In an acid environment
A) metals more active than
hydrogen will be corroded, and those more noble will not be corroded.
B) metals less active than
hydrogen will be corroded, and those less noble will not be corroded.

Answers

Answer 1

The acid environment, the behavior of metals can be predicted based on their activity series. The activity series ranks metals in order of their tendency to undergo oxidation reactions, with the most reactive metals at the top and the least reactive metals at the bottom.



The Based on this activity series, it can be determined that in an acid environment, metals more active than hydrogen will be corroded, while those less active will not be corroded. This is because in an acidic solution, the hydrogen ions present are highly reactive and will react with metals that are more reactive than them to form metal ions and hydrogen gas. This process is known as corrosion. On the other hand, metals less active than hydrogen will not be corroded in an acid environment because they are less reactive than the hydrogen ions present. These metals will instead remain in their metallic form and will not undergo any significant reaction. It is important to note that the corrosive behavior of metals in an acid environment can be influenced by other factors such as concentration of the acid and temperature. It is also possible for some metals to have a protective oxide layer that prevents corrosion even in an acidic environment.

learn more about acid here.

https://brainly.com/question/14072179

#SPJ11


Related Questions

carbon diffuses in iron via an interstitial mechanism--for fcc iron from one octahedral site to an adjacent one. in section impurities in solids, we note that two general sets of point coordinates for this site are 0 1/2 1 and 1/2 1/2 1/2. select the family of crystallographic directions in which thich this diffusion of carrbon in fcc iron takes place

Answers

Carbon diffusion in FCC iron occurs through interstitial diffusion along the <111> crystallographic directions. This is a significant process in steel production that affects material strength and other mechanical properties. Knowledge of crystallographic directions is crucial in controlling material properties.

In FCC iron, carbon diffuses via an interstitial mechanism from one octahedral site to an adjacent one. The octahedral sites are located at the center of the face of the FCC unit cell, and there are two general sets of point coordinates for this site: (0, 1/2, 1) and (1/2, 1/2, 1/2).To determine the family of crystallographic directions in which carbon diffuses in FCC iron, we need to consider the symmetry of the crystal structure. FCC iron has cubic symmetry, and it has four three-fold symmetry axes that pass through the centers of the faces of the unit cell. The <111> family of crystallographic directions coincides with these symmetry axes, and they are the most closely packed directions in the FCC structure.Therefore, carbon diffusion in FCC iron takes place along the <111> family of crystallographic directions. This diffusion mechanism is known as interstitial diffusion because the carbon atoms occupy interstitial sites in the iron lattice. The diffusion of carbon in FCC iron is an important process in the production of steel, as it influences the material's strength and other mechanical properties. Understanding the crystallographic directions in which diffusion occurs is essential for controlling the properties of the material.

For more such question on crystallography

https://brainly.com/question/28301570

#SPJ11

Question An akene 't undergees ozonelysis and gives 'y' and 'y' of molecular formula ₂₂ 0.`'y' and y functional isomers of each other an write the two-steps Chemical equation for the conversion of '`t` into 'y' and 'z' b. Write the strucoral formula of Y'E=' Why are they called functional isomer? ( what happens when hydrogen gas in the presence of nicked catalyst - is passed over 'X' ? 4 d. How can you prove chemically. The compound 'x' is unsaturated.​

Answers

Answer:

a. The given molecular formula of the akene is C22H40. When it undergoes ozonolysis, it gives two products with the same molecular formula C22H40, which are functional isomers of each other. These two isomers are 1-octene and 9-octene.

The two-step chemical equation for the conversion of the akene into 1-octene and 9-octene is as follows:

Step 1: Ozonolysis of the akene to form ozonides

C22H40 + 3O3 → C22H40O3 + 3O2

Step 2: Reduction of the ozonides to form 1-octene and 9-octene

C22H40O3 + 6H2O → 3C8H16 + 3C8H18O

b. The structural formula of the two isomers 1-octene and 9-octene are as follows:

1-octene: CH3(CH2)6CH=CH2

9-octene: CH3(CH2)4CH=CH(CH2)2CH3

They are called functional isomers because they have the same molecular formula but different functional groups. In this case, both isomers have an alkene functional group, but they differ in the position of the double bond.

c. When hydrogen gas in the presence of a nickel catalyst is passed over X, it undergoes hydrogenation to form a saturated compound Y. The chemical equation for the reaction is as follows:

X + H2 → Y

d. One way to prove that the compound X is unsaturated is by performing the bromine water test. Bromine water is a reddish-brown solution of bromine in water. When added to an unsaturated compound, it undergoes decolorization due to the addition of bromine across the double bond. If X is unsaturated, then it will decolorize bromine water, indicating the presence of a double bond.

what is algebra? please explain this to me.....

Answers

Answer:

Algebra is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables as if they were numbers and is therefore essential in all applications of mathematics.

What is algebra used for?

Algebra teaches you to follow a logical path to solve a problem. This, in turn, allows you to have a better understanding of how numbers function and work together in an equation. By having a better understanding of numbers, you'll be better able to do any type of math.

Hope this helps :)

Pls brainliest...

which of the following are produced in the ozonolysis of the following molecule? the skeletal structure of a molecule with a smiles string of ccccCH3CH2COOH (CH3)2CHCOOH (CH3)2CHCH2COOH CH3CH2CH2COOH CH3CH2CH2CH2COOH

Answers

Propanedioic acid ((CH₃)₂C(O)COOH), oxalic acid (HO₂C-C(O)OH), and formic acid (HCOOH) are among the carboxylic acids created after the ozonolysis of ccccCH₃CH₂COOH.

What is ozonolysis?

In an organic redox reaction known as ozonolysis, ozone is used to break unsaturated carbon-carbon bonds (double or triple bonds) in alkenes, alkynes, or azo compounds.

The molecule with the SMILES string ccccCH₃CH₂COOH can undergo ozonolysis to form a mixture of products. The ozonolysis reaction involves the cleavage of the carbon-carbon double bond by ozone (O₃) to form ozonide intermediates, which can then react further to form various products.

The ozonolysis of ccccCH₃CH₂COOH would result in the formation of several carboxylic acid products, including propanedioic acid ((CH₃)₂C(O)COOH), oxalic acid (HO₂C-C(O)OH), and formic acid (HCOOH). The exact ratio and amounts of these products depend on the specific conditions of the reaction, such as the concentration of ozone, temperature, and presence of any catalysts.

Therefore, the carboxylic acids produced in the ozonolysis of ccccCH₃CH₂COOH include propanedioic acid ((CH₃)₂C(O)COOH), oxalic acid (HO₂C-C(O)OH), and formic acid (HCOOH).

Learn more about ozonolysis on:

https://brainly.com/question/24113517

#SPJ11

The small repeating units used to synthesize polymers are called _______.

Answers

The small repeating units used to synthesize polymers are called monomers. These monomers are joined together through a chemical reaction known as polymerization, which results in the formation of long chains of polymers.

The properties of these polymers, such as their strength and flexibility, depend on the specific monomers used and the conditions under which the polymerization occurs. By varying the monomers used, scientists can create a wide range of polymers with different properties that are used in a variety of applications, from plastics and textiles to pharmaceuticals and medical devices.

In polymer synthesis, monomers are chemically bonded to form long chains called polymers. The process, called polymerization, involves the joining of many monomers together. Polymers can be natural, like DNA and cellulose, or synthetic, like plastics and rubber.

The properties of a polymer depend on the type of monomer(s) used and the structure of the polymer chains. Monomers can vary greatly in size and functionality, leading to a wide range of polymers with diverse characteristics and applications.

To know more about polymers visit:

https://brainly.com/question/17354715

#SPJ11

What is true of a molecule of gaseous hydrogen (H2)?

Answers

The true statement of a molecule of gaseous hydrogen is It has no net charge. Therefore the correct option is option A.

A covalently bound pair of hydrogen atoms make up a gaseous hydrogen molecule (H2), which is a substance. This indicates that in order to create a stable molecule, the two hydrogen atoms share an electron.

H2 is the lightest and most prevalent element in the universe and is a diatomic gas at room temperature and atmospheric pressure. It has no colour, no smell, and is non-toxic.

Highly flammable H2 gas can be used as fuel for a variety of devices, including fuel cells, IC engines, and rockets. Another way to create H2 gas is through the electrolysis of water, reforming of natural gas, or gasification of coal. Therefore the correct option is option A.

For such more question on molecule:

https://brainly.com/question/30375112

#SPJ11

The following question may be like this:

What is true of a molecule of gaseous hydrogen (H2)? Multiple choice question.

It has no net charge.It has a partial positive charge.It has one partial positive charge and one partial negative charge which are balanced.

Identify the part of the slow carbon cycle in which the total amount of carbon is most likely decreasing the most explain why this decrease the occurs

Answers

The slow carbon cycle involves processes that take place over geological timescales, including the transfer of carbon between the atmosphere, oceans, rocks, and soils. The total amount of carbon in each of these reservoirs can change over time due to various factors, such as natural and human-induced processes.

One part of the slow carbon cycle in which the total amount of carbon is most likely decreasing the most is the process of sedimentation of organic matter in ocean sediments. This occurs because the organic matter that sinks to the seafloor is buried and undergoes diagenesis, a process by which it is transformed into more stable forms of carbon, such as kerogen or graphite. The decrease in carbon occurs because the rate of sedimentation of organic matter is faster than the rate of carbon input from sources such as volcanoes, weathering of rocks, and human activities.

Learn more about the carbon cycle here.

https://brainly.com/question/30633292

#SPJ1

Which compound is a tertiary halogenoalkane?
A. (CH3CH2)2CHBr
B. CH3(CH2)3CH2Br
C. (CH3)2CHCH2CH2Br
D. CH3CH2C(CH3)2Br

Answers

The compound that is a tertiary halogenoalkane is D. CH3CH2C(CH3)2Br, since it has a tertiary carbon (bonded to three other carbon atoms).

A halogen atom (Br, Cl, I, or F) is joined to a carbon atom that is connected to three more carbon atoms to form a tertiary halogenoalkane. Option D creates a tertiary halogenoalkane by bonding the Br-attached carbon atom to three additional carbon atoms. The Br-attached carbon is connected to two other carbon atoms, making Option A a secondary halogenoalkane. Because the carbon atom with the Br attached is only connected to one other carbon atom, option B is a primary halogenoalkane. Because the Br-attached carbon is connected to two additional carbon atoms, option C also qualifies as a secondary halogenoalkane.

learn more about halogenoalkane here:

https://brainly.com/question/30477930

#SPJ11

Which substance(s) could be formed during the incomplete combustion of a hydrocarbon?
I. Carbon
II. Hydrogen
III. Carbon monoxide
A. I only
B. I and II only
C. I and III only
D. II and III only

Answers

The correct answer would be C) I and III only, as both carbon and carbon monoxide could be formed during the incomplete combustion of a hydrocarbon.

During incomplete combustion of a hydrocarbon, not all of the carbon and hydrogen atoms combine with oxygen to form carbon dioxide and water. This results in the formation of various other substances, such as carbon monoxide, soot, and other carbon-containing particles. Out of the given options, both carbon and carbon monoxide could be formed during incomplete combustion. Carbon is formed when there is insufficient oxygen to convert all of the carbon in the hydrocarbon into carbon dioxide. Carbon monoxide, on the other hand, is formed when there is not enough oxygen to complete the combustion of the hydrocarbon, but still enough to oxidize some of the carbon and hydrogen. Carbon monoxide is a toxic gas that can be harmful to human health and the environment. During the incomplete combustion of a hydrocarbon, the substances that could be formed are Carbon (I) and Carbon monoxide (III). Incomplete combustion occurs when there is insufficient oxygen supply, resulting in the production of these two substances, along with water. Carbon appears as soot or particulate matter, while Carbon monoxide is a toxic, colorless, and odorless gas. Hydrogen (II) is not formed during the combustion process, as it is already a component of the hydrocarbon itself.

Learn more about hydrocarbon here

https://brainly.com/question/11964417

#SPJ11

which terms refer to distance covered over a given amout of time

Answers

Answer:

distance covered over a given amout of time is called velocity

A voltaic cell consists of an Mn/Mn2+ half-cell and a Cd/Cd2+ half-cell. Calculate Ecell when [Cd2+] = 0. 00423 M and [Mn2+] = 0. 28 M.

You should use the reduction potentials for Mn2+ is -1. 18V and for Cd2+ is -0. 40 V

Answers

The cell potential of the voltaic cell is 0.8129 V.

The cell potential of a voltaic cell can be calculated using the Nernst equation:

Ecell = E°cell - (RT/nF) ln(Q)

where E°cell is the standard cell potential, R is the gas constant (8.314 J/mol K), T is the temperature in Kelvin, n is the number of electrons transferred in the cell reaction, F is the Faraday constant (96485 C/mol), and Q is the reaction quotient.

The balanced cell reaction for the[tex]$\mathrm{Mn/Mn^{2+}}$[/tex] [tex]$\mathrm{Cd^{2+}}$[/tex] half-cells can be written as follows:

[tex]\mathrm{Mn^{2+}}$.[/tex]+ + 2e- → Mn (E° = -1.18 V)

[tex]$\mathrm{Cd^{2+}}$[/tex]+ + 2e- → Cd (E° = -0.40 V)

To calculate E°cell, we need to subtract the reduction potential of the anode from the reduction potential of the cathode:

E°cell = E°cathode - E°anode

E°cell = E°Cd - E°Mn

E°cell = (-0.40 V) - (-1.18 V)

E°cell = 0.78 V

Next, we need to calculate the reaction quotient, Q, using the concentrations of the reactants and products:

Q = [[tex]$\mathrm{Cd^{2+}}$[/tex]]/[[tex]$\mathrm{Mn^{2+}}$.[/tex]]

Q = 0.00423 M / 0.28 M

Q = 0.0151

Finally, we can plug in the values into the Nernst equation to calculate the cell potential:

Ecell = E°cell - (RT/nF) ln(Q)

Ecell = 0.78 V - (8.314 J/mol K)(298 K)/(2 mol e-)(96485 C/mol) ln(0.0151)

Ecell = 0.78 V - (-0.0329 V)

Ecell = 0.8129 V

Therefore, the cell potential of the voltaic cell is 0.8129 V.

Learn more about voltaic cell

https://brainly.com/question/1370699

#SPJ4

When 1 mole of N2(g) reacts with O2(g) to form NO2(g) according to the following equation, 66. 4 kJ of energy are absorbed.

N2(g) + 2 O2(g) When 1 mole of N2(g) reacts wi 2 NO2(g)

Is this reaction endothermic or exothermic? endothermic exothermic

What is the value of q? kJ

Answers

The value of q is 66.4 kJ.

The given chemical equation is:

[tex]\mathrm{N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)} \qquad \Delta H = +66.4 \text{ kJ/mol}[/tex] = 66.4 kJ/mol

Since the enthalpy change (ΔH) is positive, it means that heat is absorbed during the reaction, indicating that this reaction is endothermic.

The amount of heat absorbed (q) can be calculated using the following formula:

q = nΔH

where n is the number of moles of reactant that undergo the reaction.

For this reaction, 1 mole of [tex]\mathrm{N_2}[/tex]reacts, so n = 1.

Therefore, the amount of heat absorbed is:

q = (1 mol) × (66.4 kJ/mol) = 66.4 kJ

So, the value of q is 66.4 kJ.

Learn more about heat absorbed

https://brainly.com/question/30836915

#SPJ4

identify the best reagents to convert 1-hexyne into (e)-1,2-dibromo-1-hexene.select answer from the options belowxs br2, ccl41 equiv hbr, roorxs hbr1 equiv. br2, ccl41 equiv hbr

Answers

The best reagents to convert 1-hexyne into (e)-1,2-dibromo-1-hexene are 1 equiv. Br2 in CCl4, followed by NaOH to convert the mixture of (Z)- and (E)-isomers to the desired (E)-isomer.

This reaction is called the Vicinal Dibromination reaction. Option A: xs Br2 in CCl4 is a good choice of reagents, but it will give a mixture of (Z)- and (E)-isomers. Option B: 1 equiv. HBr will result in the formation of (Z)-1-bromo-1-hexene. Option C: ROOR is a radical initiator and will not result in the desired product.

To know more about different reagents and  isomers : https://brainly.com/question/29713522

#SPJ11

PART OF WRITTEN EXAMINATION:
Code for Control of External Corrosion on Underground or Submerged Metallic Piping Systems
A) RP0285
B) SP0169
C) SP0176
D) SP0290
E) SP0388

Answers

The correct code for controlling external corrosion on underground or submerged metallic piping systems is RP0285. Corrosion is a natural process that occurs when metal is exposed to the environment.

It can weaken the structural integrity of metallic piping systems and lead to leaks and failures. Therefore, it is important to implement proper corrosion control measures to prevent or mitigate this issue. RP0285 provides guidelines for designing, installing, and maintaining corrosion control systems for metallic piping systems that are underground or submerged. This code covers a wide range of topics such as cathodic protection, coatings, and corrosion monitoring. By following RP0285, operators can ensure the safe and reliable operation of their metallic piping systems, reducing the risk of leaks and failures caused by corrosion.

learn more about corrosion Refer: https://brainly.com/question/28302789

#SPJ11

Determine the amount of energy absorbed by 2.00 L of gasoline as it is converted to the vapor phase at its boiling point.

Answers

The amount of energy absorbed by 2.00 L of gasoline as it is converted to the vapor phase at its boiling point is 38,550 J

How to calculate the energy

Using the following formula:

q = m x ΔHvap

Volume= 2.00 L = 2000 mL

density of gasoline = 0.75 g/mL

mass = volume x density = 2000 mL x 0.75 g/mL = 1500 g

The enthalpy of vaporization of gasoline= 42.0 kJ/mol = 25.7 J/g

q = m x ΔHvap = 1500g x 25.7 J/g = 38,550 J

Learn more about energy on

https://brainly.com/question/13881533

#SPJ1

Which of the following molecules/ions is/are likely to be planar? I. PCl3 II. BF4- III. XeF4 IV. BrF3 V. BrF5 VI. H3O+
A) I and IV B) II and III C) II and VI only D) III and IV E) IV and V

Answers

The molecules/ions that are likely to be planar are those that have a central atom with either three or four bonded atoms and no lone pairs. Based on this criteria,the likely planar molecules/ions are I and IV, so the answer is A) I and IV.

I. PCl3 - This molecule has a central phosphorus atom bonded to three chlorine atoms. It is likely to be planar.

II. BF4- - This ion has a central boron atom bonded to four fluorine atoms. It is likely to be planar.

III. XeF4 - This molecule has a central xenon atom bonded to four fluorine atoms. It has two lone pairs of electrons, which will cause it to adopt a square planar geometry rather than a flat plane.

IV. BrF3 - This molecule has a central bromine atom bonded to three fluorine atoms. It has two lone pairs of electrons, which will cause it to adopt a T-shaped geometry rather than a flat plane.

V. BrF5 - This molecule has a central bromine atom bonded to five fluorine atoms. It has one lone pair of electrons, which will cause it to adopt a square pyramidal geometry rather than a flat plane.

VI. H3O+ - This ion has a central oxygen atom bonded to three hydrogen atoms. It has one lone pair of electrons, which will cause it to adopt a trigonal pyramidal geometry rather than a flat plane.

Based on this analysis, the likely planar molecules/ions are I and IV, so the answer is A) I and IV.

For more questions on planar structure : https://brainly.com/question/15346125

#SPJ11

Which best describes why NH4+ can form an ionic bond with CL-?

Answers

The loss of one electron and ionic bond gives the ammonium ion ([tex]NH_4^{+}[/tex]) a positive charge, whereas the gain of one electron gives the chloride ion [tex](cl^{-} )[/tex] a negative charge. The two ions can form an ionic connection because their opposing charges are attracted to one another.

Positively charged cations and negatively charged anions are created when one or more electrons are transferred from one atom to another to form an ionic connection. A crystal lattice structure is subsequently created as a result of the cations and anions' mutual attraction.

The nitrogen atom in  ([tex]NH_4^{+}[/tex]) contributes a lone pair of electrons to a hydrogen atom in the case of  ([tex]NH_4^{+}[/tex]) and  [tex](cl^{-} )[/tex], resulting in the production of a positively charged ammonium ion. In contrast, the chloride ion advances.

Learn more about ionic bond visit: brainly.com/question/13526463

#SPJ4

A steel reaction vessel of a bomb calorimeter has a volume of 0.178 L, is charged with oxygen gas to a pressure of 53.3 atm at 19.1oC. Calculate the moles of oxygen in the reaction vessel

Answers

The ideal gas law can be used to determine how many moles of oxygen are present in the reaction vessel. PV = nRT, where P is pressure, V is volume, n is moles, R is gas constant, and T is temperature, is the formula for the ideal gas law.

We obtain 53.3 atm*0.178 L = n*0.0821 L*atm/mol*292.1K by plugging in the specified variables. We arrive at n = 0.0087 moles of oxygen after solving for n.

Therefore, at the specified pressure and temperature, the reaction vessel contains 0.0087 moles of oxygen.

Learn more about  oxygen  at:

https://brainly.com/question/13370320

#SPJ1

a chemist titrates _________ of a _________ hydrocyanic acid solution with _________ solution at _________. calculate the ph at equivalence. the _________ of hydrocyanic acid is _________. round your answer to _________ decimal places. note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of _________ solution added.

Answers

The pH of the solution at equivalence is equal to 10.

A chemist titrates 25 mL of a 0.10 M hydrocyanic acid solution with 0.10 M NaOH solution at 25°C. The pKa of hydrocyanic acid is 9.2. Round your answer to two decimal places.

Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of NaOH solution added.

The pH of the hydrocyanic acid solution can be calculated using the Henderson-Hasselbalch Equation, which states that pH = pKa + log ([salt]/[acid]).

First, we need to calculate the amount of NaOH (salt) added to the solution. This can be done by multiplying the molarity (0.10 M) by the volume (25 mL) of hydrocyanic acid.

This yields 0.25 moles of NaOH. We can then plug this into the Henderson-Hasselbalch Equation, along with the pKa of hydrocyanic acid (9.2). Solving for pH yields 10.2. Since the volume of the solution increases when NaOH is added, but the molarity remains constant, the pH of the solution at equivalence is equal to 10.

Know more about Henderson-Hasselbalch Equation here

https://brainly.com/question/13423434#

#SPJ11

how many moles of LiNO3 are in 250mL of a 0.30M solution?​

Answers

[tex]LiNO_{3}[/tex]There are 0.075 moles of [tex]LiNO_{3}[/tex] in 250 mL of a 0.30 M solution.

To determine the number of moles of [tex]LiNO_{3}[/tex] in 250 mL of a 0.30 M solution, we can use the formula:

moles of solute = concentration (M) x volume (L)

First, we need to convert the volume from milliliters (mL) to liters (L):

250 mL = 0.25 L

Next, we can substitute the given values into the formula:

moles of [tex]LiNO_{3}[/tex] = 0.30 M x 0.25 L

moles of [tex]LiNO_{3}[/tex] = 0.075 mol

Therefore, there are 0.075 moles of [tex]LiNO_{3}[/tex] in 250 mL of a 0.30 M solution.

Learn more about moles, here:

https://brainly.com/question/15209553

#SPJ1

In the Galvanic Series which element is listed as the most noble?
A) zinc
B) copper
C) steel
D) magnesium
E) carbon

Answers

The Galvanic Series is a list of metals and alloys arranged in order of their relative nobility or reactivity in seawater or other electrolytic solutions. The most noble metals are at the top of the series and the most active or least noble are at the bottom.

The general, noble metals like gold, platinum, and silver are highly resistant to corrosion and oxidation, while less noble metals like iron and zinc are more reactive and prone to corrosion. the Galvanic Series, the most noble metal is actually not one of the options listed in the question. The top three most noble metals are platinum, gold, and palladium, followed by silver, titanium, and copper. Zinc, steel, magnesium, and carbon are all less noble and more reactive than these metals. Therefore, the correct answer to the question would be "none of the above." It is important to note that the relative nobility of metals can vary depending on the specific environment and conditions, and other factors such as the presence of other metals and the pH level of the solution can also affect their reactivity.

learn more about electrolytic here.

https://brainly.com/question/29771118

#SPJ11

From their positions in the periodic table, arrange the atoms in each of the following series in order of increasing electronegativity: (a) As, H, N, P, Sb (b) Cl, H, P, S, Si (c) Br, Cl, Ge, H, Sr (d) Ca, H, K, N, Si (e) Cl, Cs, Ge, H, Sr

Answers

A)The order of increasing electronegativity is: N < P < As < Sb < H.  the order of increasing electronegativity is: H < Si < P < S < Cl , B) the order of increasing electronegativity is: H < Ge < Sr < Cl < Br , C) the order of increasing electronegativity is: H < Si < N < K < Ca. D)the order of increasing electronegativity is: H < Ge < Sr < Cl < Cs.

(a) From left to right across the periodic table, electronegativity generally increases. Among the given elements, nitrogen (N) has the lowest electronegativity, followed by phosphorus (P), arsenic (As), antimony (Sb), and hydrogen (H), which has the highest electronegativity. Therefore, the order of increasing electronegativity is: N < P < As < Sb < H.

(b) Similarly, among the given elements, hydrogen (H) has the lowest electronegativity, followed by silicon (Si), phosphorus (P), sulfur (S), and chlorine (Cl), which has the highest electronegativity. Therefore, the order of increasing electronegativity is: H < Si < P < S < Cl.

(c) In this series, hydrogen (H) has the lowest electronegativity, followed by germanium (Ge), strontium (Sr), chlorine (Cl), and bromine (Br), which has the highest electronegativity. Therefore, the order of increasing electronegativity is: H < Ge < Sr < Cl < Br.

(d) Among the given elements, hydrogen (H) has the lowest electronegativity, followed by silicon (Si), nitrogen (N), potassium (K), and calcium (Ca), which has the highest electronegativity. Therefore, the order of increasing electronegativity is: H < Si < N < K < Ca.

(e) Finally, among the given elements, hydrogen (H) has the lowest electronegativity, followed by germanium (Ge), strontium (Sr), chlorine (Cl), and cesium (Cs), which has the highest electronegativity. Therefore, the order of increasing electronegativity is: H < Ge < Sr < Cl < Cs.

Learn more about electronegativity ,

https://brainly.com/question/17762711

#SPJ4

Why is sodium sulphite added to the conical flask once crystals are formed?

Answers

By adding sodium sulphite to the conical flask, you can ensure the stability and preservation of the formed crystals.

Sodium sulphite is added to the conical flask once crystals are formed to stabilize and preserve the newly formed crystals. Here's a step-by-step explanation:
1. Crystals are formed in a conical flask through a chemical reaction or by evaporating a solution.
2. After the crystals have formed, sodium sulphite is added to the conical flask.
3. Sodium sulphite acts as a stabilizer and preservative, preventing the crystals from reacting with other substances in the solution or with atmospheric oxygen.
4. This stabilization helps maintain the quality and integrity of the crystals, ensuring they remain in their desired state for further analysis or use.

To learn more about  sodium sulphite click here https://brainly.com/question/11855511

#SPJ11

Calculate the number of
electrons in p orbitals in 10.0 g
H7- ion in the ground state.

Answers

The H7- ion has one more electron than a neutral hydrogen atom (H), which has an electron configuration of 1s1.

Adding one electron to this configuration results in 1s2, which is the electron configuration of the H- ion. However, the H7- ion has seven extra electrons compared to a neutral hydrogen atom. We can fill these electrons in the following order:

1s2 2s2 2p3

The three electrons in the 2p subshell are in p orbitals. Therefore, the number of electrons in p orbitals in the H7- ion is 3.

To calculate the number of moles of H7- in 10.0 g, we first need to convert the mass to moles using the molar mass of H7-. The molar mass of H7- is: (7 x 1.00794 g/mol) + 1.00794 g/mol = 8.05558 g/mol

Therefore, the number of moles of H7- in 10.0 g is:

10.0 g / 8.05558 g/mol = 1.2412 mol

Finally, we can calculate the total number of electrons in p orbitals in 10.0 g of H7- ion in the ground state:

3 electrons/pair x 1 pair/ion x Avogadro's number x 1.2412 mol = 2.117 x 10^24 electrons

Therefore, there are approximately 2.117 x 10^24 electrons in p orbitals in 10.0 g of H7- ion in the ground state.

Learn more about hydrogen atom here:

https://brainly.com/question/29913273

#SPJ11

Rank the following bonds and interactions in order from strongest to weakest starting with the strongest at the top. (assume that these bonds/interactions are occurring in a living cell)

Answers

Here is the ranking of bonds and interactions in a living cell from strongest to weakest: Covalent bonds, Ionic bonds, Hydrogen bonds, Van der Waals interactions.

The strongest to weakest links and interactions in a live cell are listed below:

The strongest sort of chemical link is a covalent bond, which involves sharing electrons between atoms. The production of positively and negatively charged ions that are attracted to one another results in the formation of ionic bonds, which are formed when electrons are transferred between atoms. Hydrogen bonds are relatively weak interactions that take place between an electronegative atom (such as fluorine, oxygen, or nitrogen) and a hydrogen atom that is covalently bound to it. Van der Waals interactions: These are atom-to-atom or molecule-to-molecule weak, fleeting attractivities caused by shifting electron concentrations around the atoms.

For such more question on Ionic bonds:

https://brainly.com/question/977324

#SPJ11

The following question may be like this:

What is the order of bonds and interactions from the strongest to the weakest?

(Covalent, Van der Waals interaction, ionic bond, hydrogen bond)

look up the chemical formula for citric acid and determine if it is strong or weak. then complete the sentence below. when entering the molecular formula, enter only integer values. if an element is not present in the formula enter a zero in the corresponding box

Answers

The chemical formula for citric acid is C₆H₈O₇. Citric acid is a weak acid.

Sentence: Citric acid has a chemical formula of C₆H₈O₇ and is classified as a weak acid.

Citric acid is a weak organic acid, with a molecular formula of C₆H₈O₇. It is found naturally in citrus fruits and many other fruits and vegetables, and is commonly used as a food additive and flavoring agent.

Citric acid is classified as a weak acid because it does not completely dissociate in aqueous solution. When citric acid dissolves in water, some of the molecules donate a proton (H⁺) to water molecules to form hydronium ions (H₃O⁺), while others remain as undissociated molecules. The equilibrium between the undissociated molecules and the hydronium ions can be described by the following equation:

C₆H₈O₇ + H₂O ⇌ C₆H₇O₇⁻ + H₃O⁺

In this equation, C₆H₈O₇ represents undissociated citric acid, C₆H₇O₇⁻ represents the citrate ion, and H₃O⁺ represents hydronium ions.

The dissociation of citric acid is incomplete, meaning that only a fraction of the citric acid molecules dissociate in aqueous solution. The strength of an acid is related to the extent of dissociation, so weak acids like citric acid have a relatively small dissociation constant (Ka) compared to strong acids.

The Ka for citric acid is approximately 8.4 × 10⁻⁴ at 25°C, indicating that only a small fraction of the citric acid molecules dissociate in aqueous solution. This is why citric acid is classified as a weak acid.

To know more about the citric acid refer here :

https://brainly.com/question/29857075#

#SPJ11

_______bonds typically produce a crystal matrix. In contrast, _________bonds are formed between 2 individual atoms, giving rise to true, discrete molecules.

Answers

Ionic bonds typically produce a crystal matrix. In contrast, covalent bonds are formed between two individual atoms, giving rise to true, discrete molecules.

When two or more atoms share electron pairs, covalent bonds are formed. Depending on how many electron pairs are shared, covalent bonds can be single, double, or triple.

Depending on the difference in electronegativity between the two atoms, covalent bonds can either be polar or nonpolar. Partially charged atoms result from the unequal distribution of electrons in a polar covalent bond. There are no partial charges because the electrons in a nonpolar covalent bond are distributed uniformly.

Because the atoms involved are sharing electrons rather than totally transferring them, covalent connections are typically stronger than ionic ones overall.

For such more question on covalent:

https://brainly.com/question/3447218

#SPJ11

(look at picture ) thanks :) ✨✨

Answers

The graph of the function y = 2x + 3 is attached. See below for the characteristics of the Linear function.

What are the qualities of the above function?

The function provided exhibits qualities of a linear function, having a domain and range that encompass all real numbers.

Its slope or rate of change has a value of 2, while the intercepts are 3 for the y-axis and (-1.5,0) for the x-axis.

The absence of an axis of symmetry or vertex is indicative that this is not a quadratic function. Projectile motion is a practical example of a quadratic function.

Exponential functions, on the other hand, exhibit growth at a certain rate and are defined for all real numbers, with their range being positive real numbers. By studying exponential functions, one may observe exponential decay or growth as portrayed in the table.

Compound interest is an excellent real-world application of this kind of function.

Linear functions help model relations between two variables, quadratic functions can map parabolic forms, while exponential functions account for various growth/decay patterns.

Learn more about Functions:
https://brainly.com/question/12431044
#SPJ1

How do we know the energy of the n = 1 level of the H atom?
1. It can be calculated from the speed of light and Planck's constant.
2. It is the energy necessary to remove the e- from the H atom.
3. It was told to Bohr when he was abducted by aliens.

Answers

The energy of the n = 1 level of the hydrogen (H) atom can be calculated using mathematical formulas that involve the speed of light and Planck's constant. This energy level is also known as the ground state of the atom, which is the lowest energy level that an electron can occupy.

The energy of this level is crucial for understanding the behavior of electrons within the atom and for studying atomic structure.

To be more specific, the energy of the n = 1 level of the H atom can be calculated using the Rydberg formula, which involves the Rydberg constant, the speed of light, and Planck's constant. This formula is based on the concept of atomic spectra, which refers to the light emitted or absorbed by an atom due to the energy changes of its electrons. By analyzing the spectral lines of hydrogen, scientists have been able to determine the energy levels of its electrons, including the ground state.

Additionally, the energy of the n = 1 level of the H atom is also related to the ionization energy, which is the energy required to remove an electron from the atom completely. This ionization energy is equal to the energy of the ground state of the H atom, as it takes exactly this amount of energy to remove an electron from the lowest energy level.

In conclusion, the energy of the n = 1 level of the H atom is a fundamental concept in atomic physics, and can be calculated using mathematical formulas based on the speed of light and Planck's constant. It is also related to the ionization energy and has been determined through spectral analysis of the atom. The idea of aliens telling Bohr the answer is purely fictional and has no scientific basis.

learn more about Planck's constant here: brainly.com/question/27389304

#SPJ11

Between the same two atoms, the strongest covalent bond is the ___ bond and the weakest is the ___ bond.

Answers

Between the same two atoms, the strongest covalent bond is the triple bond and the weakest is the single bond.

A single bond is formed when two atoms share one pair of electrons. This type of bond is the most stable and secure of all covalent bonds as the shared electrons are firmly held in place by the two atoms. The weakest covalent bond between two atoms is a triple bond. A triple bond is formed when two atoms share three pairs of electrons. This type of bond is less stable than a single bond as the three shared electrons are more loosely held and may be more easily lost or broken.

To learn more about covalent bond click here https://brainly.com/question/10777799

#SPJ11

Other Questions
Allied victories which broke the German offensive of 1918 in France included all of the following locations except _____.a. Chateau-Thierryb. Cantignyc. Berlind. Belleau Woode. Argonne Forest When should an MCI plan be put into effect? When measuring a nation's standard of living, of the following, the best measure is:A.nominal GDP.B.market GDP.C.real GDP.D.nominal GDP per capita.E.real GDP per capita. Which of the following communication channels can be used to for personalized messages that are neither complex nor emotional?emailprinted brochureviral videoposter Write the standard equation of the circle with center (-10,-5) that passes through the point (-5,5). t he sample space of an experiment consists of t he ineasured resistances of two resistors. give four exa1nples of part itions Approximately ________ percent of young people need mental health assistance, indicating how prevalent the need is for mental health services for young people.10152025 if -4, -2, & 1 are the roots, what is the equation What is Allergic reaction to antigens in the donor blood? Dyspnea, syncope and angina related to aortic stenosis.EtiologyFinding select the following characteristics that allowed plants to survive and reproduce in a land environment. An individual is found unconscious and is admitted to the hospital with heroin overdose. Which nursing action is the priority?A. Monitoring level of consciousnessB. Establishing a patent airwayC. Monitoring for heroin withdrawalD. Establishing a therapeutic relationship The graph of y = f(x) is shown below.Draw the graph of y = f(-x). mention in what disease inflammation of trachea/bronchi; often follows URI; Hallmark = cough (+/- productive, lasts 1-3 weeks); CXR = normal or nonspecific En un puesto de comida rpida se compraron 2 hamburguesas y se pagaron por ellas 80 pesos cuanto se deber pagar por las siguientes hamburguesas? Rocky owns and operates Balboa's Gym located in Philadelphia. The following transactions occur for the month of October: Receive membership dues for the month of October 1. October 2 totaling$8,500. 2. October 5 Issue common stock in exchange for cash,$12,000. 3. October 9 Purchase additional boxing equipment for$9,600, paying one-half of the amount in cash and issuing a note payable to the seller for the other onehalf due by the end of the year. Pay$1,500for advertising regarding a special membership rate available during the month of 4. October 12 October. 5. October 19 Pay dividends to stockholders, \$4,400. Pay liability insurance to cover accidents to members for the next six months, starting 6. October 22 November 1,$6,900. Receive cash in advance for November memberships, 7. October25$5,600. Receive, but do not pay, utilities bill for the 8. October 30 month,$5,200. 9. October 31 Pay employees' salaries for the month,$7,300. 4. Prepare a statement of cash flows for the month of October, properly classifying each of the cash transactions into operating, investing, and financing activities. Assume that the balance of cash at the beginning of October is$16,600. What was the significance of the battle of midway? Compare immigration to the United States in the 1840s and 1850s to the present day. Is there a similarity? What is your most valuable way to see the sides and the rear? The Chartered Accountants Worldwide global task force conducted a global study to map the career journeys of women in the accounting profession. The aim was to identify the barriers and opportunities for employers to open career pathways for women to progress into more senior positions. More than 3,500 mid-career men and women took part in the study across 8 countries that included over 40 in-depth interviews. The survey revealed that while some in-roads have been made, there is still much to do for the profession to both attract and retain female talent especially mid-career. The survey indicated that 8 in 10 women felt they had a lot to offer the profession despite being a parent and that ambition does not reduce with parenthood, with 7 in 10 stating that they believe they can obtain a senior position. However, a lack of confidence to progress their career came out as the number one barrier for women, with 31% citing it as a barrier to progression. Furthermore, 29% of women felt that the management style of their superiors and company culture were prohibitive to their career. Moreover, 25% of women stated that a lack of time off to care for children was a barrier for them. Networking also felt exclusive to many women because of the times these events took place, meaning they were unable to make connections for work because of family commitments. Indeed, throughout their career, women are significantly more likely to experience barriers to their career progression. Conversely, by the time men reach their late career, they are significantly more likely to claim that they have not experienced any barriers to their career (29%).There are some key opportunities that the profession could embrace to ensure mid-career women stay motivated, are able to progress and remain a valuable resource to employers. For example, over 1 in 3 mid-career women (36%) highlight flexible hours or working location as an important enabler for career progression. Furthermore, 3 in 4 mid-career women (75%) currently acknowledge that a supportive line manager and/or being given the opportunity to work on new projects that allowed them to develop their skillset as having the biggest impact on their career progression, and 67% stated that they would love a mentor to support and guide them. Lastly, the ability to work flexibly and in a hybrid manner while remaining visible and valued by senior managers was something many women cited as being something that would make a huge difference to them. Sarah Speirs, Chair of the Chartered Accountants Worldwide taskforce said, This study has shown that there is still more that we need to do to foster female ambition within the profession and drive change. This is a global issue that concerns all of us irrespective of country and culture. At a time when retention is a key issue for employers, we must work together to find solutions to harness the huge talent pool of mid-career women as well as ensuring that the profession remains a viable and attractive option to young women coming into Chartered Accountancy in future.Why do you think SAICA would publish this article on their website?