Answer: 4 years after the original investment, it is approximately $1,093.
Step-by-step explanation:
Hi, to answer this question we have to apply the simple interest formula:
I = p x r x t
Where:
I = interest
P = Principal Amount
r = Interest Rate (decimal form)
t= years
Replacing with the values given
I = 1000x (2.25/100) x t
It will triple in approximately 3 years. FALSEI = 1000x (2.25/100) x 3 =67.5
1000+67.5 = 1067.5
It will no longer grow after several years: False, it will grow because it has a growth rate.4 years after the original investment, it is approximately $1,093. TRUEI = 1000x (2.25/100) x 4 =90
1000+90 = $1090
It will double in approximately 10 years.I = 1000x (2.25/100) x 10 =225
1000+90 = $1225
Feel free to ask for more if needed or if you did not understand something.
What is the equation of the following line? Be sure to scroll down first to see all answer options.
A.
y = 18x
B.
y = 9x
C.
y = -9x
D.
y = - x
E.
y = -18x
F.
y = x
Answer:
y=9x
Step-by-step explanation:
rise over run the rise is the y=9 and run is x=1.
9/1=9x
Copy the problem, mark the givens in the diagram. Given: CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC, Prove: CR ≅ HS
Help urgently needed
Explanation:
1. CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC — given
2. ∆CRH ~ ∆HSC — AA similarity theorem
3. ∠SCH ≅ ∠RHC — corresponding angles of similar triangles are congruent
4. CH ≅ HC — reflexive property of congruence
5. ∆CRH ≅ ∆HSC — SAS congruence theorem
6. CR ≅ HS — CPCTC
2.CommerceThe weight distribution of parcels sent in a certain manner is normal with meanvalue 12 pounds and standard deviation 3.5 pounds. The parcel service wishes to establish aweight valuecbeyond which there will be a surcharge. What value ofcis such that 99% ofall parcels are under the surcharge weight
Answer:
the value of c is 20.155 such that 99% of all parcels are under the surcharge weight.
Step-by-step explanation:
Given that :
The mean value [tex]\mu[/tex] = 12
The standard deviation [tex]\sigma[/tex] = 3.5
Let Consider Q to be the weight of the parcel that is normally distributed .
Then;
Q [tex]\sim[/tex] Norm(12,3.5)
The objective is to determine thewight value of c under which there is a surcharge
Also, let's not that 99% of all the parcels are below the surcharge
However ;
From the Percentiles table of Standard Normal Distribution;
At 99th percentile; the value for Z = 2.33
The formula for the Z-score is:
[tex]Z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]2.33 = \dfrac{X - 12}{3.5}[/tex]
2.33 × 3.5 = X - 12
8.155 = X - 12
- X = - 12 - 8.155
- X = -20.155
X = 20.155
the weight value of c under which there is a surcharge = X + 1 (0) since all the pounds are below the surcharge
c = 20.155 + 1(0)
c = 20.155
Thus ; the value of c is 20.155 such that 99% of all parcels are under the surcharge weight.
2) A basketball player scores 70% of his shots on average. What is the probability that he scores at least 18 successful shots tonight if he gets 20 shots?
Answer:
3.54%
Step-by-step explanation:
This question represents a binomial distribution. A binomial distribution is given by:
[tex]P(x)=\frac{n!}{(n-x)!x!} p^xq^{n-x}[/tex]
Where n is the total number of trials, p is the probability of success, q is the probability of failure and x is the number of success.
Given that:
A basketball player scores 70% of his shots on average, therefore p = 70% = 0.7. Also q = 1 - p = 1 - 0.7 = 0.3.
The total number of trials (n) = 20 shots
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20)
P(x = 18) = [tex]\frac{20!}{(20-18)!18!}*0.7^{18}*0.3^{20-18}=0.0278[/tex]
P(x = 19) = [tex]\frac{20!}{(20-19)!19!}*0.7^{19}*0.3^{20-19}=0.0068[/tex]
P(x = 20) = [tex]\frac{20!}{(20-20)!20!}*0.7^{20}*0.3^{20-20}=0.0008[/tex]
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20) = 0.0278 + 0.0068 + 0.0008 = 0.0354 = 3.54%
Find the difference of functions at x= - 3, (g - f)(-3), given f(x) and g(x): g(x) = x^2−15, and f(x) =2x
Answer:
0
Step-by-step explanation:
Solution:-
We are given two functions as follows:
[tex]f ( x ) = x^2 - 15\\\\g ( x ) = 2x[/tex]
We need to determine the composite function defined as ( g - f ) ( x ). To determine this function we need to make sure that both function exist for all real positive value of x.
The function f ( x ) is a quadratic function which has real values for all values of x. Similarly, function g ( x ) is a linear line that starts from the origin. Hence, both functions are defined over the domain ( -∞, ∞ )
We will perform arithmetic operation of subtracting function f ( x ) from g ( x ) as follows:
[tex][ g - f ] ( x ) = g ( x ) - f ( x )\\\\\\( g - f ) ( x ) = x^2 - 15 - 2x\\\\[/tex]
Now evaluate the above determined function at x = -3 as follows:
[tex]( g - f ) ( -3 ) = ( -3 )^2 - 2 ( -3 ) - 15\\\\( g - f ) ( -3 ) = 9 + 6 - 15\\\\( g - f ) ( -3 ) = 0[/tex]
Determine the t critical value for a lower or an upper confidence bound in each of the following situations. (Round your answers to three decimal places.)
a. Confidence level = 95%, df = 10
b. Confidence level = 95%, df = 15
c. Confidence level = 99%, df = 15
d. Confidence level = 99%, n = 5
e. Confidence level = 98%, df = 23
f. Confidence level = 99%, n = 32
Answer:
A. 1.812
B. 1.753
C. 2.602
D. 3.747
E. 2.069
F. 2.453
Step-by-step explanation:
A. 95% confidence level, the level of significance = 5% or 0.05
Using t-table, the critical value for a lower or an upper confidence bound at 0.05 significance level with 10 degrees of freedom = 1.182
B. 95% confidence interval = 0.05 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.05 significance level with 15 degrees of freedom = 1.753
C. 99% confidence interval = 0.01 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 15 degrees of freedom = 2.602
D. 99% confidence interval = 0.01 level of significance; DF (n - 1) = 5- 1 = 4
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 4 degrees of freedom = 3.747
E. 98% confidence interval = 0.02 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.02 significance level with 23 degrees of freedom = 2.069
F. 99% confidence interval = 0.01 level of significance; df (n - 1) = 32 - 1 = 31
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 31 degrees of freedom = 2.453
I need help with this !!
Answer:
A
Step-by-step explanation:
When subtracting 7 on the left of the equation, he also needs to subtract 7 from the right of the equation.
Step 2 should be:
⅓X +7 -7= 15 -7
What he is trying to do here by subtracting 7 is to move all the constants, that is numbers without any variables such as x, to one side of the equation.
⅓X= 8
X= 8 ×3
X= 24
Is 3 a solution to the equation 6x – 7 = 12?
Answer:
3 is not a solution
Step-by-step explanation:
6x – 7 = 12?
Substitute 3 in for x and see if the equation is true
6*3 - 7 = 12
18-7 = 12
11 =12
This is false so 3 is not a solution
Mai invests $20,000 at age 20. She hopes the investment will be worth $500,000 when she turns 40. If the interest compounds continuously, approximately what rate of growth will she need to achieve her goal? Round to the nearest tenth of a percent.
Answer:16.1%
Step-by-step explanation:
Answer:
The investment needs the rate of growth to be approximately 16.1%.
Step-by-step explanation:
How to calculate a circumference of a circle?
Answer: Pi multiplied by the diameter of the circle
Step-by-step explanation:
Answer:
The formula for finding the circumference of a circle is [tex]C = 2\pi r[/tex]. You substitute the radius of the circle for [tex]r[/tex] and multiply it by [tex]2\pi[/tex].
Hypothesis Testing
Problem 1. Adults saving for retirement
In a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement. Does
the sample evidence suggest that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement? Use a 0.05 level of significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why.
8. What do you conclude?
Problem 2: Google Stock
Google became a publicly traded company in August 2004. Initially, the stock traded over 10 million shares each day! Since the initial offering, the volume of stock traded daily has
decreased substantially. In 2010, the mean daily volume in Google stock was 5.44 million shares, according to Yahoo!Enance. A random sample of 35 trading days in 2014 resulted in a
sample mean of 3.28 million shares with a standard deviation of 1.68 million shares. Does the evidence suggest that the volume of Google stock has changed since 2007? Use a 0.05 level of
significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why
8. What do you conclude?
Answer:
Problem 1: We conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2: We conclude that the volume of Google stock has changed.
Step-by-step explanation:
Problem 1:
We are given that in a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement.
Let p = proportion of adult Americans without a high school diploma who are worried about having enough saved for retirement
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 50% {means that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement}
Alternate Hypothesis, [tex]H_A[/tex] : p > 50% {means that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement}
This is a right-tailed test.
The test statistics that would be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of adult Americans who were worried about having enough saved for retirement = [tex]\frac{156}{295}[/tex] = 0.53
n = sample of adult Americans = 295
So, the test statistics = [tex]\frac{0.53-0.50}{\sqrt{\frac{0.50(1-0.50)}{295} } }[/tex]
= 1.03
The value of z-test statistics is 1.03.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.03) = 1 - P(Z [tex]\leq[/tex] 1.03)
= 1 - 0.8485 = 0.1515
Now, at a 0.05 level of significance, the z table gives a critical value of 1.645 for the right-tailed test.
Since the value of our test statistics is less than the critical value of z as 1.03 < 1.645, so we insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2:
We are given that a random sample of 35 trading days in 2014 resulted in a sample mean of 3.28 million shares with a standard deviation of 1.68 million shares.
Let [tex]\mu[/tex] = mean daily volume in Google stock
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 5.44 million shares {means that the volume of Google stock has not changed}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 5.44 million shares {means that the volume of Google stock has changed}
This is a two-tailed test.
The test statistics that would be used here is One-sample t-test statistics because we don't know about the population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean volume in Google stock = 3.28 million shares
s = sample standard deviation = 1.68 million shares
n = sample of trading days = 35
So, the test statistics = [tex]\frac{3.28-5.44}{\frac{1.68}{\sqrt{35} } }[/tex] ~ [tex]t_3_4[/tex]
= -7.606
The value of t-test statistics is -7.606.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_3_4[/tex] < -7.606) = Less than 0.05%
Now, at a 0.05 level of significance, the t table gives a critical value of -2.032 and 2.032 at 34 degrees of freedom for the two-tailed test.
Since the value of our test statistics doesn't lie within the range of critical values of t, so we sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the volume of Google stock has changed.
Please help
ASAP
ANSWERS
A-48.21
B-66.35
C-53.68
D-28.34
Answer:
B
Step-by-step explanation:
Using the cosine ratio in the right triangle
cos54° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{39}{AB}[/tex] ( multiply both sides by AB )
AB × cos54° = 39 ( divide both sides by cos54° )
AB = [tex]\frac{39}{cos54}[/tex] ≈ 66.35 → B
The cost of plastering the 4 walls of a room which is 4m high and breadth one third of its length is Rs. 640 at the rate of Rs. 5/m². What will be the cost of carpeting its floor at the rate of Rs. 250/m².
Answer:
Rs. 32,000
Step-by-step explanation:
height = 4m
let length = x m
breadth = x/3 m
Area of the 4 walls = 2(length × height) + 2(breadth × height)
Area = 2(4×x) + 2(4 × x/3) = 8x + (8x)/3
Area = (32x)/3 m²
1 m² = Rs. 5
The cost for an area that is (32x)/3 m²= (32x)/3 × 5 Rs.
The cost of plastering 4 walls at Rs.5 per m² = 640
(32x)/3 × 5 = 640
(160x)/3 = 640
x = length = 12
Area = (32x)/3 m² = (32×12)/3 = 128m²
The cost of carpeting its floor at the rate of Rs. 250/m²:
= 128m² × Rs. 250/m² = 32,000
The cost of carpeting its floor at the rate of Rs. 250/m² = Rs. 32,000
Need Answers ASAP!!!!
Answer:
15.9degrees
Step-by-step explanation:
in photo above
Answer:
[tex]\boxed{15.95\°}[/tex]
Step-by-step explanation:
The angle can be found by using trigonometric functions.
tan (θ) = [tex]\frac{opposite}{adjacent}[/tex]
tan (θ) = [tex]\frac{4}{14}[/tex]
θ = [tex]tan^{-1} \frac{4}{14}[/tex]
θ = 15.9453959
θ ≈ 15.95
A rectangle's length and width are in a ratio of 10:1. The perimeter is 66 feet. What are the length and width?
hii
Step-by-step explanation:
length-10x
width-x
perimeter-2(l+b)
66=2(10x+x)
66-2=10x+x
64=11x
x=11/64
lenght-11
width-64
Which expressions are equivalent to: 3(−2a - 4)+3a? A: -6a - 12 +3a B: 3a+12 C: none of the above smh
Answer:
AStep-by-step explanation:
3(−2a - 4)+3a
=-6a - 12 +3a
A: -6a - 12 +3a
[tex]hope \: this \: helps[/tex]
Answer:
the answer is A
Step-by-step explanation:
you have to distribute the number 3 throughout the parentheses so (3*-2a-3*4)+3a = -6a-12+3a
An article in Fire Technology, 2014 (50.3) studied the effectiveness of sprinklers in fire control by the number of sprinklers that activate correctly. The researchers estimate the probability of a sprinkler to activate correctly to be 0.7. Suppose that you are an inspector hired to write a safety report for a large ballroom with 10 sprinklers. Assume the sprinklers activate correctly or not independently. (a) What is the probability that all of the sprinklers will operate correctly in a fire
Answer:
probability that all of the sprinklers will operate correctly in a fire: 0.0282
Step-by-step explanation:
In order to solve this question we will use Binomial probability distribution because:
In the question it is given that the sprinklers activate correctly or not independently. The number of outcomes are two i.e. sprinklers activate correctly or not.A binomial distribution is a probability of a success or failures outcomes in an repeated multiple or n times.
Number of outcomes of this distributions are two.
The formula is:
b(x; n, P) = [tex]C_{n,x}*p^{x} * (1 - p)^{n-x}[/tex]
b = binomial probability also represented as P(X=x)
x =no of successes
P = probability of a success on a single trial
n = no of trials
[tex]C_{n,x}[/tex] is calculated as:
[tex]C_{n,x}[/tex] = n! / x!(n – x)!
= 10! / 10!(10-10)!
= 1
According to given question:
probability of success i.e. p = 0.7 i.e. probability of a sprinkler to activate correctly.
number of trials i.e. n = 10 as number of sprinklers are 10
To find: probability that all of the sprinklers will operate correctly in a fire
X = 10 because we have to find the probability that "all" of the sprinklers will operate correctly and there are 10 sprinklers so all 10 of them
So putting these into the formula:
P(X=x) = [tex]C_{n,x}*p^{x} * (1 - p)^{n-x}[/tex]
= C₁₀,₁₀ * 0.7¹⁰ * (1-0.7)¹⁰⁻¹⁰
= 1 * 0.0282 * (0.3) ⁰
= 1 * 0.0282 * 1
P(X=x) = 0.0282
A rectangular parking lot has an area of 7/10 km 2.The width is 1/3 km 2 .What is the length of the parking lot written as a improper fraction ,in kilometers
Answer:
[tex]\dfrac{21}{10}\text{ km}[/tex].
Step-by-step explanation:
It is given that,
Area of rectangular plot [tex]=\dfrac{7}{10}\text{ km}^2[/tex]
Width of rectangular plot [tex]=\dfrac{1}{3}\text{ km}[/tex]
We need to find the length of the parking lot.
We know that,
[tex]\text{Area of rectangle}=length\times width[/tex]
[tex]\dfrac{7}{10}=length\times \dfrac{1}{3}[/tex]
[tex]\dfrac{7\times 3}{10}=length[/tex]
[tex]length=\dfrac{21}{10}[/tex]
Therefore, length of the parking lot is [tex]\dfrac{21}{10}\text{ km}[/tex].
Find the measures of the angles in the figure.
Answer:
[tex]120^o,\,120^o,\,60^o,\,\,\,and\,\,\,60^o[/tex]
which agrees with the first answer in the list of possible options.
Step-by-step explanation:
We can use the fact that the addition of all four internal angles of a quadrilateral must render [tex]360^o[/tex]. Then we can create the following equation and solve for the unknown "h":
[tex]2h+2h+h+h = 360^o\\6h=360^o\\h=60^o[/tex]
Therefore the angles of this quadrilateral are:
[tex]120^o,\,120^o,\,60^o,\,\,\,and\,\,\,60^o[/tex]
Answer:60,60,120,120
Step-by-step explanation:All qualdrilaterals equal to 360, so if you add all of the different numbers you should get 360
Please help me with this!
Answer:
5:1
Step-by-step explanation:
20/4= 5
1*5 = 5
5:1 ratio
Hope this helps!
A sector with a central angle measure of 200 degrees has a radius of 9 cm. What is the area of the sector?
Answer:
[tex]\boxed{Area\ of\ sector = 141.4\ cm^2}[/tex]
Step-by-step explanation:
Radius = r = 9 cm
Angle = θ = 200° = 3.5 radians
Now,
[tex]Area \ of \ sector = \frac{1}{2} r^2 \theta[/tex]
Area = 1/2 (9)²(3.5)
Area = 1/2 (81)(3.5)
Area = 282.7 / 2
Area of sector = 141.4 cm²
Answer:
45 pi cm^2 or 141.3 cm^2
Step-by-step explanation:
First find the area of the circle
A = pi r^2
A = pi (9)^2
A = 81 pi
A circle has 360 degrees
The shaded part has 200
The fraction that is shaded is
200/360 =5/9
Multiply by the total area
5/9 * 81 pi
45 pi
Using 3.14 for pi
141.3
45 pi cm^2 or 141.3 cm^2
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2. What is the lateral area of the smaller cylinder? 17.1π mm2 33.6π mm2 60π mm2 84π mm2
Answer:
84π mm^2
Step-by-step explanation:
formula for circumference is 2πr where r is the radius of circle
Given,The circumference of the base of a cylinder is 24π mm
Thus,
2πr= 24π mm
=> r = 24π mm/2π = 12 mm
________________________________________
A similar cylinder has a base with circumference of 60π mm.
radius for this cylinder will be
2πr= 60π mm
r = 60π mm/2π = 30mm
______________________________________________
Given
The lateral area of the larger cylinder is 210π mm2
lateral area of cylinder is given by 2πrl
where l is the length of cylinder
thus,
r for larger cylinder = 30mm
2π*30*l = 210π mm^2
=> l = 210π mm^2/2π*30 = 3.5 mm
___________________________________________
the lateral area of the smaller cylinder
r = 12 mm
l = 3.5 mm as both larger and smaller cylinder are same
2πrl = 2π*12*3.5 mm^2 = 84π mm^2 answer
Answer:
33.6pi mm2 is the correct answer
edge 2021
Step-by-step explanation:
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2.
What is the lateral area of the smaller cylinder?
17.1π mm2
33.6π mm2
60π mm2
84π mm2
Find the slope of the line passing through the points (-3, -8) and (4,6).
Answer:
slope = 2Step-by-step explanation:
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have
[tex](-3;\ -8)\to x_1=-3;\ y_1=-8\\(4;\ 6)\to x_2=4;\ y_2=6[/tex]
Substitute:
[tex]m=\dfrac{6-(-8)}{4-(-3)}=\dfrac{6+8}{4+3}=\dfrac{14}{7}=2[/tex]
The formula for the slope m of the line that passes through two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is the following:
[tex]m=\dfrac{y_1-y_2}{x_1-x_2}[/tex]
We have points (4,6) and (-3,-8). Let's plug these values into the formula for slope:
[tex]m=\dfrac{6-(-8)}{4-(-3)}[/tex]
[tex]=\dfrac{14}{7}=2[/tex]
The slope of the line passing through the two points is 2. Let me know if you need any clarifications, thanks!
Sam invest $4000 in an account that compounds interest continuously and earns 5.5% how long will it take for his money to reach $80,000 round to the nearest 10th of a year
Answer:
54.5 years.
Step-by-step explanation:
From the above question, we are asked to find the time
The formula for Time(t) =
t = log(A/P) / n[log(1 + r/n)]
A = Amount accumulated after a particular interest and period of time = $80,000
P = Principal (Money invested) = $4,000
r = rate = 5.5% = 0.055
n = compounding frequency = compounding continuously
n = number of days in a year × number of hours in a day
= 365 days × 24 hours = 8760
t = log(A/P) / n[log(1 + r/n)]
t = log(80,000/4,000) /8760[log(1 + 0.055/8760)]
t = log(80000 ÷ 4000) ÷ (8760 × [log(1 + 0.0000062785)]
t = 54.468367222 years
Approximately to the nearest tenth of a year, therefore, the length of time it will it take for his money to reach $80,000 is 54.5 years
Answer:
54.5
Step-by-step explanation:
The exact heights of different elephants Choose the correct answer below. A. The data are continuous because the data can only take on specific values. B. The data are discrete because the data can take on any value in an interval. C. The data are discrete because the data can only take on specific values. D. The data are continuous because the data can take on any value in an interval.
Answer:
Option d: The data are continuous because the data can take on any value in an interval.
Step-by-step explanation:
The data are continuous if they can take on any value within a range. In this case study, there are different elephants including small/young ones and big ones/old ones.
Thus, their heights will vary and can take on any value within a particular range.
PLEASE HELP QUICK! Determine x value of: sqrt x + 8 - sqrt x - 4 = 2
Answer:
x=8
Step-by-step explanation:
[tex]\sqrt{x+8}-\sqrt{x-4}=2\\\sqrt{x+8}=2+\sqrt{x-4}\\\left(\sqrt{x+8}\right)^2=\left(2+\sqrt{x-4}\right)^2\\x+8=x+4\sqrt{x-4}\\8=4\sqrt{x-4}\\8^2=\left(4\sqrt{x-4}\right)^2\\64=16x-64\\x=8[/tex]
In a soccer league, the ratio of boys to girls is 4 to 6. There are a total of 50 players in the soccer league. Determine how many girls play in the soccer league.
Answer:
30
Step-by-step explanation:
We can call the number of boys 4x and girls 6x so we can write:
4x + 6x = 50
10x = 50
x = 5, therefore the number of girls is 6x = 6 * 5 = 30.
Answer:
30
Step-by-step explanation:
In the ratio 4:6, we can think of this like 4 boys and 6 girls out of 10 team members.
We can find how many girls play by multiplying 6 by 5, since 50 divided by 10 is 5.
6(5) = 30, so 30 girls play in the soccer league.
WILL MARK AS BRAINLIEST 4. Suppose there is a card game where you are dealt a hand of three cards. You have already learned that the total number of three-card hands that can be dealt from a deck of 52 cards is: 52C3=52!/49!3! 52C3=22100 Calculate the probability of getting a hand that has exactly two aces in it (A A X). Do this by finding out the number of possible hands that have exactly two aces, and then dividing by the total possible number of three-card hands that is stated above. Part A: Use the multiplication principle to tell the total number of three-card hands (permutations) that can be made with two aces. (2 points) Part B: In the answer from Part I, each two-ace hand got counted twice. For example, A A X got counted as a separate hand from A A X. Since order should not matter in a card hand, these are really the same hand. What is the actual number of two-ace hands (combinations) you can get from a deck of 52 cards?(2 points) Part C: Find the probability of drawing a three-card hand that includes two aces from a deck of 52 cards. Write your answer as a fraction. (2 points)
Answer:
Part A- 6
Part B- 3
Part C- 3/22100
Step-by-step explanation:
Part A-
Use the permutation formula and plug in 3 for n and 2 for k.
nPr=n!/(n-k)!
3P2=3!/(3-2)!
Simplify.
3P2=3!/1!
3P2=6
Part B-
Use the combination formula and plug in 3 for n and 2 for k.
nCk=n!/k!(n-k)!
3C2=3!/2!(3-2)!
Simplify.
3C2=3!/2!(1!)
3C2=3
Part C-
It is given that the total number of three-card hands that can be dealt from a deck of 52 cards is 22100. Use the fact that the probability of something equals the total successful outcomes over the sample space. In this case the total successful outcomes is 3 and the sample space is 22100.
I believe the answer is 3/22100
I honestly suck at probability but I tried my best.
A circle is centered at CC-1, -3) and has a radius of 6.
Where does the point P(-6, -6) lie?
Choose 1 answer:
Inside the circle
On the circle
Outside the circle
Answer:
outside the circle i think
Step-by-step explanation:
Answer:
inside the circle
Step-by-step explanation:
need help thanksssssssss
Answer:
Volume: 112 m³.
Surface area: 172 m².
Step-by-step explanation:
The volume is the base times height times length. So, the volume will be 2 * 8 * 7 = 16 * 7 = 112 m³.
The surface area is 2lw + 2lh + 2wh. l = 8; w = 7; h = 2.
2(8)(7) + 2(8)(2) + 2(7)(2) = 2 * 56 + 2 * 16 + 2 * 14 = 112 + 32 + 28 = 112 + 60 = 172 m².
Hope this helps!