Answer:
The p-value is 0.025
Step-by-step explanation:
Given that:
30% of the people in Washington state want cell phone use banned in cafes
sample size N = 1450
X = 474 people have the same opinion.
The objective is to calculate the p-value.
Let's assume the level of significance = 5% = 0.05
From the information given ; the null and alternative hypothesis can be computed as:
[tex]\mathbf{H_o: p = 0.30 } \\ \\ \mathbf{H_a: p \neq 0.30}}[/tex]
USING MINITAB; the simulation on what we compute on our MINITAB can be written as:
Test for p = 0.3 vs p not = 0.3
Sample X N Sample p 95 C.I Z-value P-value
1 474 1450 0.326897 (0.302752, 0.351041) 2.23 0.025
From what we have in our MINITAB Output;
Z - value = 2.23
P-Value = 0.025
Please help I don't understand this at all
Answer:
Since ΔABC is equilateral, ∠ACB = 60°. Since ΔCED is isosceles (we know this because CE = ED from the graph), ∠ECD = ∠EDC from Base Angles Theorem, and since the sum of angles in a triangle is 180°, they measure (180 - 32) / 2 = 74° each. Since BCD is a straight line, it measures 180° so we can write:
60 + x + 74 = 180
134 + x = 180
x = 46°
Answer:
46 degrees
Step-by-step explanation:
Since triangle ABC is equilateral that means each angle in that triangle is 60 degrees.
We also know that for triangle ECD angle C and angle D have to be 74 degrees, because a triangle has 180 degrees in total and the only unique angle is at the top which is 32. So it is 180-32=148, than 148/2=74.
We than know that a half circle is 180 degrees aswell, so we do 180-60=120
120-74=46
Please give me the correct answer her please
Answer:
9.3 inStep-by-step explanation:
m∠UTV = 112° ⇒ m∠WTV = 180° - 112° = 68°
sin(68°) ≈ 0.9272
sin(∠WTV) = WV/TV
WV/10 ≈ 0.9272
WV ≈ 9.272
WV ≈ 9.3
3) In a paddling pool there are 30 floating ducks. Each duck is marked with a number on the underside. 15 are marked with the number 1, 9 are marked with the number 2 and 6 are marked with number 3. There are prizes for those who pick a duck with the number 3 on it. What is the probability of Molly picking a duck with the number 3 on it? Give your answer as a fraction in its lowest terms.
Answer: 1/5
Step-by-step explanation:
Given the following :
Total number of ducks in pool = 30
Mark 1 = 15 ducks
Mark 2 = 9 ducks
Mark 3 = 6 ducks
Probability of picking a duck with Mark 3:
Probability = (number of required outcomes / total possible outcomes)
Number of required outcomes = number of ducks with mark 3 = 6 ducks
P(picking a duck with Mark 3) = 6/30
6/30 = 1/5
= 1/5
given that sin x equals to a over b then what is tan x
Answer:
Hey there!
Sine is equal to opposite/hypotenuse
Tangent is equal to opposite/adjacent
opposite=a
hypotenuse=b
adjacent=c
Thus, tangent x= a/c.
Hope this helps :)
Answer:
tan x = a/sqrt(b^2 - a^2)
Step-by-step explanation:
sin x = a/b = opp/hyp
tan x = opp/adj
adj^2 + opp^2 = hyp^2
adj^2 + a^2 = b^2
adj = sqrt(b^2 - a^2)
tan x = a/sqrt(b^2 - a^2)
Based on your work in Question 1 through 3, what is the relationship between the radius, AB , and the tangent line, BC ? What can you conclude about any tangent line to a circle and the radius of the circle? Explain.
Without further context I can't say much other than the radius is perpendicular to the tangent. In other words, the radius and tangent line form a 90 degree angle. This is one particular radius and its not just any radius. The radius in question must have the point of tangency as its endpoint.
The radius, AB is perpendicular to the tangent line, BC so their slopes are negative reciprocals of one another. Because I generated a circle at random for this activity, this conclusion likely applies to any tangent line to a circle. In other words, the tangent line to any circle is perpendicular to the radius at their point of intersection.
What is the diameter of the circle whose center is at (6, 0) and that passes through the point (2, -3)?
Answer:
10
Step-by-step explanation:
[tex]\left(x-h\right)^{2}+\left(y-k\right)^{2}=r^2[/tex]
[tex]\left(x-6\right)^{2}+\left(y-0\right)^{2}=r^2\\[/tex]
We used (2,-3)
[tex]\left(2-6\right)^{2}+\left(-3-0\right)^{2}=25[/tex]
[tex]r^2=25\\[/tex] , so [tex]r = 5[/tex]
But this one is asking for the diameter, and to find it. It's simply 2r.
2*5 = 10
2/3 divided by 5?If she walks 2/3 by another 5.
Answer:
The answer is 0.133
Step-by-step explanation:
All you have to do is take 2/3 as if it was a whole number and divide it by 5, or if you are able to use a calculator, you can just but it in as 2 divided by 3 and then divide 5 by whatever answer you get.
Answer:
Hello! 2/3 divided by 5 in fraction will be 2/15
Step-by-step explanation:
Since we have a 5 we need to change that into a fraction
5 would turn into 1/5
Now you have to multiply both of the fractions to get your answer.
2/3 x 1/5
= 2/15
(So 2/15 will be your answer.)
Hope this helps! :)
Please answer it now in two minutes
Answer:
3.9
Step-by-step explanation:
Pythagorean theorem:
a^2 + b^2 = c^2
a^2 + 1^2 = 4^2
a^2 + 1 = 16
a^2 = 15
a = sqrt(15)
a = 3.9
Answer a = 3.9 yards
Answer:
[tex]\boxed{3.9}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
Apply Pythagorean theorem.
[tex]a^2 + b^2 = c^2[/tex]
[tex]a^2 + 1^2 = 4^2[/tex]
[tex]a^2 + 1 = 16[/tex]
[tex]a^2 = 15[/tex]
[tex]a=\sqrt{15}[/tex]
[tex]a \approx 3.872983[/tex]
simplify (5 √2 - 1) ^2
find the value of x and explain
Answer:
D
Step-by-step explanation:
The chord- chord angle 105° is half the sum of the arcs intercepted by the angle and its vertical angle, thus
[tex]\frac{1}{2}[/tex](120 + x) = 105 ( multiply both sides by 2 )
120 + x = 210 ( subtract 120 from both sides )
x = 90 → D
Let f(x) = 3x + 5 and g(x) = x2. Find g(x) − f(x).
Answer:
2x-(3x+5) = -x-5
Step-by-step explanation:
2x + 0
-
3x + 5
-———————-
-x - 5
what is the distance between the points (4, 5) and (10, 13) on a coordinte plane a. 12 units b. 8 units c. 10 units d. 14 units
Answer:
10 unitsOption C is the correct option
Step-by-step explanation:
Let the points be A and B
A ( 4 , 5 ) ------> ( x1 , y1 )
B ( 10 , 13 ) ------> ( x2 , y2 )
Now, let's find the distance between these points:
[tex] \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
plug the values
[tex] = \: \sqrt{(10 - 4) ^{2} + {(13 - 5)}^{2} } [/tex]
Calculate the difference
[tex] = \sqrt{ {(6)}^{2} + {(8)}^{2} } [/tex]
Evaluate the power
[tex] = \sqrt{36 + 64} [/tex]
Add the numbers
[tex] = \sqrt{100} [/tex]
Write the number in exponential form with. base of 10
[tex] = \sqrt{ {(10)}^{2} } [/tex]
Reduce the index of the radical and exponent with 2
[tex] = 10 \: units[/tex]
Hope this helps..
Best regards!!
write the sum of twice a number and eleven as an algebraic expression
Answer:
2x-11
Step-by-step explanation:
2 x X = 2x + 11
no clue how to do this, someone pls help
Answer:
6π
Step-by-step explanation:
First we need to find the circumference of the circle. We know that the radius is 4 and the formula is πd or 2πr
Leaving it in terms of pi, the circumference is 8π
Now we need to find the length of the arc.
Since the missing part of the circle is labeled with a right angle, we know that it's exactly 1/4 of the whole circle. That means the arc we need to find is 3/4 of the circumference.
3/4 of 8π is 6π
74 divided by 3 times 7 equals what?
Answer:
518 / 3.
Step-by-step explanation:
(74 / 3) * 7 = (74 * 7) / 3 = 518 / 3 = 172 and 2/3 = 172.6666666667.
Hope this helps!
Evaluate 7m + 2n - 8p/n for m = –4, n = 2, and p = 1.5.
Answer:
-30
Step-by-step explanation:
7m + 2n - 8p/n
Let m = –4, n = 2, and p = 1.5
7(-4) + 2 ( 2) -8*(1.5)/2
-28 + 4 - 4*1.5
-28+ 4 - 6
-30
Answer:
-30
Step-by-step explanation:
Hey there!
Well given,
m = -4
n = 2
p = 1.5
We need to plug those number into,
7m + 2n - 8p/n
7(-4) + 2(2) - 8(1.5)/(2)
-28 + 4 - 12/2
-28 + 4 - 6
-24 - 6
-30
Hope this helps :)
find the distance of the line segment joining the two points (-4 /2 - /12) and (/32, 2/3)
Answer: [tex]4\sqrt{3}[/tex] .
Step-by-step explanation:
Distance formula : Distance between points (a,b) and (c,d) is given by :-
[tex]D=\sqrt{(d-b)^2+(b-a)^2}[/tex]
Distance between points [tex](-4\sqrt{2},\sqrt{12}) \text{ and }(-\sqrt{32}, 2\sqrt{3})[/tex].
[tex]D=\sqrt{(2\sqrt{3}-(-\sqrt{12}))^2+(-\sqrt{32}-(-4\sqrt{2}))}\\\\=\sqrt{(2\sqrt{3}+\sqrt{2\times2\times3})^2+(-\sqrt{4\times4\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}-\sqrt{2^2\times3})^2+(-\sqrt{4^2\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}+2\sqrt{3})^2+(-4\sqrt{2}+4\sqrt{2})^2}\\\\=\sqrt{(4\sqrt{3})^2+0}\\\\=4\sqrt{3}\text{ units}[/tex]
Hence, the correct option is [tex]4\sqrt{3}[/tex] .
$i^{11} + i^{16} + i^{21} + i^{26} + i^{31}$[tex]$i^{11} + i^{16} + i^{21} + i^{26} + i^{31}$[/tex]
Answer:
Step-by-step explanation:
i^{11}+i^{16}+i^{21}+i^{26}+i^{31}
[tex]=(i^{2} )^5i+(i^{2} )^8 +(i^{2} )^{10} i+(i^{2} )^{13}+(i^{2} )^{15} i\\=(-1)^5 i+(-1)^8+(-1)^{10} i+(-1)^{13} +(-1)^{15} i\\=- i+1+i-1-i\\=0- i[/tex]
Solve for x. 60 10 20 120
Answer:
Hey there!
We have the angle is equal to half the measure of the arc of 120 degrees. (Just another rule for circles)
7x-10=0.5(120)
7x-10=60
7x=70
x=10
Hope this helps :)
Answer:
x = 10
Step-by-step explanation:
Tangent Chord Angle = 1/2 Intercepted Arc
7x-10 = 1/2 ( 120)
7x -10 = 60
Add 10 to each side
7x -10+10 = 60+10
7x = 70
Divide by 7
7x/7 = 70/7
x = 10
The roots of 100x2 – 20x + 1 = 0 is:
Answer:
x = 0.1Step-by-step explanation:
[tex]100x^2-20x+1=0\\\\(10x)^2-2\cdot10x\cdot1+1^2=0\\\\(10x-1)^2=0\\\\10x-1=0\\\\10x=1\\\\x=0.1[/tex]
Determine the value of x.
Answer:
B. 6sqrt(2).
Step-by-step explanation:
Since the two legs of the right triangle are congruent, this is a 45-45-90 triangle. That means that the hypotenuse will measure xsqrt(2) units, and each leg will measure x units.
In this case, x = 6.
So, the hypotenuse is B. 6sqrt(2).
Hope this helps!
A bag contains two red marbles, two green ones, one lavender one, five yellows, and six orange marbles. HINT [See Example 7.] How many sets of four marbles include one of each color other than lavender?
Answer: 120
Step-by-step explanation:
Given: A bag contains two red marbles, two green ones, one lavender one, five yellows, and six orange marbles.
The total number of marbles in the bag : 2+2+1+5+6=16
Now, the number of ways of selecting sets of four marbles include one of each color other than lavender is
[tex]\( C(2,1) \times C(2,1) \times C(5,1) \times C(6,1)=2 \times 2 \times 5 \times 6\)=120[/tex] [[tex]\because\ C(n,1)=n[/tex]]
Hence, the number of sets of four marbles include one of each color other than lavender = 120
Find the value of x.
Answer:
8.8Option A is the correct option.
Step-by-step explanation:
As PW is the median.
PW = [tex] \frac{1}{2} [/tex] ( YZ + TM )
Plug the values
x = [tex] = \frac{1}{2} (5.5 + 12.1)[/tex]
Calculate the sum
x = [tex] = \frac{1}{2} \times 17.6[/tex]
Calculate the product
x = [tex] = 8.8[/tex]
Hope this helps...
Best regards!
Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(2, 0), B(6, 0), C(6, 7), D(2, 7). What is the area of rectangle A, B, C, D? square units NEED ASAP 40 POINTS LIGIT
Answer:
[tex]\boxed{\sf \ \ 28 \ \ }[/tex]
Step-by-step explanation:
Hello,
Please find attached the graph
AB = 6-2 = 4
DA = 7-0 = 7
So the area of the rectangle is AB * DA = 4 * 7 = 28
Hope this helps
A King wanted to replace his Prime-Minister but didn't want to upset him too much. So he called the Prime-Minister to his chamber and put two pieces of paper in his briefcase. He told the Prime-Minister that "On one piece of paper it says 'leave' and on the second piece of paper it says 'stay'". The piece of paper that you pull out of the briefcase will decide your fate." The Prime-Minister realized that both pieces of paper say 'leave'. What should the Prime-Minister do to be able to keep his position?
Answer: Ask the king to draw first and read it. Explain that if the king selects "leave" the PM's choice could only be "stay". It is then unnecessary for the PM to draw. It avoids embarrassing the king in his lie, demonstrates the PM's intelligence, and keeps his job.
Step-by-step explanation:
1. A box without a top is to be made from a rectangular piece of cardboard, with dimensions 8 in. by 10 in., by cutting out square corners with side length x and folding up the sides. (a) Write an equation for the volume V of the box in terms of x. (b) Use technology to estimate the value of x, to the nearest tenth, that gives the greatest volume. Explain your process.
Step-by-step explanation:
The dimensions are (8-2x) and (10-2x) We will say the depth of the box is x. The equation we use for the volume of the box is V=x(8-2x)(10-2x)
Answer:
part b of the answer is x=1.5 inches
Step-by-step explanation:
discriminant of xsqaure - 1/2x +1/2=0
Answer:
[tex]\boxed{D = 15/8}[/tex]
Step-by-step explanation:
=> [tex]x^2-\frac{1}{2} x +\frac{1}{2} = 0[/tex]
Comparing it with the standard form of quadratic equation [tex]ax^2+bx+c = 0,[/tex] we get
a = 1, b = -1/2 and c = 1/2
Discriminant = [tex]b^2-4ac[/tex]
[tex]D = (-1/2)^3+4(1)(1/2)\\D = -1/8 + 2\\D = \frac{-1+16}{8} \\D = \frac{15}{8}[/tex]
In the figure, m∠CED = m∠A. Complete the following proportions: ED/ A F= CE/? = CD/?
Answer:
The completed proportions are;
ED/A_F = CE/CA = CF/CD
Step-by-step explanation:
The given m∠CED = m∠A
∴ Angle ∠CDE = Angle ∠A_FC, (corresponding angles)
Angle ∠ECD = Angle ∠ACF (reflexive property)
Triangle ΔDCE is similar to triangle ΔACF (Angle Angle Angle (AAA) similarity)
In triangle ΔDCE and triangle ΔACF
m∠A is bounded by CA and A_F
m∠CED is bounded by CE and ED
∠DCE is bounded by CE and DE
∠C is bounded by CA and CF
Based on the orientation of the two triangles, we have
ED is the corresponding side to A_F, CD is the corresponding side to CF, CE is the corresponding side to CA
Therefore, we have;
ED/A_F = CE/CA = CF/CD.
PLSSSS HELP The area of a cylinder varies jointly with the radius and the height. When the radius is 3 and the height is 6 the area is 36π. Find the are when the radius is 4 and the height is 5
Answer:
167.55
Step-by-step explanation:
so it varies jointly so
A-area if cylinder
so
[tex]a \: \alpha \: \pi \: r \: ^{2} h[/tex]
so
[tex]a = k\pi \: r^{2}h[/tex]
where k is the constant
so apply the first set of values to get k=2/3
then substitute the k with the second set of values
Exit polling is a popular technique used to determine the outcome of an election prior to results being tallied. Suppose a referendum to increase funding for education is on the ballot in a large town (voting population over 100,000). An exit poll of 200 voters finds that 94 voted for the referendum. How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
Answer:
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
Step-by-step explanation:
From the information given :
An exit poll of 200 voters finds that 94 voted for the referendum.
How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
This implies that ;
the Sample size n = 200
the probability p = 0.52
Let X be the random variable
So; the Binomial expression can be represented as:
X [tex]\sim[/tex] Binomial ( n = 200, p = 0.52)
Mean [tex]\mu[/tex] = np
Mean [tex]\mu[/tex] = 200 × 0.52
Mean [tex]\mu[/tex] = 104
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{np(1-p)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(1-0.52)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(0.48)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{49.92}[/tex]
The standard deviation [tex]\sigma[/tex] = 7.065
However;
P(X ≤ 94) because the discrete distribution by the continuous normal distribution values lies in the region of 93.5 and 94.5 .
The less than or equal to sign therefore relates to the continuous normal distribution of X < 94.5
Now;
x = 94.5
Therefore;
[tex]z = \dfrac{x- \mu}{\sigma}[/tex]
[tex]z = \dfrac{94.5 - 104}{7.065}[/tex]
[tex]z = \dfrac{-9.5}{7.065}[/tex]
z = −1.345
P(X< 94.5) = P(Z < - 1.345)
From the z- table
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.