Answer:
its supposed to be (a) 1W
The cart now moves toward the right with an acceleration toward the right of 2.50 m/s2. What does spring scale Fz read? Show your calculations, and explain.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The spring scale [tex]F_2[/tex] reads [tex]F_2 = 2.4225 \ N[/tex]
Explanation:
From the question we are told that
The first force is [tex]F_1 = 10.5 \ N[/tex]
The acceleration by which the cart moves to the right is [tex]a = 2.50 \ m/s^2[/tex]
The mass of the cart is m = 3.231 kg
Generally the net force on the cart is
[tex]F_{net} = F_1 - F_2[/tex]
This net force is mathematically represented as
[tex]F_{net} = m * a[/tex]
So
[tex]m* a = 10 - F_2[/tex]
[tex]F_2 = 10.5 - 2.5 (3.231)[/tex]
[tex]F_2 = 2.4225 \ N[/tex]
Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?
Answer:
The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
Explanation:
We are told that the particle moves back and forth along a straight line with velocity v(t).
Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.
Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
A flashlight is held at the edge of a swimming pool at a height h = 1.6 m such that its beam makes an angle of θ = 38 degrees with respect to the water's surface. The pool is d = 1.75 m deep and the index of refraction for air and water are n1 = 1 and n2 = 1.33, respectively.
Required:
What is the horizontal distance from the edge of the pool to the bottom of the pool where the light strikes? Write your answer in meters.
one of the answers that i found was 5.83 m i did some more research and it showed the same answer again. good luck with it. hope i was able to help you.
Which has more mass electron or ion?
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Receiver maxima problem. When the receiver moves through one cycle, how many maxima of the standing wave pattern does the receiver pass through
The number of maxima of the standing wave pattern is two.
Maxima problem:At the time when the receiver moves via one cycle so here two maximas should be considered. At the time when the two waves interfere by traveling in the opposite direction through the same medium so the standing wave pattern is formed.
learn more about the waves here: https://brainly.com/question/3004869?referrer=searchResults
Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the following function.
h=1/2t2+1/2t
(a) What is the height of the balloon at the end of 40 sec?
(b) What is the average velocity of the balloon between t = 0 and t = 30?
ft/sec
(c) What is the velocity of the balloon at the end of 30 sec?
ft/sec
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
A) The height of the balloon at the end of 40 sec is 820 feet.
B) The average velocity of the balloon is 30 ft/sec.
C) The velocity of the balloon at the end of 30 sec is
VelocityGiven :
h=1/2t²+1/2tPart A)
The height of the balloon after 40 secs is :
h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
Part B)
The average velocity of the balloon is :
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0 sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
When at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon = 30 ft/sec
The average velocity of the balloon is 30 ft/sec.
Part C)
The velocity of the balloon at the end of 30 sec is :
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec.
Learn more about "Velocity":
https://brainly.com/question/862972?referrer=searchResults
A 18.0 kg electric motor is mounted on four vertical springs, each having a spring constant of 24.0 N/cm. Find the period with which the motor vibrates vertically.
Answer:
Explanation:
Total mass m = 18 kg .
Spring are parallel to each other so total spring constant
= 4 x 24 = 96 N/cm = 9600 N/m
Time period of vibration
[tex]T=2\pi\sqrt{\frac{m}{k} }[/tex]
Putting the given values
[tex]T=2\pi\sqrt{\frac{18}{9600} }[/tex]
= .27 s .
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
Estimate the volume of a human heart (in mL) using the following measurements/assumptions:_______.
1. Blood flow through the aorta is approximately 11.2 cm/s
2. The diameter of the aorta is approximately 3.0 cm
3. Assume the heart pumps its own volume with each beat
4. Assume a pulse rate of 67 beats per minute.
Answer:
Explanation:
radius of aorta = 1.5 cm
cross sectional area = π r²
= 3.14 x 1.5²
= 7.065 cm²
volume of blood flowing out per second out of heart
= a x v , a is cross sectional area , v is velocity of flow
= 7.065 x 11.2
= 79.128 cm³
heart beat per second = 67 / 60
= 1.116666
If V be the volume of heart
1.116666 V = 79.128
V = 70.86 cm³.
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the strength of the electric field between the plates
Answer:
The electric field strength between the plates can be increased by decreasing the length of each side of the plates.
Explanation:
The electric field strength is given by;
[tex]E = \frac{V}{d}[/tex]
where;
V is the electric potential of the two opposite charges
d is the distance between the two parallel plates
[tex]E =\frac{V}{d} = \frac{\sigma}{\epsilon _o} \\\\(\sigma = \frac{Q}{A} )\\\\E = \frac{Q}{A\epsilon_o} \\\\E = \frac{Q}{L^2\epsilon_o}[/tex]
Where;
ε₀ is permittivity of free space
L is the length of each side of the plates
From the equation above, the electric field strength can be increased by decreasing the length of each side of the plates.
Therefore, decreasing the length of each side of the plates, could be made to increase the strength of the electric field between the plates
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
A sound wave of frequency 162 Hz has an intensity of 3.41 μW/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)
Answer:
I believe it is 91
Explanation:
The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?
Answer:
F= 175.5N
Explanation:
Given:
Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance
torque of 38N⋅m
angle of 120∘
Torque(τ): 38Nm
position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m
Angle: 120°
To find the Force, the torque equation will be required which is expressed below
τ = Frsinθ
We need to solve for F, if we rearrange the equation, we have the expression below
F= τ/rsinθ
Note: the torque is maximum when the angle is 90 degrees
But θ= 180-120=60
F= 38/0.25( sin(60) )
F= 175.5N
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m
A boat floating in fresh water displaces 16,000 N of water. How many newtons of salt water would it displace if it floats in salt water of specific gravity 1.10
Answer:
It will displace the same weight of fresh water i.e.16000N. The point is the body 'floats'- which is the underlying assumption here, and by Archimedes Principle, for this body or vessel or whatever it may be, to float it should displace an equal weight of water
Explanation:
A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is
Answer:
0.0081T
Explanation:
The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e
B ∝ I [tex]\frac{N}{L}[/tex]
B = μ₀ I [tex]\frac{N}{L}[/tex] ----------------(i)
Where;
μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²
Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by
L = 2π r
L = 2π (0.042)
L = 0.084π
The number of turns N = 1000
The current in the toroid = 1.7A
Substitute these values into equation (i) to get the magnetic field as follows;
B = 4π x 10⁻⁷ x 1.7 x [tex]\frac{1000}{0.084\pi }[/tex] [cancel out the πs and solve]
B = 0.0081T
The magnetic field along the central radius is 0.0081T
At t=0 a 2150kg rocketship in outer space fires the engine which exerts a force=At2, and F(1.25s)=781.25N in the x direction. Find the impulse J during the interval t=2.00s and t=3.5s
Answer:
5.81 X 10^3 Ns
Explanation:
Given that
F = At² and F at t = 1.25 s is 781.25 N ?
A = F/t² at t = 1.25 s => F = 781.25/(1.25)² = 500 N/s²
d(Impulse) = Fdt
Impulse = ∫Fdt =∫At²dt evaluated in the interval 2.00 s ≤ t ≤ 3.50 s
Impulse = At³/3 = (500/3)(t³) = 166.7t³ between t = 2.00 s and t = 3.50 s
Impulse = 166.7[3.5³ - 2³] = 166.7[42.875 - 8] = 166.7[34.875] = 5813.7 Ns
5.81 X 10^3 N.s
A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time
Answer:
The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
Explanation:
The magnetic field at the center of the solenoid is given by;
B = μ(N/L)I
Where;
μ is permeability of free space
N is the number of turn
L is the length of the solenoid
I is the current in the solenoid
The rate of change of the field is given by;
[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]
The induced emf in the shorter coil is calculated as;
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
where;
N is the number of turns in the shorter coil
A is the area of the shorter coil
Area of the shorter coil = πr²
The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m
Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
E = 14 x 0.000491 x 0.02514
E = 1.728 x 10⁻⁴ V
Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]
Induced EMF:The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:
[tex]E=-\frac{\delta\phi}{\delta t}[/tex]
where E is the induced emf,
[tex]\phi[/tex] is the magnetic flux through the coil.
The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:
[tex]\phi = \frac{\mu_oNIA}{L}[/tex]
so;
[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]
where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.
[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]
The emf produced in the coil at the center of the solenoid which has 14 turns will be:
[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]
Learn more about induced emf:
https://brainly.com/question/16765199?referrer=searchResults
A hot air balloon competition requires a balloonist to drop a ribbon onto a target on the ground. Initially the hot air balloon is 50 meters above the ground and 100 meters from the target. The wind is blowing the balloon at v= 15 meters/sec on a course to travel directly over the target. The ribbon is heavy enough that any effects of the air slowing the vertical velocity of the ribbon are negligible. How long should the balloonist wait to drop the ribbon so that it will hit the target?
Answer:
The wait time is [tex]t_w = 3.4723 \ s[/tex]
Explanation:
From the question we are told that
The distance of the hot air balloon above the ground is [tex]z = 50 \ m[/tex]
The distance of the hot air balloon from the target is [tex]k = 100 \ m[/tex]
The speed of the wind is [tex]v = 15 \ m/s[/tex]
Generally the time it will take the balloon to hit the ground is
[tex]t = \sqrt{ \frac{2 * z }{g} }[/tex]
where g is acceleration due to gravity with value [tex]g = 9.8 m/s^2[/tex]
substituting values
[tex]t = \sqrt{ \frac{2 * 50 }{9.8} }[/tex]
[tex]t = 3.194 \ s[/tex]
Now at the velocity the distance it will travel before it hit the ground is mathematically represented as
[tex]d = v * t[/tex]
substituting values
[tex]d = 15 * 3.194[/tex]
[tex]d = 47.916 \ m[/tex]
Now in order for the balloon to hit the target on the ground it will need to travel b distance on air before the balloonist drops it and this b distance can be evaluated as
[tex]b = k - d[/tex]
substituting values
[tex]b =100 -47.916[/tex]
[tex]b = 52.084 \ m[/tex]
Hence the time which the balloonist need to wait before dropping the balloon is mathematically evaluated as
[tex]t_w = \frac{b}{v}[/tex]
substituting values
[tex]t_w = \frac{52.084}{15}[/tex]
[tex]t_w = 3.4723 \ s[/tex]
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
1. The frequency of a wave defines
O A. the minimum height of a wave.
O B. the maximum height of a wave.
O C. how fast the wave is moving in cycles per second.
D. the height of the wave at a given point.
Answer:
The answer is CExplanation:
Frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion. ... See also angular velocity; simple harmonic motion.
A solenoid 26.0 cm long and with a cross-sectional area of 0.580 cm^2 contains 490 turns of wire and carries a current of 90.0 A.
Calculate:
(a) the magnetic field in the solenoid;
(b) the energy density in the magnetic field if the solenoid is filled with air;
(c) the total energy contained in the coil’s magnetic field (assume the field is uniform);
(d) the inductance of the solenoid.
Answer:
A.21.3T
B.1.8x 10^6J/m^3
C.0.27x10^2J
D.6.6x10^-3H
Explanation:
Pls see attached file
Resistance and Resistivity: The length of a certain wire is doubled while its radius is kept constant. What is the new resistance of this wire?
Answer:
Explanation:
The formula for calculating the resistance of a material in terms of its resistivity is expressed as [tex]R = \rho L/A[/tex] where;
R is the resistance of the material
[tex]\rho[/tex] is the resistivity of the material
L is the length of the wire
A is the area = πr² with r being the radius
[tex]R = \rho L/\pi r^{2}[/tex]
If the length of a certain wire is doubled while its radius is kept constant, then the new length of the wire L₁ = 2L
The new resistance of the wire R₁ will be expressed as [tex]R_1 = \frac{\rho L_1}{A_1}[/tex]
since the radius is constant, the area will also be the same i.e A = A₁ and the resistivity also will be constant. The new resistance will become
[tex]R_1 = \frac{\rho(2L)}{A}[/tex]
[tex]R_1 = \frac{2\rho L}{\pi r^2}[/tex]
Taking the ratio of both resistances, we will have;
[tex]\frac{R_1}{R} = \frac{2\rho L/\pi r^2}{\rho L/ \pi r^2} \\\\\frac{R_1}{R} = \frac{2\rho L}{\pi r^2} * \frac{\pi r^2}{ \rho L} \\\\\frac{R_1}{R} = \frac{2}{1}\\\\R_1 = 2R[/tex]
This shoes that the new resistance of the wire will be twice that of the original wire
select the example that best describes a renewable resource.
A.after a shuttle launch, you can smell the jet fuel for hours.
B.solar panels generate electricity that keeps the satellites running.
C.tractor trailers are large trucks that run on diesel fuel.
D. we use our barbeque every night; it cooks with propane.
Answer:
B.solar panels generate electricity that keeps the satellites running.
Explanation:
Solar panels are a renewable resource because they take energy from the sun.
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the switch is open and the capacitor is uncharged. What is the voltage across the resistor and the capacitor at the moment the switch is closed
Answer:
The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.
Explanation:
This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery
Calculate the maximum kinetic energy of electrons ejected from this surface by electromagnetic radiation of wavelength 236 nm.
Answer:
Explanation:
Using E= hc/wavelength
6.63 x10^-34 x3x10^8/ 236nm
19.86*10^-26/236*10^-9
=0.08*10^-35Joules
An air conditioner connected to a 103 V rms AC line is equivalent to a 20 resistance and a 1.68 inductive reactance in series. a) What is the impedance of the air conditioner
Answer:
20.07ohms
Explanation:
Impedance is defined as the opposition to the flow of current through the elements of the circuit.
Impedance for R-L AC circuit is expressed as Z = √R²+XL²
R is the resistance
XL is the inductive reactance.
Given resistance of the air condition = 20 ohms
Inductive reactance XL = 1.68 ohms
Z = √20²+1.68²
Z = √400+2.8224
Z = √402.8224
Z = 20.07 ohms
Hence the impedance of the air conditioner is 20.07ohms