Answer:
573 movies
Step-by-step explanation:
Here, we have 5 out of 6 movies having that cost
Therefore the rate we will be working with is 5/6
Now there are 687 new releases, the value that cost the given price range will be; 5/6 * 687 = 572.5 which is approximately 573
If you have 2345 and you multiple it by 2 divide it by 6 and add on 22299 what will the answer be?
Answer:
69242/3 or 23080.666667
Step-by-step explanation:
2345 is multiplied by 2. Then the result is divided by 6. Then 22299 is added to the final result.
2345 × 2
= 4690
4690/6
= 2345/3
2345/3 + 22299
= 69242/3
If a cone is 5 meters tall and has a radius of 3 meters, What is its volume? 15π m3 60π m3 45π m3 30π m3
Answer:
V = 15 pi m^3
Step-by-step explanation:
The volume of a cone is
V = 1/3 pi r^2 h
The radius is 3 and the height is 5
V = 1/3 pi ( 3)^2 *5
V = 15 pi m^3
Answer:
15 pi m3
Step-by-step explanation:
What is the sum of 3x to the second power +2x-1
Answer:
[tex]3x^2+2x+1[/tex]
Step-by-step explanation:
Sum means to add and second power means that the exponent is "2". So, the expression is:
=> [tex]3x^2+2x+1[/tex]
It cannot be simplified further.
ABCD is a square. Square A B C D is shown. A diagonal is drawn from point A to point C. The measure of angle B A C is question mark. What is the measure of angle BAC? 30° 45° 60° 90
Answer:
45°
Step-by-step explanation:
Since the diagonal cuts the square into two triangles, the angles b, a, and , c all add up to 180°. Because the shape is a square we know that one of the angles is right/90° meaning the two remaining angles are 45°. Angles a, and c had the diagonal drawn through so those two angles are each 45° and b is 90°, and since they are asking for bac we know that they want the middle angle, i.e angle A.
Since ABCD is a square, and AC is the diagonal of the square, therefore, the measure of angle BAC would be: B. 45°.
What is a Square?A square is a quadrilateral that has four interior angles of 90 degrees each, and also has four equal sides.The diagonal of a square bisects each vertex of the square into equal halves.Thus, since ABCD is a square, and AC is the diagonal of the square, therefore, the measure of angle BAC would be: B. 45°.
Learn more about a square on:
https://brainly.com/question/24579466
Please help me it will mean a lot
Answer:
A) a=25
B) b=14
Step-by-step explanation:
A) a/5+3=8
First you need to subtract 3 from both sides.
(a/5+3)-3=(8)-3
Then simplify
a/5=5
Multiply both sides by 5
(a/5)*5=(5)*5
Then simplify
a= 25
B )3b/7-1=5
First you need to add 1 to both sides
(3b/7-1)+1=(5)+1
Simplify
3b/7=6
Multiply both sides by 7
(3b/7)*7=(6)*7
Simplify
3b=42
Divide both sides by 3
(3b)/3=(42/3)/3
Simplify
b= 14
(Brainliest???) :P
(pic inside) What is the approximate value of the function at x = 1?
Answer: -2
Step-by-step explanation:
When x = 1, y = -2.
Hope it helps <3
Consider the function represented by the table.
What is f(0)?
04
O 5
06
O 7
Answer:
6
Step-by-step explanation:
From the table given defining a function, the values of "x" on the table represents the input of the function, which gives us an output, f(x), which can be labelled as "y" in some instances.
Thus, the value of f(0), is simply the output value we would get, given an input value of "0".
So therefore, f(0) = 6. That is, at x = 0, f(x) = 6.
Answer: 6
Step-by-step explanation:
Determine the inequality represented by the following diagram
Help plz down below with the question
Answer:
The SAS Postulate
Step-by-step explanation:
SAS means Side-Angle-Side; that is, two sides are equal and an angle between those sides are equal. We're given two sides: TK and TL, and we're given that 1 is congruent to 2. Knowing the latter, we can conclude that the angle between them (let's call it 1.5 for our purposes) will be congruent to itself. Since 1.5 is the angle right in the middle of two congruent sides, our answer is SAS.
The mean one-way commute to work in Chowchilla is 7 minutes. The standard deviation is 2.4 minutes, and the population is normally distributed. What is the probability of randomly selecting one commute time and finding that: a). P (x < 2 mins) _____________________________ b). P (2 < x < 11 mins) _____________________________ c). P (x < 11 mins) ________________________________ d). P (2 < x < 5 mins) _______________________________ e). P (x > 5 mins)
Answer:
The answer is below
Step-by-step explanation:
Given that:
The mean (μ) one-way commute to work in Chowchilla is 7 minutes. The standard deviation (σ) is 2.4 minutes.
The z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
a) For x < 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
From normal distribution table, P(x < 2) = P(z < -2.08) = 0.0188 = 1.88%
b) For x = 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
For x = 11:
[tex]z=\frac{x-\mu}{\sigma}=\frac{11-7}{2.4} =1.67[/tex]
From normal distribution table, P(2 < x < 11) = P(-2.08 < z < 1.67 ) = P(z < 1.67) - P(z < -2.08) = 0.9525 - 0.0188 = 0.9337
c) For x = 11:
[tex]z=\frac{x-\mu}{\sigma}=\frac{11-7}{2.4} =1.67[/tex]
From normal distribution table, P(x < 11) = P(z < 1.67) = 0.9525
d) For x = 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
For x = 5:
[tex]z=\frac{x-\mu}{\sigma}=\frac{5-7}{2.4} =-0.83[/tex]
From normal distribution table, P(2 < x < 5) = P(-2.08 < z < -0.83 ) = P(z < -0.83) - P(z < -2.08) = 0.2033- 0.0188 = 0.1845
e) For x = 5:
[tex]z=\frac{x-\mu}{\sigma}=\frac{5-7}{2.4} =-0.83[/tex]
From normal distribution table, P(x < 5) = P(z < -0.83) = 0.2033
find x value A. 8.96 B. 10.83 C. 5.10 D. 6.09
Answer:
6.09
Step-by-step explanation:
in ADB
[tex]a ^{2} + b^{2} = c ^{2} [/tex]
to get hypotenuse=8.96
this is height of ABC so use tan
[tex] tan(55.8)= 8.96 \x[/tex]
x=6.09
Answer:
D
Step-by-step explanation:
To find x, we first to to find the line between A&B.
Use the pythagoram theorem to do this A^2+B^2=C^2
4.9^2+7.5^2=C^2
80.26=C^2
square root each side
Side AtoB=8.958
We now know the side length of the opposite and adjacent for the angle C. So according to SohCahToa we need to use Tangent.
So Tan(55.8)=(8.958/x)
We you solve for x, the answer is 6.088
Question 4. In the graph, lines f and g intersect at P(6,6). What is the area, in square units, of the shaded region? * E. 15 F. 21 G. 27 H. 30
Answer:
E
Step-by-step explanation:
i guess the dotted lines outline a square
so get the area of the square which is 6×6=36
then don't focus on the shaded part but unshaded you'll see two right angled triangles
[tex]a = 1 \div2b \times h[/tex]
you will get a total for both as 21
then get the area of the square 36-21=15
so the area becomes 15
values of r and h, what do you notice about the proportions of the cylinders?
Answer:
Below
Step-by-step explanation:
r us the radius of the base and h is the heigth of the cylinder.
The volume of a cylinder is given by the formula:
V = Pi*r^2*h
V/Pi*r^2 = h
We can write a function that relates h and r
Answer:
One of the cylinders is short and wide, while the other is tall and thin.
Step-by-step explanation:
sample answer given on edmentum
WILL MARK BRAINLIEST!!! PLZ HELP!!!
Answer:
x = -5.
Step-by-step explanation:
The solutions of the equation is when the two functions intersect. That is at (-5, 5.5), so where x = -5.
Hope this helps!
Answer:
x = -5
Step-by-step explanation:
f(x) = g(x) has more than one solution, because they intersect at two points.
The question asks for one solution of f(x) = g(x).
One point where they intersect is at (-5, 5.5), as shown in the graph.
(x , y)
x = -5, y = 5.5
Draw a diagram of this statement,
Fifteen thousand dollars was raised by the booster club. This was two thirds of
the goal.
Use your diagram to determine the percent by which the booster club fell short of their goal
Answer:
The percentage by which the booster club fell short is 33% as shown on the chart
Step-by-step explanation:
To represent the given data pictorially, a pie chart is suitable
The circumference of the pie chart will represent the amount to be raised by the booster club and a sector of the circle which is two-thirds of the circumference represents the amount raised
Given that the amount raised = 2/3×Goal = $15,000, we have;
We represent the amount raised as a sector of the circle as follows;
Sector angle = 2/3×360° = 240°
Total sector of goal amount = Entire circle = 360°
Amount club fell short = 360° - 240° = 120°
The goal amount = 3/2 × $15,000
Percentage by which the club fell short = 120/360×100 = 1/3×100 = 33.33%
Which shapes can be made from a planar cross section of a triangular pyramid? More than one can be correct: trapezoid, pentagon, isosceles triangle, rectangle, hexagon, scalene triangle, square, decagon, or equilateral triangle
Answer:
Triangle in isosceles, scalene or equilateral forms and
quadrilateral in trapezoid, rectangle or square forms
Step-by-step explanation:
Refer to pictures attached
Shapes can be formed are:
Trapezoid,when perpendicular to base
Rectangle or square,when angle cross section to base
Isosceles triangle,when base is isosceles triangle and parallel cross section to base,
or angle cross section
Scalene triangle,when base is scalene triangle and parallel cross section to base,
or angle cross section
Equilateral triangle,when base is equilateral triangle and parallel cross section to base,
or angle cross section
im stuck on this question helm me out I will mark you as brainliest
Answer: it is =4176000000000000
Step-by-step explanation:
(2.9)(100000)(7.2)(10^2)
5(10^−8)
=
(290000)(7.2)(10^2)
5(10^−8)
=
2088000(10^2)
5(10^−8)
=
(2088000)(100)
5(10^−8)
=
208800000
5(10^−8)
=
208800000
5(1/100000000)=
208800000/1
20000000
=4176000000000000
hope i helped
-lvr
What does the denominator of the fraction \dfrac23 3 2 start fraction, 2, divided by, 3, end fraction mean?
Answer: It represents that 2 will be divided into 3 equal parts.
Step-by-step explanation:
Numerator is the top number in a fraction. It represents the total item it has to divide.Denominator is the bottom number in a fraction. it represents the number of equal parts the item is divided into.The given fraction : [tex]\dfrac{2}{3}[/tex]
here, Numerator = 2
Denominator = 3
It represents that 2 will be divided into 3 equal parts.
The graph of h(x) is a translation of f (x) = RootIndex 3 StartRoot x EndRoot. On a coordinate plane, a cube root function goes through (negative 3, negative 1), has an inflection point at (negative 2, 0), and goes through (negative 1, 1). Which equation represents h(x)?
Answer:
The correct option is;
[tex]h(x) = \sqrt[3]{x + 2}[/tex]
Step-by-step explanation:
Given that h(x) is a translation of f(x) = ∛x
From the points on the graph, given that the function goes through (-1, 1) and (-3, -1) we have;
When x = -1, h(x) = 1
When x = -3, h(x) = -1
h''(x) = (-2, 0)
Which gives
d²(∛(x + a))/dx²= [tex]-\left ( \dfrac{2}{9} \cdot \left (x + a \right )^{\dfrac{-5}{3}}\right )[/tex], have coordinates (-2, 0)
When h(x) = 0, x = -2 which gives;
[tex]-\left ( \dfrac{2}{9} \cdot \left (-2 + a \right )^{\dfrac{-5}{3}}\right ) = 0[/tex]
Therefore, a = (0/(-2/9))^(-3/5) + 2
a = 2
The translation is h(x) = [tex]\sqrt[3]{x + 2}[/tex]
We check, that when, x = -1, y = 1 which gives;
h(x) = [tex]\sqrt[3]{-1 + 2} = \sqrt[3]{1} = 1[/tex] which satisfies the condition that h(x) passes through the point (-1, 1)
For the point (-3, -1), we have;
h(x) = [tex]\sqrt[3]{-3 + 2} = \sqrt[3]{-1} = -1[/tex]
Therefore, the equation, h(x) = [tex]\sqrt[3]{x + 2}[/tex] passes through the points (-1, 1) and (-3, -1) and has an inflection point at (-2, 0).
Answer: B
Step-by-step explanation:
Steve paid $3.29 for a pizza. He now has $35.86. With how much money did he start?
Answer:
$39.15
Step-by-step explanation:
We can find that Steve started with $39.15, by adding the price he has now and the price he paid for the pizza.
35.86+3.29=$39.15
Answer:
$39.15
Step-by-step explanation:
$35.86 + $3.29 = $39.15
hOpEfUlLy ThIs HeLpEd!! :33
A total of $10,000 is invested in two mutual funds. The first account yields 5% and the second account yields 6%. How much was invested in each account if the total interest earned in a year is $575?
Answer:
$2,500 was invested in the first account while $7,500 was invested in the second account
Step-by-step explanation:
Here in this question, we want to find the amount which was invested in each of the accounts, given their individual interest rates and the total amount that was accorded as interest from the two investments
Now, since we do not know the amount invested , we shall be representing them with variables.
Let the amount invested in the first account be $x and the amount invested in the second account be $y
Since the total amount invested is $10,000, this means that the summation of both gives $10,000
Mathematically;
x + y = 10,000 ••••••(i)
now for the $x, we have an interest rate of 5%
This mathematically translates to an interest value of 5/100 * x = 5x/100
For the $y, we have an interest rate of 6% and this mathematically translates to a value of 6/100 * y= 6y/100
The addition of both interests, gives 575
Thus mathematically;
5x/100 + 6y/100 = 575
Multiplying through by 100, we have
5x + 6y = 57500 •••••••••(ii)
From 1, we can have x = 10,000-y
let’s substitute this into equation ii
5(10,000-y) + 6y = 57500
50,000-5y + 6y = 57500
50,000 + y = 57500
y = 57500-50,000
y = 7,500
Recall;
x = 10,000-y
so we have;
x = 10,000-7500 = 2,500
Suppose a firm in a competitive market earned $1,000 in total revenue and had a marginal revenue of $10 for the last unit produced and sold. What is the average revenue per unit, and how many units were sold?
Answer:
$5 and 50 units
Step-by-step explanation:
write a compound inequality that the graph could represent
Answer:
second option
Step-by-step explanation:
An inverse variation includes the point (4,17). Which point would also belong in this inverse variation?
Answer:
(2, 34 )
Step-by-step explanation:
Since the points vary inversely then half the x, means double the y, thus
(2, 34) or (1, 68 ) would also belong in this inverse variation
find the value of x.
Answer:
A. 7
Step-by-step explanation:
The problem is poorly specified, so technically cannot be answered with a specific number.
If we assume the "horizontal" lines are all parallel, then the one marked 21-x has a length that is the average of the other two:
(17 +11)/2 = 21 -x
14 = 21 -x
x = 21 -14 = 7
The value of x is 7.
_____
The attachment shows what happens when the lines are not parallel. The range of the midline lengths is from 3 to 14 for the segment lengths shown.
1. In your own words please describe a Relations vs. Function
2. please describe the mathematical order of operation(photo attached)
Answer:
[tex]\boxed{\mathrm{view \: explanation}}[/tex]
Step-by-step explanation:
1. Relations are the set of y (output) and x (input) values that are related. A function is when each input has a relation with one output.
2. The mathematical formula is the formula of Pythagoras theorem. Where the length c (hypotenuse) is equal to the square root of the sum of the legs squared.
A life insurance company sells a $100,000 one year term life insurance policy to a 30-year old male for $475. The probability that the male survives the year is .999172. Find the expected value for the insurance company.
Answer:
The expected value for the insurance company is $392.20.
Step-by-step explanation:
The expected value of a random variable, X is:
[tex]E(X)=x\cdot P(X)[/tex]
It is provided that a life insurance company sells a $100,000 one year term life insurance policy to a 30-year old male for $475.
The probability that the male survives the year is, P(S) = 0.999172.
Then the probability that the male does not survives the year is:
P (S') = 1 - P (S)
= 1 - 0.999172
P (S') = 0.000828
The amount the company owes the male if he survives is, S = $475.
The amount the company owes the male if he does not survives is,
S' = $475 - $100,000 = -$99525.
Compute the expected value for the insurance company as follows:
[tex]E(\text{Insurance Company})=S\cdot P(S)+S'\cdot P(S')[/tex]
[tex]=(475\times 0.999172)+(-99525\times 0.000828)\\=474.6067-82.4067\\=392.20[/tex]
Thus, the expected value for the insurance company is $392.20.
Grace starts with 100 milligrams of a radioactive substance. The amount of the substance decreases by 14 each week for a number of weeks, w. She writes the expression 100(14)w to find the amount of radioactive substance remaining after w weeks. Ryan starts with 1 milligram of a radioactive substance. The amount of the substance decreases by 40% each week for a number of weeks, w. He writes the expression (1 – 0.4)w to find the amount of radioactive substance remaining after w weeks. Use the drop-down menus to explain what each part of Grace’s and Ryan’s expressions mean.
Answer:
100= Initial Amount
1/4= decay factor for each week
w= number of weeks
1/4w= decay factor after w weeks
1 - 0.4= decay factor for each week
w= number of weeks
0.4= percent decrease
Step-by-step explanation:
first answer gets best marks
Answer:
A, B, E
Step-by-step explanation:
I attached everything that I thought it would help you.
Hope this helps ;) ❤❤❤
Which of the following is the function of f(x)?
Answer:
f(x) = 8(x-3)
Step-by-step explanation:
F^ -1 ( x) = x/8 +3
Let y = x/8+3
To find the inverse
Exchange x and y
x = y/8+3
Solve for y
x-3 = y/8+3-3
x-3 = y/8
Multiply each side by 8
8(x-3) = y/8 * 8
8(x-3) = y
The inverse of the inverse is the function so
f(x) = 8(x-3)
Answer:
[tex]\boxed{f(x) = 8(x-3)}[/tex]
Step-by-step explanation:
[tex]y=\frac{x}{8} +3[/tex]
Switch variables.
[tex]x=\frac{y}{8} +3[/tex]
Make y as subject.
Subtract 3 from both sides.
[tex]x-3=\frac{y}{8}[/tex]
Multiply both sides by 8.
[tex]8(x-3)=y[/tex]