spelling.
It takes 4 people 2 days to paint a wall. How long would it take if we got 8 people to do it?
Answer:
if it takes 4 people for 2 days
4+4= 8
so it would only take 8 people for 1 day
Answer:
1 day
Step-by-step explanation:
4 people = 2 days
→ Work out how long 1 person takes
4 people = 2 days
( ÷ 4 ) ( × 4 )
1 person = 8 days
→ Work out how long 8 people can do it
1 person = 8 days
( × 8 ) ( ÷ 8 )
8 people = 1 day
PLEASE HELP!! A car manufacturer does performance tests on its cars. During one test, a car starts from rest, and accelerates at a constant rate for 20 seconds. another car starts from rest three seconds later, and accelerates at a faster constant rate. The equation that models the distance (d) in metres the first cars equation is d=1.16t^2, where t is time, in seconds, after the car starts. The equation for the second car is: d=1.74(t-3)^2. a) in context, what is a suitable domain for the graph of the system? b) at what time will both cars have driven the same distance? c) how far will they have driven at this time?
Answer:
0 ≤ t ≤ 2516.348 seconds310.0 metersStep-by-step explanation:
a) Since these are production vehicles, we don't expect their top speed to be more than about 70 m/s, so the distance functions probably lose their validity after t = 25. Of course, t < 0 has no meaning in this case, so the suitable domain is about ...
0 ≤ t ≤ 25
Note that the domain for the second car would be 3 ≤ t ≤ 25.
__
b) The graph of this system shows the cars will both have driven the same distance after 16.348 seconds.
__
c) At that time, the cars will have driven 310.0 meters.
_____
Non-graphical solution
If you like, you can solve the equation for t:
d1 = d2
1.16t^2 = 1.74(t -3)^2
0 = 0.58t^2 -10.44t +15.66
t = (10.44 +√(10.44^2 -4(0.58)(15.66)))/(2(0.58)) = (10.44+8.524)/1.16
t = 16.348 . . . . time in seconds the cars are at the same distance
That distance is found using either equation for distance:
1.16t^2 = 1.16(16.348^2) = 310.036 . . . meters
Which table represents a function?
Answer:
Table 4 represents a function.
Step-by-step explanation:
Functions require that each x-value has a unique y-value. In the other tables you see a value repeated in the x column, with a different value in the y column.
how many 4-digit numbers can be formed using only the digits 9, 8 and 7? :p
Answer: 81
Step-by-step explanation:
First digit and Second digit and Third digit and Fourth digit
3 choices x 3 choices x 3 choices x 3 choices = 81
9/10 of the weight of a loaf of bread comes from the flour used in its baking. 2/9 of the weight is the protein what fraction of the weight is protein?
Answer:
1/5
Step-by-step explanation:
2/9 * 9/10 = 2/10 = 1/5