Answer:
100.2g of CuI₂ you must add
Explanation:
Molality, m, is defined as the ratio between moles of solute and kg of solvent.
In the problem, you have a 0.694m of copper (II) iodide -CuI₂, molar mass: 317.35 g/mol-. That means there are 0.694 moles of CuI₂ per kg of water.
As you have 455g = 0.455kg of water -solvent-, moles of CuI₂ are:
0.455kg ₓ (0.694 moles CuI₂ / kg) = 0.316 moles of CuI₂
Using molar mass, grams of CuI₂ in the solution are:
0.316moles CuI₂ ₓ (317.35g / mol) =
100.2g of CuI₂ you must addD-Fructose is the sweetest monosaccharide. How does the Fischer projection of D-fructose differ from that of D-glucose? Match the words in the left column to the appropriate blanks in the sentences on the right. Fill in the blanks.
a ketone
carbon 3
carbon 2
carbon 1
an aldehyde
carbon 4
In D-glucose, there is__________ functional group, and the carbonyl group is at___________ when looking at the Fischer projection.
In D-tructose. there is functional group, and the carbonyl group is at when looking at______ the Fischer projection.
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.
1. In the addition of HBr to conjugated dienes, is the product which results from 1,2-addition or that which results from 1,4-addition the product of kinetic control?
A. From 1,2-addition
B. From 1,4-addition
2. Which of the following is the strongest acid?
A. CH3CH20H
B. CHзOCH3
C. CH3CH
D. CH3COCH3
E. CH3COH
Answer:
The answer to this question can be defined as follows:
In question 1, the answer is "Option A".
In question 2, the answer is "[tex]\bold{CH_3COOH}[/tex]".
Explanation:
In the second question, there is mistype error in the choices so the correct answer to this question can be defined as follows:
The product From 1,2-addition as its consequence of 1,4-addition is the result of kinetic regulation by HBr in conjugated dienes.The chemical name of the [tex]CH_3COOH[/tex] is the acetic acid, it is one of the carboxylic acids quite basic. It is a major chemical production factor for use as disposable soft drinks, movies or wood glue, polyethylene terephthalate, and many plastics, fibers, and fabrics. It is also used in the storage of the water and soft drinks in the bottles.A vehicle travels 2345 meter in 35 second toward the evening sun in the West. What is its speed? A. 47 m/s West
Explanation:
Speed = 2345 ÷ 35 = 67m/s
Draw the structure of 1,4-hexanediamine.
Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced TemplateTowbars. The single bond is active by default. Include all hydrogen atoms.
View Available Hint(s)
Answer:
1,4-hexanediamine contains two [tex]-NH_{2}[/tex] functional groups.
Explanation:
1,4-hexanediamine is an organic molecule which contains two [tex]-NH_{2}[/tex] functional groups at C-1 and C-4 position.
The longest carbon chain in 1,4-hexanediamine contains six carbon atoms.
Molecular formula of 1,4-hexanediamine is [tex]C_{6}H_{16}N_{2}[/tex].
1,4-hexanediamine used as a bidentate ligand in organometallic chemistry.
The structure of 1,4-hexanediamine is shown below.
18. Sucralose contains which two functional groups: (2 points)
A) benzene
B) halogen
C) carboxyl
D) hydroxy!
Answer:
The correct answer is option B and D, that is, halogen (chlorine) and hydroxyl.
Explanation:
An artificial sweetener and sugar substitute is sucralose. It is noncaloric as the majority of the sucralose ingested does not get dissociated within the body. The generation of sucralose takes place by the chlorination of sucrose. It is about 300 to 1000 times sweeter in comparison to sucrose.
The consumption of sucralose is safe for both nondiabetics and diabetics, it is used in various food and beverage components due to non-caloric sweetener characteristics. It does not affect the levels of insulin and does not affect dental health. As it is produced by chlorination of sucrose, thus, the functional groups present in it are a halogen (chlorine) and a hydroxyl.
Determine the volume occupied by 10 mol of helium at 27 ° C and 82 atm
please.
Answer:
3.00 L
Explanation:
Convert the pressure to Pascals.
P = 82 atm × (101325 Pa/atm)
P = 8,308,650 Pa
Convert temperature to Kelvins.
T = 27°C + 273
T = 300 K
Use ideal gas law:
PV = nRT
(8,308,650 Pa) V = (10 mol) (8.314 J/mol/K) (300 K)
V = 0.00300 m³
If desired, convert to liters.
V = (0.00300 m³) (1000 L/m³)
V = 3.00 L
Answer:
[tex]\large \boxed{\text{3.0 L}}[/tex]
Explanation:
[tex]\begin{array}{rcl}pV &=& nRT\\\text{82 atm} \times V & = & \text{10 mol} \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{300.15 K}\\82V & = & \text{246 L}\\V & = & \textbf{3.0 L} \\\end{array}\\\text{The volume of the balloon is $\large \boxed{\textbf{3.0 L}}$}[/tex]
It takes 242. kJ/mol to break a chlorine-chlorine single bond. Calculate the maximum wavelength of light for which a chlorine-chlorine single bond could be broken by absorbing a single photon. Round your answer to 3 significant digits. single by absorbing a significant digit.
Answer:
495nm
Explanation:
The energy of a photon could be obtained by using:
E = hc / λ
Where E is energy of a photon, h is Planck's constant (6.626x10⁻³⁴Js), c is speed of the light (3x10⁸ms⁻¹) and λ is wavelength.
The energy to break 1 mole of Cl-Cl bonds is 242kJ = 242000J. The energy yo break a single bond is:
242000J/mol ₓ (1mol / 6.022x10²³bonds) = 4.0186x10⁻¹⁹J/bond.
Replacing in the equation:
E = hc / λ
4.0186x10⁻¹⁹J = 3x10⁸ms⁻¹ₓ6.626x10⁻³⁴Js / λ
λ = 4.946x10⁻⁷m
Is maximum wavelength of light that could break a Cl-Cl bond.
Usually, wavelength is given in nm (1x10⁻⁹m / 1nm). The wavelength in nm is:
4.946x10⁻⁷m ₓ (1nm / 1x10⁻⁹m) =
495nmPhosphorus pentafluoride, PF5, acts as a __________ during the formation of the anion PF−6. Select the correct answer below: A. Lewis acid B. Lewis base C. catalyst D. drying agent
Answer:
Lewis acid
Explanation:
In chemistry, a Lewis acid is any chemical specie that accepts a lone pair of electrons while a Lewis base is any chemical specie that donates a lone pair of electrons.
If we look at the formation of PF6^-, the process is as follows;
PF5 + F^- -----> PF6^-
We can see that PF5 accepted a lone pair of electrons from F^- making PF5 a lewis acid according to our definition above.
Hence in the formation of PF6^-, PF5 acts a Lewis acid.
The amount of space an object takes up is called _____. gravity weight mass volume
A molecule of aluminum fluoride has one aluminum atom. How many fluorine atoms are present?
Answer:
3 fluorine atoms will be present
Answer:
3
Explanation:
The chemical formula of aluminum fluoride is AlF3. As you can see, there is a 1:3 ratio of aluminum atoms to fluorine atoms. Therefore, if a molecule of AlF3 has one aluminum atom, you know there must be 3 fluorine atoms present.
If you want further tutoring help in chemistry or other subjects for FREE, check out growthinyouth.org.
The decomposition of H2O2 is first order in H2O2 and the rate constant for this reaction is 1.63 x 10-4 s-1. How long will it take for [H2O2] to fall from 0.95 M to 0.33 M?
Answer:
It will take 6486.92 minutes for [H2O2] to fall from 0.95 M to 0.33 M
Explanation:
The order of reaction is defined as the sum of the powers of the concentration terms in the equation. Order of a reaction is given by the number of atoms or molecule whose concentration change during the reaction and determine the rate of reaction.
In first order reaction;
[tex]In \dfrac{a}{a_o-x}= k_1 t[/tex]
where;
a = concentration at time t
[tex]a_o[/tex] = initial concentration
and k = constant.
[tex]In (\dfrac{0.33}{0.95})= -1.63 \times 10^{-4} \times t[/tex]
[tex]-1.05736933 = -1.63 \times 10^{-4} \times t[/tex]
[tex]t = \dfrac{-1.05736933}{ -1.63 \times 10^{-4} }[/tex]
t = 6486.92 minutes
What is titration? Question 1 options: The process of quickly adding one solution to another until a solid is formed. The process of slowly adding one solution to another until the reaction between the two is complete. The process of mixing equal volumes of two solutions to observe the reaction between the two. The process of combining two solids until the reaction between the two is complete.
Answer:
The process of slowly adding one solution to another until the reaction between the two is complete.
Explanation:
When you perform a titration, you are slowly adding one solution of a known concentration called a titrant to a known volume of another solution of an unknown concentration until the reaction reaches neutralization, in which the reaction is no longer taking place. This is often indicated by a color change.
Hope that helps.
Write the net ionic equation for any precipitation reaction that may be predicted when aqueous solutions of manganese(II) nitrate and sodium hydroxide are combined.
Answer:
Explanation:
Mn( NO₃ )₂ + 2Na OH = Mn( OH)₂ (s) ↓ + 2Na NO₃
Converting into ions
Mn⁺ + 2 NO₃⁻ + 2 Na⁺ + 2 OH⁻ = Mn( OH)₂ + 2 Na⁻ + 2 NO₃⁻
Cancelling out common terms
Mn⁺ + 2 OH⁻ = Mn( OH)₂
this is net ionic equation required.
Considering that catalysts are not consumed in a reaction, how do you think increasing the amount of catalyst would affect the reaction rate for the decomposition of hydrogen peroxide?
a. increase
b. decrease
c. no effect
Answer:
a. increase
Explanation:
Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which is not consumed in the catalyzed reaction.
By default, catalysts exists to speed up the rate of reactions. Increasing the amount of catalysts means that there would be an increase in the rate of reaction. The correct option is A.
Which best describes the total mass of a sample of water when it condenses
from a liquid to a gas?
A. The mass is less because the water molecules get closer together
and take up more space.
B. The mass is the same because the decrease in energy equals the
increase in the number of molecules.
C. The mass is the same because water molecules are not created or
destroyed during a phase change.
D. The mass is greater after water condenses because the mass of
the molecules increases.
Answer:
Its C I hopefully help you
1. Methanol is a high-octane fuel used in high performance racing engines. 2 CH3OH(l) + 3O2(g) → 2CO2(g) + 4 H20(g) a) Calculate ∆H० and ∆S० using thermodynamic data, and then ∆G
Answer:
The reaction given in the question is:
2CH₃OH (l) + 3O₂ (g) ⇒ 2CO₂ (g) + 4H₂O (g)
The values of ΔH°formation and ΔS° of the reactants and products given in the reaction based on the thermodynamics data is:
ΔH°formation values of CH3OH (l) is -238.4 kJ/mol, CO2(g) is -393.52 kJ/mol, H2O (g) is -241.83 kJ/mol and O2 (g) is 0.
The S° values of CH3OH (l) is 127.19 J/molK, CO2(g) is 213.79 J/molK, H2O (g) is 188.84 J/moleK, and O2 (g) is 205.15 J/molK.
Now the values of ΔH° and ΔS° are,
ΔH°rxn = 2 * ΔH°formation CO2 (g) + 4 * ΔH°formation H2O (g) - 2*ΔH°formation CH3OH (l)
ΔH°rxn = 2 * (-393.52) + 4 (-241.83) -2 * (-238.4)
ΔH°rxn = -1277.56 kJ/mole
ΔS°rxn = 2 * S° CO2 (g) + 4 * S° H2O (g) - 2*S° CH3OH (l) - 3 * S° O2 (g)
ΔS°rxn = 2 * 213.79 + 4 * 188.84 - 2 * 127.19 - 3*205.15
ΔS°rxn = 313.11 J/mole/K
Now the formula for calculating ΔG°rxn is,
ΔG°rxn = ΔH°rxn - TΔS°rxn
ΔG°rxn = -1277.56 * 1000 J/mole - 298 * 313.11 J/mole
ΔG°rxn = -1370.86 kJ/mol
The displacement of a bromine atom by an amine is a substituion reaction. Write out the mechanism of this reaction (2-->3) Why might you expect that the reaction you have performed, using t-BuNH2, to be much slower than the same reaction using methylamine
Answer:
An alkyl halide can undergo SN2 reaction with an amine
Explanation:
The displacement of a bromine atom by an an amine (step 2---> 3) in the reaction sequence is an example of an SN2 reaction in which the amine is the nucleophile.
The nitrogen atom of the amine which bears a lone pair of electrons functions as the nucleophile and attacks the electrophilic carbon atom of the alkyl halide displacing the bromide and creating a new Carbon-Nitrogen bond. An ammonium intermediate is immediately formed and the reaction is completed by the abstraction of a hydrogen by a base (such as excess amine present in the system).
This reaction is slower with t-BuNH2 because of steric hindrance and steric crowding in the transition state. SN2 reactions are faster with methylamine where the alkyl carbon is easily accessible.
The detailed mechanism of this reaction has been attached to this answer.
What element is primarily used in appliances to make electronic chips
A. Silicon (Si)
B. Nickel (Ni)
C. Copper (Cu)
D. Selenium (Se)
Answer:
Option A
Explanation:
Silicon (Obtained from Sand (SiO2)) is the element that is primarily used in appliances to make electronic chips.
Answer:
A. Silicon (Si)
Explanation:
Silicon (Si) is primarily used as a semiconductor material to make electronic chips.
Not all bonds are "created equal". From the following molecules, which one contains the most easily broken carbon to carbon bond? Group of answer choices H3C—CH3 F2C=CF2 H2C=CH2 HCCH
Answer:
H3C—CH3
Explanation:
The strength of a bond is indicated by the value of its bond dissociation energy. Simply put, the bond dissociation energy is the energy required to break the bond.
Carbon forms single, double and triple bonds with itself. As a matter of fact, carbon atoms can link to each other indefinitely. This is known as catenation and has been attributed to the low bond energy of the carbon-carbon single bond.
The bond energy of the carbon-carbon single bond is about 90KJmol-1 while that of carbon-carbon double bond is about 174KJmok-1. The carbon-carbon triple bond has the highest bond dissociation energy of about 230KJmol-1.
Hence, it is easier to break carbon-carbon single bonds than double and triple bonds respectively, hence the answer.
According to the forces of attraction, the molecule which can be easily broken is CH₃-CH₃ as it has a single bond with low dissociation energy as compared to double or triple bonds.
Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.Single bonds have least dissociation energy while triple bonds have the maximum dissociation energy.
Thus,the molecule which can be easily broken is CH₃-CH₃.
Learn more about forces of attraction,here:
https://brainly.com/question/32820512
#SPJ6
Qualitatively estimate the relative melting points for each of the solids, and rank them in decreasing order.
Rank from highest to lowest melting point. To rank items as equivalent, overlap them.
sodium chloride
graphite
solid ammonia
Answer:
Graphite> sodium chloride> solid ammonia
Explanation:
Melting points of solids has a lot to do with the nature of intermolecular forces in the solid. A substance melts when the intermolecular forces holding the crystal lattice has been overcome such that that the crystal structure of the solid just collapses.
Graphite consists of covalently bonded layers of carbon atom which form a giant lattice. The melting point of graphite is very high because of the fact that the strong covalent bonds that hold the carbon atoms together in the layers require a lot of heat energy to break. Grapoghite melts at about 3600°C
Sodium chloride is an ionic compound that melts at about 801°C. The lattice is composed of alternate sodium and chloride ions.
Solid ammonia is held together by much weaker intermolecular interaction hence it has a melting point of about −77.73 °C.
A sample of an unknown gas effuses in 11.1 min. An equal volume of H2 in the same apparatus at the same temperature and pressure effuses in 2.42 min. What is the molar mass of the unknown gas
Answer:
Molar mass of the gas is 0.0961 g/mol
Explanation:
The effusion rate of an unknown gas = 11.1 min
rate of [tex]H_{2}[/tex] effusion = 2.42 min
molar mass of hydrogen = 1 x 2 = 2 g/m
molar mas of unknown gas = ?
From Graham's law of diffusion and effusion, the rate of effusion and diffusion is inversely proportional to the square root of its molar mass.
from
[tex]\frac{R_{g} }{R_{h} }[/tex] = [tex]\sqrt{\frac{M_{h} }{M_{g} } }[/tex]
where
[tex]R_{h}[/tex] = rate of effusion of hydrogen gas
[tex]R_{g}[/tex] = rate of effusion of unknown gas
[tex]M_{h}[/tex] = molar mass of H2 gas
[tex]M_{g}[/tex] = molar mass of unknown gas
substituting values, we have
[tex]\frac{11.1 }{2.42 }[/tex] = [tex]\sqrt{\frac{2 }{M_{g} } }[/tex]
4.587 = [tex]\sqrt{\frac{2 }{M_{g} } }[/tex]
[tex]\sqrt{M_{g} }[/tex] = [tex]\sqrt{2}[/tex]/4.587
[tex]\sqrt{M_{g} }[/tex] = 0.31
[tex]M_{g}[/tex] = [tex]0.31^{2}[/tex] = 0.0961 g/mol
The molar mass of the unknown gas will be "0.0961 g/mol".
Given:
Effusion rate of unknown gas,
[tex]R_g = 11.1 \ min[/tex]Effusion rate of [tex]H_2[/tex],
[tex]R_h = 2.42 \ min[/tex]Molar mass of hydrogen,
[tex]M_h = 1\times 2[/tex][tex]= 2 \ g/m[/tex]
According to the Graham's law, we get
→ [tex]\frac{R_g}{R_h} = \sqrt{\frac{M_h}{M_g} }[/tex]
By substituting the values, we get
→ [tex]\frac{11.1}{2.42} = \sqrt{\frac{2}{M_g} }[/tex]
→ [tex]4.587=\sqrt{\frac{2}{M_g} }[/tex]
→ [tex]\sqrt{M_g} = \sqrt{\frac{2}{4.587} }[/tex]
[tex]\sqrt{M_g} = 0.31[/tex]
[tex]M_g = 0.0961 \ g/mol[/tex]
Thus the above solution is right.
Learn more:
https://brainly.com/question/6019799
Solid sodium oxide and gaseous water are formed by the decomposition of solid sodium hydroxide (NaOH) .
Write a balanced chemical equation for this reaction.
Answer:
2NaOH(s) → Na₂O(s) + H₂O(g)
Hope that helps.
Consider Zn + 2HCl → ZnCl2 + H2 (g). If 0.30 mol Zn is added to HCl, how many mol H2 are produced?
Answer:
0.3 mol
Explanation:
Assuming HCl is in excess and Zn is the limiting reagent,
from the balanced equation, we can see the mole ratio of Zn:H2 = 1:1,
which means, each mole of zinc reacted gives 1 mole of H2.
So, if 0.30 mol Zn is added, the no. of moles of H2 produced will also be 0.3 mol, since the ratio is 1:1.
If a radioactive isotope of thorium (atomic number 90, mass number 232) emits 6 alpha particles and 4 beta particles during the course of radioactive decay, what is the mass number of the stable daughter product?
Answer:
The mass number of the stable daughter product is 208
Explanation:
First thing's first, we have to write out the equation of the reaction. This is given as;
²³²₉₀Th → 6 ⁴₂α + 4 ⁰₋₁ β + X
In order to obtain the identity of X, we have to obtain it's mass numbers and atomic number.
There is conservation of matter so we expect the mass number to remain the same in both the reactant and products.
Mass Number
Reactant = 232
Product = (6* 4 = 24) + (4 * 0 = 0) + x = 24 + x
since reactant = product
232 = 24 + x
x = 232 - 24 = 208
Atomic Number
Reactant = 90
Product = (6* 2 = 12) + (4 * -1 = -4) + x = 8 + x
since reactant = product
90 = 8 + x
x = 90 - 8 = 82
The NMR spectrum of your final compound will contain extra peaks that were not present in your starting material. For what hydrogen nuclei do those peaks occur?
Answer:
The peaks are registered from tetramethyl silane (TMS)
Explanation:
Tetramethyl silane (TMS) is used as internal reference in proton nmr (H NMR) spectrometry.
Its peak is usually registered at about a 2.0 chemical shift means that the hydrogen atoms which caused that peak need a magnetic field two millionths less than the field needed by TMS to produce resonance. This is not affected by the chemical shift of the sample analysed.
I hope this helped.
A solution of malonic acid, H2C3H2O4, was standardized by titration with 0.0990 M NaOH solution. If 20.52 mL mL of the NaOH solution is required to neutralize completely 11.13 mL of the malonic acid solution, what is the molarity of the malonic acid solution
Answer:
0.0913 M
Explanation:
We'll begin by writing the balanced equation for the reaction.
This is given below:
H2C3H2O4 + 2NaOH —> C3H2Na2O4 + 2H2O
From the balanced equation above, we obtained the following:
The mole ratio of the acid (nA) = 1
The mole ratio of the base (nB) = 2
Data obtained from the question include:
Molarity of base, NaOH (Mb) = 0.0990 M
Volume of base, NaOH (Vb) = 20.52 mL
Volume of acid, H2C3H2O4 (Va) = 11.13 mL
Molarity of acid, H2C3H2O4 (Ma) =..?
The molarity of the acid, H2C3H2O4 can be obtained as follow:
MaVa/MbVb = nA/nB
Ma x 11.13 / 0.0990 x 20.52 = 1/2
Cross multiply
Ma x 11.13 x 2 = 0.0990 x 20.52 x 1
Divide both side by 11.13 x 2
Ma = (0.0990 x 20.52)/ (11.13 x 2)
Ma = 0.0913 M
Therefore, the molarity of malonic acid, H2C3H2O4 solution is 0.0913 M
Which sample is most likely to experience the smallest temperature change upon observing 55KJ of heat? 
Answer:
100 g of water: specific heat of water 4.18 J/g°C
Explanation:
To know the correct answer to the question, we shall determine the temperature change in each case.
For 100 g of water:
Mass (M) = 100 g
Specific heat capacity (C) = 4.18 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 100 x 4.18 x ΔT
Divide both side by 100 x 4.18
ΔT = 55000/ (100 x 4.18)
ΔT = 131.6 °C
Therefore the temperature change is 131.6 °C
For 50 g of water:
Mass (M) = 50 g
Specific heat capacity (C) = 4.18 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 50 x 4.18 x ΔT
Divide both side by 50 x 4.18
ΔT = 55000/ (50 x 4.18)
ΔT = 263.2 °C
Therefore the temperature change is 263.2 °C
For 50 g of lead:
Mass (M) = 50 g
Specific heat capacity (C) = 0.128 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 50 x 0.128 x ΔT
Divide both side by 50 x 0.128
ΔT = 55000/ (50 x 0.128)
ΔT = 8593.8 °C
Therefore the temperature change is 8593.8 °C.
For 100 g of iron:
Mass (M) = 100 g
Specific heat capacity (C) = 0.449 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 100 x 0.449 x ΔT
Divide both side by 100 x 0.449
ΔT = 55000/ (100 x 0.449)
ΔT = 1224.9 °C
Therefore the temperature change is 1224.9 °C.
The table below gives the summary of the temperature change of each substance:
Mass >>> Substance >> Temp. Change
100 g >>> Water >>>>>> 131.6 °C
50 g >>>> Water >>>>>> 263.2 °C
50 g >>>> Lead >>>>>>> 8593.8 °C
100 g >>> Iron >>>>>>>> 1224.9 °C
From the table given above we can see that 100 g of water has the smallest temperature change.
Which of the following best describes hydrocarbons? a. Alkanes in which a hydrogen atom is replaced by a hydroxyl group b. Binary compounds of carbon and hydrogen c. Organic compounds containing water and carbon d. Covalently bonded carbon compounds which have intermolecular force attractions to hydrogen compounds e. Compounds which are formed by the reaction of a naturally occurring carbon-containing substance and water
Answer:
b. Binary compounds of carbon and hydrogen
Explanation:
Before proceeding, Hydrocarbons refers to organic chemical compounds composed exclusively of hydrogen and carbon atoms. This means the only elements present in an hydrocarbon are;
- Carbon
- Hydrogen
Looking through the options;
- Option A: This is wrong because the hydroxyl group contains oxygen and hydrocarbons contain only hydrogen and carbon.
- option B: This is correct. Binary compounds refers to compounds with just two elements.
- option C: This is wrong because water contains oxygen and hydrocarbons contain only hydrogen and carbon.
- option D: Carbon atoms can contain other elements so this option is wrong.
- option E: This also wrong because we had already gotten the correct option.
The cell potential for an electrochemical cell with a Zn, Zn2 half-cell and an Al, Al3 half-cell is _____ V. Enter your answer to the hundredths place and do not leave out a leading zero, if it is needed.
Answer:
0.900 V
Explanation:
Oxidation half cell;
2Al(s) -----> 2Al^3+(aq) + 6e
Reduction half equation;
3Zn^2+(aq) + 6e ----> 3Zn(s)
E°anode = -1.66V
E°cathode= -0.76 V
E°cell= E°cathode - E°anode
E°cell= -0.76-(-1.66)
E°cell= 0.900 V
For dinner you make a salad with lettuce, tomatoes, cheese, carrots, and
croutons. Your salad would be classified as a(n)
O A. compound
OB. element
OC. homogeneous mixture
D. heterogeneous mixture
A heterogeneous mixture