Answer: Translational Kinetic Energy
Rotational Kinetic Energy
Explanation:
An object has translational kinetic energy when it is undergoing through a linear displacement.
Rotational energy is kinetic energy due to the rotation of an object .
Here the wheel of bicycle undergoes both translational and rotational kinetic energy has it moves with linear displacement with rotation in it.
Hence, the tires have been two kinds of energy : translational and rotational kinetic energy
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Which has more mass electron or ion?
The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?
Answer:
F= 175.5N
Explanation:
Given:
Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance
torque of 38N⋅m
angle of 120∘
Torque(τ): 38Nm
position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m
Angle: 120°
To find the Force, the torque equation will be required which is expressed below
τ = Frsinθ
We need to solve for F, if we rearrange the equation, we have the expression below
F= τ/rsinθ
Note: the torque is maximum when the angle is 90 degrees
But θ= 180-120=60
F= 38/0.25( sin(60) )
F= 175.5N
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m
An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron
Answer:
acting force is the answer
The direction of the magnetic force on the moving electron is upward.
The direction of the magnetic force on the electron can be determined by applying right hand rule.
This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.
Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.
Learn more here:https://brainly.com/question/14434299
A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed.
Answer:
4.9x10^-6T
Explanation:
See attached file
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe
Answer:
0.0127m
Explanation:
Using
Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.
Answer:
The 1/2 inch barrel will burst at the same height of 20 ft
Explanation:
The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.
From the equation of fluid pressure,
P = ρgh
where
P is the pressure at the bottom of the fluid due to its height
ρ is the density of the fluid in question
h is the height to which the water stand.
You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.
We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.
That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.
NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.
What is the distance in m between lines on a diffraction grating that produces a second-order maximum for 775-nm red light at an angle of 62.5°?
Answer:
The distance is [tex]d = 1.747 *10^{-6} \ m[/tex]
Explanation:
From the question we are told that
The order of maximum diffraction is m = 2
The wavelength is [tex]\lambda = 775 nm = 775 * 10^{-9} \ m[/tex]
The angle is [tex]\theta = 62.5^o[/tex]
Generally the condition for constructive interference for diffraction grating is mathematically represented as
[tex]dsin \theta = m * \lambda[/tex]
where d is the distance between the lines on a diffraction grating
So
[tex]d = \frac{m * \lambda }{sin (\theta )}[/tex]
substituting values
[tex]d = \frac{2 * 775 *1^{-9} }{sin ( 62.5 )}[/tex]
[tex]d = 1.747 *10^{-6} \ m[/tex]
What are the approximate dimensions of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 275 km above the Earth
Answer:
s_400 = 16.5 m , s_700 = 29.4 m
Explanation:
The limit of the human eye's solution is determined by the diffraction limit that is given by the expression
θ = 1.22 λ / D
where you lick the wavelength and D the mediator of the circular aperture.
In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.
by introducing these values into the formula
λ = 400 nm θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad
λ = 700 nm θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad
Now we can use the definition radians
θ= s / R
where s is the supported arc and R is the radius. Let's find the sarcos for each case
λ = 400 nm s_400 = θ R
S_400 = 6 10⁻⁵ 275 10³
s_400 = 16.5 m
λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³
s_700 = 29.4 m
Two cars are moving towards each other and sound emitted by first car with real frequency of 3000 hertz is detected by a person in second with apparent frequency of 3400 Hertz what was the speed of cars
Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-[tex]v_{s}[/tex])
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
A solenoid 26.0 cm long and with a cross-sectional area of 0.580 cm^2 contains 490 turns of wire and carries a current of 90.0 A.
Calculate:
(a) the magnetic field in the solenoid;
(b) the energy density in the magnetic field if the solenoid is filled with air;
(c) the total energy contained in the coil’s magnetic field (assume the field is uniform);
(d) the inductance of the solenoid.
Answer:
A.21.3T
B.1.8x 10^6J/m^3
C.0.27x10^2J
D.6.6x10^-3H
Explanation:
Pls see attached file
A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is
Answer:
0.0081T
Explanation:
The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e
B ∝ I [tex]\frac{N}{L}[/tex]
B = μ₀ I [tex]\frac{N}{L}[/tex] ----------------(i)
Where;
μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²
Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by
L = 2π r
L = 2π (0.042)
L = 0.084π
The number of turns N = 1000
The current in the toroid = 1.7A
Substitute these values into equation (i) to get the magnetic field as follows;
B = 4π x 10⁻⁷ x 1.7 x [tex]\frac{1000}{0.084\pi }[/tex] [cancel out the πs and solve]
B = 0.0081T
The magnetic field along the central radius is 0.0081T
soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.
Answer:
Since their wings and body develop the drag. When there is warm air then they expand their wings. Since,soaring birds and glider pilots have no engine, they always maintain their high speed to lift their weight in air for hours without expending power by convection
Explanation:
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium:__________.
1. the electric fields at the surfaces of the two spheres are equal.
2. the amount of charge on each sphere is q/2.
3. both spheres are at the same potential. the potentials are in the ratio V2/V1 = q2/q1.
4. the potentials are in the ratio V2/V1 = r2/r1 .
Answer:
Option 3 = both spheres are at the same potential.
Explanation:
So, let us complete or fill the missing gap in the question above;
" A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium BOTH SPHERES ARE AT THE SAME POTENTIAL"
The reason both spheres are at the same potential after the charges on the spheres are in equilibrium is given below:
=> So, if we take a look at the Question again, the kind of connection described in the question above (that is a charged sphere, say X is connected another charged sphere, say Y by a conducting wire) will eventually cause the movement of charges(which initially are not of the same potential) from X to Y and from Y to X and this will continue until both spheres are at the same potential.
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
. If you live in a region that has a particular TV station, you can sometimes pick up some of its audio portion on your FM radio receiver. Explain how this is possible. Does it imply that TV audio is broadcast as FM
Answer:
Please see below as the answer is self-explanatory.
Explanation:
The low band of the VHF TV Spectrum, spans channels 2-6, from 54 to 88 Mhz.
In the analog TV, in the Americas, the total bandwidth of any channel is 6 Mhz, with the visual carrier modulated in VSS (Vestigial Side Band) at 1.25 Mhz from the lowest frequency of the channel.
The aural carrier is located at 4.5 Mhz from the visual carrier, and is FM modulated.
For Channel 6, which spans between 82 and 88 Mhz, the visual carrier is at 83.25 Mhz, so the aural carrier is at 87.75 Mhz, which falls within the FM Band, so it is possible to listen the audio part of this channel in a FM radio receiver, even at a lower volume, due to the FM radio has a greater deviation than TV aural carrier.
The reason why it is possible for TV station to sometimes pick up some of the audio portion on your FM radio receiver is because; TV waves can sometimes deviate into the FM radio frequency range.
Let us start with explaining the waves of TV and radio.
The frequency range utilized by TV stations is either the range 54 MHz to 88 MHz or 174 MHz to 222 MHz. In contrast, the frequency range utilized by FM Radio band is between 88 MHz and 174 MHz.
Now, in some cases, it is possible that the TV signal may deviate into the range of the FM Radio and as such in that case, the TV signal will pick the audio portion of an FM Radio. These TV waves are very high frequency waves.
Finally, it does not imply that the TV wave is broadcasting as an FM because it only deviated a bit from the TV range and not like that is where it is made to operate.
Read more about TV waves at; https://brainly.com/question/9684913
Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?
Answer:
The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
Explanation:
We are told that the particle moves back and forth along a straight line with velocity v(t).
Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.
Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct?
a) The capacitor charges to its maximum value in one time constant and the current is zero at that time.
b) The potential difference across the resistor and the potential difference across the capacitor are always equal.
c) The potential difference across the resistor is always greater than the potential difference across the capacitor.
d) The potential difference across the capacitor is always greater than the potential difference across the resistor
e) Once the capacitor is essentially fully charged, There is no appreciable current in the circuit.
Answer:
e)
Explanation:
In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.
At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.
Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the strength of the electric field between the plates
Answer:
The electric field strength between the plates can be increased by decreasing the length of each side of the plates.
Explanation:
The electric field strength is given by;
[tex]E = \frac{V}{d}[/tex]
where;
V is the electric potential of the two opposite charges
d is the distance between the two parallel plates
[tex]E =\frac{V}{d} = \frac{\sigma}{\epsilon _o} \\\\(\sigma = \frac{Q}{A} )\\\\E = \frac{Q}{A\epsilon_o} \\\\E = \frac{Q}{L^2\epsilon_o}[/tex]
Where;
ε₀ is permittivity of free space
L is the length of each side of the plates
From the equation above, the electric field strength can be increased by decreasing the length of each side of the plates.
Therefore, decreasing the length of each side of the plates, could be made to increase the strength of the electric field between the plates
A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time
Answer:
The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
Explanation:
The magnetic field at the center of the solenoid is given by;
B = μ(N/L)I
Where;
μ is permeability of free space
N is the number of turn
L is the length of the solenoid
I is the current in the solenoid
The rate of change of the field is given by;
[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]
The induced emf in the shorter coil is calculated as;
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
where;
N is the number of turns in the shorter coil
A is the area of the shorter coil
Area of the shorter coil = πr²
The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m
Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
E = 14 x 0.000491 x 0.02514
E = 1.728 x 10⁻⁴ V
Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]
Induced EMF:The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:
[tex]E=-\frac{\delta\phi}{\delta t}[/tex]
where E is the induced emf,
[tex]\phi[/tex] is the magnetic flux through the coil.
The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:
[tex]\phi = \frac{\mu_oNIA}{L}[/tex]
so;
[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]
where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.
[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]
The emf produced in the coil at the center of the solenoid which has 14 turns will be:
[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]
Learn more about induced emf:
https://brainly.com/question/16765199?referrer=searchResults
select the example that best describes a renewable resource.
A.after a shuttle launch, you can smell the jet fuel for hours.
B.solar panels generate electricity that keeps the satellites running.
C.tractor trailers are large trucks that run on diesel fuel.
D. we use our barbeque every night; it cooks with propane.
Answer:
B.solar panels generate electricity that keeps the satellites running.
Explanation:
Solar panels are a renewable resource because they take energy from the sun.
Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?
Answer:
x = 0.006 m
Explanation:
The potential at one point is given by
V = k ∑ [tex]q_{i} / r_{i}[/tex]
remember that the potential is to scale, let's apply to our case
V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)
in this case they indicate that the potential is zero
0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + 3 10⁻⁶ / x)
3 / x = + 2 / 10⁻² + 3 / 10⁻²
3 / x = 500
x = 3/500
x = 0.006 m
Estimate the volume of a human heart (in mL) using the following measurements/assumptions:_______.
1. Blood flow through the aorta is approximately 11.2 cm/s
2. The diameter of the aorta is approximately 3.0 cm
3. Assume the heart pumps its own volume with each beat
4. Assume a pulse rate of 67 beats per minute.
Answer:
Explanation:
radius of aorta = 1.5 cm
cross sectional area = π r²
= 3.14 x 1.5²
= 7.065 cm²
volume of blood flowing out per second out of heart
= a x v , a is cross sectional area , v is velocity of flow
= 7.065 x 11.2
= 79.128 cm³
heart beat per second = 67 / 60
= 1.116666
If V be the volume of heart
1.116666 V = 79.128
V = 70.86 cm³.
An electron initially at rest is accelerated over a distance of 0.210 m in 33.3 ns. Assuming its acceleration is constant, what voltage was used to accelerate it
Answer:
V = 451.47 volts
Explanation:
Given that,
Distance, d = 0.21 m
Initial speed, u = 0
Time, t = 33.3 ns
Let v is the final velocity. Using second equation of motion as :
[tex]d=ut+\dfrac{1}{2}at^2[/tex]
a is acceleration, [tex]a=\dfrac{v-u}{t}[/tex] and u = 0
So,
[tex]d=\dfrac{1}{2}(v-u)t[/tex]
[tex]v=\dfrac{2d}{t}\\\\v=\dfrac{2\times 0.21}{33.3\times 10^{-9}}\\\\v=1.26\times 10^7\ m/s[/tex]
Now applying the conservation of energy i.e.
[tex]\dfrac{1}{2}mv^2=qV[/tex]
V is voltage
[tex]V=\dfrac{mv^2}{2q}\\\\V=\dfrac{9.1\times 10^{-31}\times (1.26\times 10^7)^2}{2\times 1.6\times 10^{-19}}\\\\V=451.47\ V[/tex]
So, the voltage is 451.47 V.
A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2
Answer:
650W/m²Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2