The solution is A, which is $13.50 as a two-day bike rental normally costs $7 each day multiplied by two days for a total of $14.
what is amount ?The term "amount" designates a sum or number, typically expressed in terms of monetary value or a tangible good. It can also be used to describe the whole amount of anything, such as the total time that is spent on a work or the total amount of rain that falls in a specific location. "Amount" is frequently used synonymously with "amount" or "total."
given
A two-day bike rental normally costs $7 each day multiplied by two days for a total of $14.
Joanna paid $7/2 ($3.50) on Friday thanks to a voucher she utilised to pay half the price.
The normal Saturday bike rental fee should be "x." Then, according to the issue, Joanna paid $4 less than double what renting a bike normally costs during the workweek. As a result, she spent $10 on Saturday (2($7) - $4).
As a result, she spent the following sum overall to rent the bike:
$3.50 + $10 = $13.50
The solution is A, which is $13.50 as a two-day bike rental normally costs $7 each day multiplied by two days for a total of $14.
To know more about amount visit :-
brainly.com/question/8082054
#SPJ1
jacobi measured the diagonals of three tv screens as 5 square roots of 84 inches, 46 2/3 inches, and 46.625 inches. which shows the length of the diagonals in ascending order
The length of the diagonals in ascending order is: 140/3 inches
What is algebra?Algebra is a branch of mathematics that deals with mathematical operations and symbols to represent numbers and their relationships. It involves the use of variables, which are letters or symbols that represent unknown or unspecified quantities, and manipulating equations and expressions to solve problems.
To compare the lengths of the diagonals of the three TV screens, we can simplify each expression and put them in order:
5 square roots of 84 inches
= 5 * √(4 * 21) inches
= 10 * √(21) inches
46 2/3 inches
= 140/3 inches
46.625 inches
Therefore, the length of the diagonals in ascending order is:
46.625 inches < 140/3 inches < 10 * √(21) inches
Note that we can also write the second diagonal as a mixed number, which is the form of a whole number and a fraction:
140/3 inches
= 46 2/3 inches
To learn more about algebra from the given link
https://brainly.com/question/24875240
#SPJ1
Need help!! Xxxxxxxx
The amount of people infected after t weeks is modeled by the function presented as follows:
[tex]f(t) = \frac{675000}{1 + 4000e^{-t}}[/tex]
When the epidemic began, we have that t = 0, hence the number of people is given as follows:
f(0) = 675,000/(1 + 4000)
f(0) = 169 people.
Six weeks after the epidemic began, we have that t = 6, hence the number of people is given as follows:
f(6) = 675,000/(1 + 4000 x e^(-6))
f(6) = 61,841 people.
The limiting size of the infected population is the numerator of the fraction, which is 675,000, as the denominator goes to zero when t goes to infinity.
More can be learned about exponential functions at https://brainly.com/question/2456547
#SPJ1
Simplify the expression (−1 3/4)^2 - √ [127−2(3)]
On simplifying the expression (−1 3/4)²- √ [127−2(3)] we get -127/16
Simplifying an expression:
To simplify the expression, we need to follow the order of operations, which is PEMDAS: Parentheses, Exponents, Multiplication and Division (from left to right), and Addition and Subtraction (from left to right).
First, we simplify the exponent by squaring -1 3/4 to get 49/16. Then, we simplify the expression under the square root by subtracting 2 times 3 from 127 to get 121, and we take the square root of 121 to get 11.
Here we have
(−1 3/4)²- √ [127−2(3)]
The above expression can be simplified as follows
=> (−1 3/4)²- √ [127−2(3)]
Convert the mixed fraction into an improper fraction
=> 1 3/4 = 7/4 [ ∵ 4 × 1 + 3 = 7 ]
So given expression can be
=> (−7/4)²- √ [127−2(3)]
=> (49/16) - √ [121]
=> (49/16) - 11
=> (49 - 176 /16)
=> -127/16
Therefore,
On simplifying the expression (−1 3/4)²- √ [127−2(3)] we get -127/16
Learn more about Expression at
https://brainly.com/question/30148250
#SPJ1
Identify an equation in standard form for an ellipse with its center at the origin, a vertex at (0, 6), and a co-vertex at (2, 0).
the equation of the ellipse with center at the origin, a vertex at (0, 6), and a co-vertex at (2, 0) is:(x² / 36) + (y² / 4) = 1
How to solve the question?
To write the equation of an ellipse in standard form when the center is at the origin, we need to use the following formula:
(x²/ a²) + (y² / b²) = 1
where a is the distance from the center to a vertex, and b is the distance from the center to a co-vertex.
In our problem, the center is at the origin, and a vertex is located at (0, 6), so the distance from the center to a vertex is 6. Therefore, we have:
a = 6
Similarly, a co-vertex is located at (2, 0), so the distance from the center to a co-vertex is 2. Therefore, we have:
b = 2
Substituting these values into the formula above, we get:
(x² / 6²) + (y² / 2²) = 1
Simplifying, we get:
(x² / 36) + (y² / 4) = 1
Therefore, the equation of the ellipse with center at the origin, a vertex at (0, 6), and a co-vertex at (2, 0) is:
(x² / 36) + (y² / 4) = 1
This is the equation in standard form for an ellipse with a horizontal major axis (since a is greater than b), and it represents an ellipse that is taller than it is wide. The major axis of the ellipse is the line passing through the vertices, which in this case is the y-axis, and the minor axis is the line passing through the co-vertices, which in this case is the x-axis.
To know more about vertex visit :-
https://brainly.com/question/29476657
#SPJ1
A scale drawing of a famous statue uses a scale factor of 230:1. If the height of the drawing is 1.2 feet, what is the actual height of the statue?
191.7 feet
228.2 feet
231.2 feet
276 feet
The actual height of the statue is option C 231.2 feet.
What is scale factor?A scale factor is a number used in mathematics to scale or multiply a quantity or measurement by another factor in order to establish a proportional relationship between two identical figures or objects.
In other terms, the scale factor is the ratio of the corresponding lengths, widths, or heights of the two figures or objects if they are similar, that is, they have the same shape but may range in size. This implies that you may determine the dimension of the second object by multiplying one dimension of one object by the scale factor.
Given that the scale factor is 230:1.
Thus,
actual height of statue / 230 = height of drawing / 1.2 feet
Now,
actual height of statue = (1.2 feet / 1.2 feet) * 230
actual height of statue = 230 feet
Hence, the actual height of the statue is option C 231.2 feet.
Learn more about scale factor here:
https://brainly.com/question/29464385
#SPJ1
1.what is the surface area of a cone with a radius of 5m and a slant height of 8m?
2.a box has a side of 9cm what is its surface area?
3.compute for the surface area of a cube with a side of 8cm
4.an aquarium has a length of 6m width of 10m and a height of 7m what is its surface area?
5.find the surface area of a rectangular prism with a length of 5cm width of 8cm and a height of 6cm
6.what is the surface area of a square pyramid with a side of 9cm and a height of 7cm.
What is the total surface area of the figure shown?
The total surface area of the given figure is 619.2 in², which is not listed in the provided options.
Give a brief account on total surface area.The surface area is known to be measure of the total area occupied by the surface of the object. Defining the surface area mathematically in the presence of a curved surface is better than defining the arc length of a one-dimensional curve, or the surface area of a polyhedron (i.e. an object with flat polygonal faces). Much more complicated. For a smooth surface sphere such as the following, surface area is assigned using representation as a parametric surface. This surface definition is based on calculus and includes partial derivatives and double integrals.
The triangular face of the given figure represent an equilateral triangle of sides 12 in.
Area of the triangle = (√3/4) × a²
Area of the triangular face:
= (√3/4) × 12²
= (√3/4) × 144
= 57.6 in²
Area of the rectangle = Length × width
Area of the rectangular face:
= 12 × 14
= 168 in²
Area of the given figure:
= (2 × 57.6) + (3 × 168)
= 115.2 + 504
= 619.2 in²
To know more about polygonal faces, visit:
https://brainly.com/question/16550007
#SPJ1
how can the power series method be used to solve the nonhomogeneous equation, about the ordinary point ? carry out your idea by solving the equation. you can either attach your work or type in your work.
The power series method can be used to solve a nonhomogeneous differential equation about an ordinary point by finding both a homogeneous and particular solution using a series expansion and the method of undetermined coefficients.
The power series method is a technique used to find a series solution of a differential equation. When applied to a nonhomogeneous differential equation, the method involves finding both a homogeneous solution and a particular solution.
Assuming that the nonhomogeneous differential equation has the form
y''(x) + p(x)y'(x) + q(x)y(x) = f(x)
where p(x), q(x), and f(x) are functions of x, we can begin by finding the solution to the associated homogeneous equation
y''(x) + p(x)y'(x) + q(x)y(x) = 0
Using the power series method, we can assume a solution of the form:
y(x) = a0 + a1(x - x0) + a2(x - x0)^2 + ...
where a0, a1, a2, ... are constants to be determined, and x0 is the ordinary point of the differential equation.
Next, we can find the coefficients of the power series by substituting the series solution into the differential equation and equating coefficients of like powers of (x-x0). This leads to a system of equations for the coefficients, which can be solved iteratively.
After finding the homogeneous solution, we can find a particular solution using a similar method. Assuming a particular solution of the form:
y(x) = u(x) + v(x)
where u(x) is a solution to the associated homogeneous equation, and v(x) is a particular solution to the nonhomogeneous equation, we can use the method of undetermined coefficients to find v(x). This involves assuming a form for v(x) based on the form of f(x), and then solving for its coefficients using the same technique as before.
Once we have found both the homogeneous and particular solutions, we can combine them to obtain the general solution to the nonhomogeneous differential equation.
Learn more about nonhomogeneous differential equation here
brainly.com/question/30876746
#SPJ4
how large a sample is needed if we wish to be % confident that our sample mean will be within hours of the true mean?
To determine the sample size needed to have a % confidence that our sample mean will be within hours of the true mean, we would need to use a formula. Specifically, we would use the formula: n = (Z^2 * s^2) / E^2
Where n is the sample size needed, Z is the z-score associated with the desired confidence level, s is the standard deviation of the population, and E is the margin of error (in this case, the specified difference of hours between the sample mean and true mean).
Assuming we have information about the population standard deviation (s), we can plug in the values for Z, s, and E to find the necessary sample size. For example, if we wanted to be 95% confident that our sample mean would be within 2 hours of the true mean, we would use a Z-score of 1.96 (which corresponds to a 95% confidence level). Let's say the population standard deviation is 5 hours. Plugging in these values, we would get:
n = (1.96^2 * 5^2) / 2^2
n = 96.04
So we would need a sample size of at least 97 in order to be 95% confident that our sample mean would be within 2 hours of the true mean.
To determine the sample size needed to be confident that our sample mean will be within a specific number of hours of the true mean, we need to know the confidence level, standard deviation, and margin of error (in hours). The formula for calculating the sample size is:
n = (Z^2 * σ^2) / E^2
where:
n = sample size
Z = Z-score corresponding to the desired confidence level
σ = population standard deviation
E = margin of error (in hours)
Once you provide the confidence level, standard deviation, and margin of error (hours), we can plug in the values and calculate the required
To learn more about Z score- brainly.com/question/22210584
#SPJ11
Find the surface area of the sphere. Use 3.14 for pi.
sphere is 7 yd
Beth and Jose went to dinner at a restaurant and their entire meal costed $30.75. If they want to give their server a 20% tip, about how much money should they leave on the table for the tip? Responses $6.15 $6.15 $3.07 $3.07 $36.90 $36.90 $24.60
Answer: Beth and Jose should leave a $6.15 tip.
Step-by-step explanation: We need to find 20% of $30.75 so you need to multiply 30.75 by 0.20 to find 6.15 to be 20% of 30.75.
Answer:
A) $6.15
Step-by-step explanation:
20%= 0.2
30.75 x 0.2 = 6.15
Find a degrees. a 12 13 5
In the given triangle, α is equal to 67.36°.
What is a triangle's definition?
A triangle is a two-dimensional closed geometric form that has three sides, three angles, and three vertices (corners). It is the most basic polygon, produced by joining any three non-collinear points in a plane. The sum all angles of a triangle is always 180°. Triangles are classed according to their side length (equilateral, isosceles, or scalene) and angle measurement (acute, right, or obtuse).
Now,
Using Trigonometric functions
We can use the sine function
So,
Sin α=Perpendicular/Hypotenuse
Sin α = 12/13
α=67.36°
Hence,
The value of α will be 67.36°.
To know more about triangles visit the link
brainly.com/question/2773823
#SPJ1
An 18 gram sample of a substance that's used to detect explosives has a k-value of 0.215.
Find the substance's half-life in days. Round your answer to the nearest tenth.
The substance's half-life in days is 3 days.
What is exponential decay?
If a quantity declines at a pace proportionate to its current value, exponential decay may be present. The term "exponential decay" in mathematics refers to the process of a constant percentage rate reduction in an amount over time.
Here, we have
Given: An 18-gram sample of a substance that's a by-product of fireworks has a k-value of 0.215.
We have to find the substance's half-life in days.
Using the formula for the exponential decay that is N = N₀e⁻ⁿˣ,
we have N = 18/2, N₀ = 18, and n = 0.215.
N = N₀e⁻ⁿˣ
9 = 18e⁻⁰°²¹⁵ˣ
9/18 = e⁻⁰°²¹⁵ˣ
1/2 = e⁻⁰°²¹⁵ˣ
Taking logs on both sides, we get
㏑(1/2) = -0.215x
x = ㏑(1/2)/(-0.215)
x = -0.6931/(-0.215)
x = 3.22
Hence, the substance's half-life in days is 3 days.
To learn more about the exponential decay from the given link
https://brainly.com/question/31409569
#SPJ1
in the regression of the general fertility rate (gfr) on the tax personal exemption (pe) and its first lag the fitted regression is: what is the impact propensity?
The impact propensity can be interpreted as the slope coefficient for the tax personal exemption (pe) or its first lag in
the regression equation.
To determine the impact propensity in the regression of the general fertility rate (GFR) on the tax personal exemption
(PE) and its first lag, you should follow these steps:
Estimate the regression model using the available data. The model should look like this:
GFR = β0 + β1 × PE + β2 × PE_lag + ε
Where GFR is the general fertility rate, PE is the tax personal exemption, PE_lag is the tax personal exemption's first
lag, and ε is the error term.
Obtain the estimated coefficients (β0, β1, and β2) from the fitted regression model.
These coefficients will help you determine the impact propensity.
Calculate the impact propensity. The impact propensity in this context refers to the change in the general fertility rate
resulting from a one-unit increase in the tax personal exemption, taking into account both its current and lagged
effects.
To find the impact propensity, sum the coefficients for the tax personal exemption and its first lag:
Impact propensity = β1 + β2
for such more question on propensity
https://brainly.com/question/20376297
#SPJ11
what are the odds of throwing three dice together, that exactly two of the three resulting numbers will match?
As three dice are thrown together and the probability of any two of them being the same will be 5/12.
When a dice is thrown there are 6 possible outcomes. So, when three dice are thrown, the number of outcomes will be 6× 6× 6 = 216.
The probability of a number repeating = ₆C₂ = (6×5)/2 = 15
So each number will have possible 15 outcomes.
6 numbers will have 6 × 15 outcomes = 90 outcomes
So probability = Number of desired outcomes/ total number of outcomes = 90 / 216 = 5/12
So the probability of any two number matches when three dices are thrown together will be 5/12.
For more information regarding probability, kindly refer
https://brainly.com/question/31120123
#SPJ4
Simplify (3x3y2 − 5xy4 − 2xy) + (2x3y2 + 5xy4 + 3xy).
5x3y2 − 2xy4 + xy
5x3y2 − 2xy4 − 5xy
5x3y2 + xy
5x3y2 − xy
Answer:
the first one: 5x3y2 - 2xy4 +xy
Step-by-step explanation:
hope it helps :)
an object is 19.0 cm from the center of a spherical silvered-glass christmas tree ornament 6.00 cm in diameter. What is the position of its image (counting from the ornament surface)?
The position of the image is approximately 1.71 cm from the ornament's surface.
To determine the position of the image, we need to use the mirror formula for a concave mirror, which is \frac{1}{f} = [tex]\frac{1}{do} + \frac{1}{di},[/tex] where f is the focal length, do is the object distance, and di is the image distance.
First, we need to find the focal length (f) of the spherical ornament. The radius of curvature (R) is half the diameter, so R = 6.00 cm / 2 = 3.00 cm. For a spherical mirror, the focal length is half the radius of curvature: f = R/2 = 3.00 cm / 2 = 1.50 cm.
Next, we need to find the object distance (do). The object is 19.0 cm from the center of the ornament, but we need the distance from the ornament's surface. Since the radius is 3.00 cm, we subtract that from the total distance: do = 19.0 cm - 3.00 cm = 16.0 cm.
Now, we can use the mirror formula:
\frac{1}{f} = [tex]\frac{1}{do} + \frac{1}{di},[/tex]
1/1.50 cm = 1/16.0 cm + 1/di
To solve for di, subtract 1/16.0 cm from both sides and then take the reciprocal:
1/di = 1/1.50 cm - 1/16.0 cm
di ≈ 1.71 cm
The position of the image is approximately 1.71 cm from the ornament's surface.
learn more about the mirror formula for a concave mirror,
https://brainly.com/question/3555871
#SPJ11
The position of the image is 20.8 cm from the center of the spherical ornament, counting from the ornament surface.
To find the position of the image, we can use the mirror equation:
1/o + 1/i = 1/f
where o is the object distance from the center of the spherical ornament, i is the image distance from the center of the spherical ornament, and f is the focal length of the ornament.
Since the ornament is a spherical mirror, the focal length is half the
radius of curvature, which is half the diameter of the ornament:
f = R/2 = 6.00 cm/2 = 3.00 cm
Substituting the given values, we get:
1/19.0 cm + 1/i = 1/3.00 cm
Solving for i, we get:
1/i = 1/3.00 cm - 1/19.0 cm = (19.0 cm - 3.00 cm)/(3.00 cm x 19.0 cm) = 0.0481 cm^-1
i = 1/0.0481 cm = 20.8 cm
Therefore, the position of the image is 20.8 cm from the center of the
spherical ornament, counting from the ornament surface.
for such more question on ornament surface
https://brainly.com/question/30938695
#SPJ11
An electronic book device had a value of t dollars before a holiday. The value decreased by 15% after the holiday. Which expressions show the value of the electronic book device after the holiday? Select all the expressions that apply.
A. 1.15
B. 0.85
C. −0.15
D. 1−0.15
E. −0.85
F. (1−0.15)
The expressions that correctly show the value of the electronic book device after the holiday are B and D, which represent the percentage decrease of 15% as 0.85 (or 1-0.15).
Which expressions show the value of the electronic book device after the holiday?The value of an electronic book device before a holiday is represented by the variable t. After the holiday, the value of the device decreased by 15%. To find the value of the device after the holiday, we need to multiply the original value by the percentage decrease, which is 0.85 (or 1-0.15). Therefore, the expressions that correctly show the value of the electronic book device after the holiday are B and D.
Option A (1.15) represents the percentage increase and not the decrease, so it is incorrect. Option C (-0.15) represents the percentage decrease, but it cannot be used alone to find the new value. Option E (-0.85) is the negative of the percentage decrease, so it is also incorrect. Finally, option F is equivalent to option D, so it is also correct.
In summary, the expressions that correctly show the value of the electronic book device after the holiday are B and D, which represent the percentage decrease of 15% as 0.85 (or 1-0.15).
to know more about electronic
brainly.com/question/1255220
#SPJ1
The list represents a student's grades on tests in their math class.
47, 85, 82, 63, 77, 79, 58, 95, 72, 90
Find the range for the data set.
The range for the data set is equal to 48.
What is a range?In Mathematics and Statistics, a range is the difference between the highest number and the lowest number contained in a data set.
In Mathematics and Statistics, the range of a data set can be calculated by using this mathematical expression;
Range = Highest number - Lowest number
From the given data set, we have:
Highest number = 95.
Lowest number = 47.
By substituting, we have:
Range = 95 - 47
Range = 48.
Read more on range here: brainly.com/question/32352196
#SPJ2
Explain what values must be known to write the explicit formula for both an arithmetic and geometric sequence?
PLEATHE!!
The explicit formula for an arithmetic sequence is:
an = a1 + (n-1)d
The explicit formula for a geometric sequence is:
an = a1 * [tex]r^{(n-1)}[/tex]
What is arithmetic sequence?
An arithmetic sequence is a sequence of numbers in which each term after the first is found by adding a fixed constant number, called the common difference, to the preceding term.
To write the explicit formula for both an arithmetic and geometric sequence, the following values must be known:
For an Arithmetic Sequence:
The first term (a1) of the sequence.
The common difference (d) between consecutive terms in the sequence.
The explicit formula for an arithmetic sequence is:
an = a1 + (n-1)d
Where:
an is the nth term of the sequence.
a1 is the first term of the sequence.
d is the common difference between consecutive terms.
n is the position of the term in the sequence.
For a Geometric Sequence:
The first term (a1) of the sequence.
The common ratio (r) between consecutive terms in the sequence.
The explicit formula for a geometric sequence is:
an = a1 * r^(n-1)
Where:
an is the nth term of the sequence.
a1 is the first term of the sequence.
r is the common ratio between consecutive terms.
n is the position of the term in the sequence.
Therefore, The explicit formula for an arithmetic sequence is:
an = a1 + (n-1)d
The explicit formula for a geometric sequence is:
an = a1 * [tex]r^{(n-1)}[/tex]
To learn more about arithmetic sequence from the given link:
https://brainly.com/question/15412619
#SPJ1
Use substitution to sole the system of equations
Answer:
(0, 0)
(4, 16)
Step-by-step explanation:
[tex]y = 4x[/tex]
[tex]y = x^2[/tex]
Using substitution, we can replace y in the second equation with 4x from the first equation.
[tex]4x = x^2[/tex]
Now, we can move all the x's to one side and complete the square to solve for x.
[tex]0 = x^2 - 4x[/tex]
↓ adding 4 to both sides
[tex]4 = x^2 - 4x + 4[/tex]
↓ factoring the right side
[tex]4 = (x-2)^2[/tex]
↓ taking the square root of both sides
[tex]\sqrt4 = \sqrt{(x-2)^2[/tex]
[tex]\pm2 = x - 2[/tex]
↓ adding 2 to both sides
[tex]2 \pm 2 = x[/tex]
[tex]\boxed{x = 0 \ \ \ \text{or} \ \ \ x = 4}[/tex]
Then, we can solve for y by plugging both x-values into the first equation.
[tex]y = 4(0)[/tex] or [tex]y = 4(4)[/tex]
[tex]\boxed{y = 0 \ \ \ \text{or} \ \ \ y=16}[/tex]
Finally, we can form two ordered pairs that are the solutions to the system of equations.
[tex]\boxed{(0,0)}[/tex]
[tex]\boxed{(4,16)}[/tex]
of the cartons produced by a company, 3% have a puncture, 6% have a smashed corner, and 1.4% have both a puncture and a smashed corner. find the probability that a randomly selected carton has a puncture or a smashed corner.
The probability that a randomly selected carton has a puncture or a smashed corner is 0.076, or 7.6%.
What is probability?
Probability is a measure of the likelihood of an event occurring. It is a number between 0 and 1, where 0 means the event is impossible and 1 means the event is certain to happen.
To find the probability that a randomly selected carton has a puncture or a smashed corner, we can use the formula:
P(puncture or smashed corner) = P(puncture) + P(smashed corner) - P(puncture and smashed corner)
where P(puncture) is the probability of a carton having a puncture, P(smashed corner) is the probability of a carton having a smashed corner, and P(puncture and smashed corner) is the probability of a carton having both a puncture and a smashed corner.
Substituting the given probabilities into the formula, we get:
P(puncture or smashed corner) = 0.03 + 0.06 - 0.014
P(puncture or smashed corner) = 0.076
Therefore, the probability that a randomly selected carton has a puncture or a smashed corner is 0.076, or 7.6%.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
if the florida distirution is also approximately morlam, but with a standard deviation of 2.9 inches, what is the mean height of a football player on this florida team? ap stat
To find the mean height of a football player on this Florida team, we need to know the mean of the normal distribution (Morlam) and the standard deviation of the Florida distribution. Since the Florida distribution is also approximately normal (Morlam) with a standard deviation of 2.9 inches, we can use the Empirical Rule to estimate the mean height.
According to the Empirical Rule, approximately 68% of the data falls within one standard deviation of the mean, approximately 95% within two standard deviations, and approximately 99.7% within three standard deviations. Since we know that the standard deviation of the Florida distribution is 2.9 inches, we can assume that the mean height falls within three standard deviations of the mean.
So, if we assume that the mean height is at the centre of the distribution, we can estimate it by adding and subtracting three standard deviations from it. Therefore, the mean height of a football player on this Florida team can be estimated to be:
Mean height = Mean of the Morlam distribution ± 3 x Standard deviation of the Florida distribution
Mean height = Mean of the Morlam distribution ± 3 x 2.9 inches
Without knowing the mean of the Morlam distribution, we cannot calculate the exact mean height. However, if we assume that the Morlam distribution has a mean height of 70 inches (a typical average height for a football player), then the mean height of a football player on this Florida team can be estimated to be:
Mean height = 70 ± 3 x 2.9
Mean height = 70 ± 8.7
Mean height = 61.3 to 78.7 inches
Therefore, we can estimate that the mean height of a football player on this Florida team is between 61.3 and 78.7 inches.
Learn more about Normal Distribution here: brainly.com/question/17199694
#SPJ11
We can estimate that the mean height of a football player on the Florida team is approximately 70 inches.
To find the mean height of a football player on the Florida team, we need to know the exact distribution of heights. However, since we only have information about the standard deviation and the fact that it is approximately normal, we can make an educated guess that the distribution is still normal with a mean somewhere close to the national average of 70 inches.
Using the empirical rule, we know that about 68% of the data falls within one standard deviation of the mean. In this case, one standard deviation is 2.9 inches.
So, we can assume that about 68% of the heights on the Florida team fall between (70-2.9) = 67.1 inches and (70+2.9) = 72.9 inches.
If we assume that the distribution is symmetric, we can estimate the mean height of the Florida team by taking the average of the lower and upper bounds of the interval: (67.1 + 72.9)/2 = 70 inches.
For similar question on mean.
https://brainly.com/question/23251787
#SPJ11
let f(x)=∫x2−3x−2et2dt. at what value of x is f(x) a minimum?
a. ½
b. 3/2
c. 2
d. 3
The value of x at which f(x) is a minimum is 3/2.
To find the minimum value of f(x), we need to calculate its derivative and set it equal to zero.
So,
[tex]f(x) = ∫(x^2 - 3x - 2) e^(t^2) dt[/tex]
Taking the derivative of f(x) with respect to x, we get:
[tex]f'(x) = 2x e^(x^2 - 3x - 2) - 3 e^(x^2 - 3x - 2)[/tex]
Setting f'(x) equal to zero:
[tex]2x e^(x^2 - 3x - 2) - 3 e^(x^2 - 3x - 2) = 0[/tex]
Factorizing, we get:
[tex]e^(x^2 - 3x - 2) (2x - 3) = 0[/tex]
So, either e[tex]^(x^2 - 3x - 2)[/tex]= 0 (which is not possible), or
2x - 3 = 0
Solving for x, we get:
x = 3/2
Therefore, the value of x at which f(x) is a minimum is 3/2.
Learn more about derivative
https://brainly.com/question/30365299
#SPJ4
f'(x) changes from negative to positive at x = 2.105, we know that f(x) has a local minimum at x = 2.105.
Therefore, the answer is c. 2.
To find the value of x at which f(x) is a minimum, we need to find the critical points of f(x) and then determine whether each critical point is a minimum or maximum using the first derivative test.
To find the critical points of f(x), we need to find where f'(x) = 0. Using the Fundamental Theorem of Calculus and the Chain Rule, we can find that:
[tex]f'(x) = 2x - 3 - 2xe^{(x^2-3x-2t^2)}[/tex]
To find where f'(x) = 0, we need to solve the equation[tex]2x - 3 - 2xe^{x^2-3x-2t^2} = 0[/tex] for x. Unfortunately, this equation cannot be solved algebraically, so we need to use numerical methods. One way to do this is to use a graphing calculator or computer program to graph y = 2x - 3 and[tex]y = 2xe^{x^2-3x-2t^2)[/tex]and find their intersection(s).
Using this method, we can find that there is only one critical point, which is approximately x = 2.105. To determine whether this critical point is a minimum or maximum, we need to use the first derivative test. Since f'(x) changes from negative to positive at x = 2.105, we know that f(x) has a local minimum at x = 2.105.
Therefore, the answer is c. 2.
learn more about local minimum
https://brainly.com/question/10878127
#SPJ11
A recent conference had 900 people in attendance. In one exhibit room of 80 people, there were 65 teachers and 15 principals. What prediction can you make about the number of principals in attendance at the conference?
There were about 820 principals in attendance.
There were about 731 principals in attendance.
There were about 208 principals in attendance.
There were about 169 principals in attendance.
The answer is: There were about 169 principals in attendance.
what is proportion?
In mathematics, a proportion is an equation that states that two ratios or fractions are equal. A proportion can be written in the form of a/b = c/d, where a, b, c, and d are numbers or variables.
Proportions are used to compare two or more quantities or to find an unknown value. For example, if we know that the ratio of the length of a rectangle to its width is 2:1, and we also know that the length is 6 feet, we can use a proportion to find the width. We set up the proportion as 2/1 = 6/w, where w is the width of the rectangle, and then solve for w by cross-multiplying and simplifying the equation.
Proportions are also used in many real-world applications, such as cooking, finance, and science.
To make a prediction about the number of principals in attendance at the conference, we need to use the given information and make some assumptions.
We know that in one exhibit room of 80 people, there were 15 principals. Let's assume that this exhibit room is representative of the entire conference, and that the proportion of principals to attendees in this room is the same as the proportion of principals to attendees in the entire conference.
Using this assumption, we can set up a proportion:
15 principals / 80 attendees = x principals / 900 attendees
To solve for x, we can cross-multiply and simplify:
15 * 900 = 80 * x
x = (15 * 900) / 80 = 168.75
So our prediction is that there were about 169 principals in attendance at the conference.
Therefore, the answer is: There were about 169 principals in attendance.
To learn more about ratios and proportions from the given link
https://brainly.com/question/29774220
#SPJ1
Mack's Toy Shop made 600 trains yesterday and found that 30 were defective. They
plan to make 4,500 trains this week.
Using the information given, how many trains are expected to be defective?
225 trains
6,000 trains
15 trains
500 trains
Answer:
225 trains
Step-by-step explanation:
since they are using the same process and materials, we expect them to have the same ratio between trains made and defective trains :
600 / 30 = 20/1
one out of 20 is defect.
so, when they make 4500 trains, we need to divide this by 20 to get the number of expected defective trains :
4500 / 20 = 225
I find the answer option of 6000 defective trains really funny : if that were true, more than the produced trains (4500) would be defective. how ... ?
mountain officials want to build a new ski lift from to , as shown in the figure below. the distance from to is feet. they measure angle to be and angle to be . what is the distance from to ? round your answer to the nearest tenth of a foot.
The distance from A to B is 724.64 ft
Consider the following figure.
In right triangle CDA, the sine of angle DAC would be,
sin(∠DAC) = CD/CA
sin(32°) = CD/1540
CD = 816.1 ft
Consider the tangent of angle DAC.
tan(∠DAC ) = CD/AD
tan(32°) = 816.1 / AD
AD = 816.1/ 0.63
AD = 1295.4
Let us assume that distance AB = x feet
In right triangle CDB, the tangent of angle CBD would be,
tan(∠CBD) = CD/DB
tan(∠CBD) = CD/(DA + AB)
tan(22°) = 816.1 / (1295.4+ x)
1295.4 + x = 816.1 / 0.4040
1295.4 + x = 2020.04
x = 2020.04 - 1295.4
x = 724.64 ft
Therefore, the required distance is 724.64 ft
Learn more about the sine of angle here:
https://brainly.com/question/3827723
#SPJ4
Find the complete question below.
HELP ME PLEASE I NEED TO TURN IN MY ASSIGNMENT NOW!!!!!!!!! 30 POINTSSS
SOLVE FOR Y
2y + 8 1/5 = 33
SOLVE FOR N
2n + 4 1/5 = 9
Therefore, y is equal to 12 2/5 and n is equal to 2 2/5 in the equation.
What is equation?An equation is a mathematical statement that shows that two expressions are equal. An equation is typically written with an equal sign (=) between two expressions. Equations can involve various mathematical operations, such as addition, subtraction, multiplication, division, exponents, and logarithms. Solving an equation typically involves performing mathematical operations on both sides of the equation to isolate the variable (the unknown value) and find its value.
Here,
To solve for y in the equation 2y + 8 1/5 = 33, we can follow these steps:
Subtract 8 1/5 from both sides of the equation:
2y = 33 - 8 1/5
2y = 24 4/5
Divide both sides of the equation by 2:
y = (24 4/5) / 2
y = 12 2/5
Therefore, y is equal to 12 2/5.
To solve for n in the equation 2n + 4 1/5 = 9, we can follow these steps:
Subtract 4 1/5 from both sides of the equation:
2n = 9 - 4 1/5
2n = 4 4/5
Divide both sides of the equation by 2:
n = (4 4/5) / 2
n = 2 2/5
Therefore, n is equal to 2 2/5.
To know more about equation,
https://brainly.com/question/9312365
#SPJ1
a production process is designed to fill 100 soda cans per minute with with 6.8 ounces of soda, on average. overfilling is costly and under-filling risks a large fine. you are the production chief and instruct your staff to take regular random samples to test the process. what is the correct way to set up the hypotheses test?
Answer:
6.8 ounces
To set up a hypothesis test for this production process, we need to define the null and alternative hypotheses. The null hypothesis (H0) is that the average amount of soda in each can is equal to 6.8 ounces, while the alternative hypothesis (Ha) is that the average amount of soda in each can is not equal to 6.8 ounces.
We can then collect data by taking regular random samples from the production process and calculate the sample mean and standard deviation. We can then perform a statistical test such as a t-test or z-test to determine whether we can reject or fail to reject the null hypothesis.
If we reject the null hypothesis, we can conclude that there is evidence that the average amount of soda in each can is different from 6.8 ounces. If we fail to reject the null hypothesis, we cannot conclude that there is evidence that the average amount of soda in each can is different from 6.8 ounces.
I hope this helps! Let me know if you have any other questions.
What is the range of f? A coordinate plane. The x- and y-axes both scale by one. The graph of the function f starts at negative six, negative two, which is plotted. Then is decreases at a non linear rate to negative five, negative five, where it increases at a non linear rate to negative two, one and one-half. At two, one and one-half the function decreases at a non linear rate through the origin and to the point two, negative one and one-half. Then the function increases at a non linear rate until five, five, which is plotted.
A coordinate plane. The x- and y-axes both scale by one. The graph of the function f starts at negative six, negative two, which is plotted. Then is decreases at a non linear rate to negative five, negative five, where it increases at a non linear rate to negative two, one and one-half. At two, one and one-half the function decreases at a non linear rate through the origin and to the point two, negative one and one-half. Then the function increases at a non linear rate until five, five, which is plotted.
Choose 1 answer:
(Choice A) The f(x)-values -6, -3, 0, 2, and 5
(Choice B) The f(x)-values -5, -2, 0, 2, and 5
(Choice C) -6 ≤ f(x) ≤ 5
(Choice D) − 5 ≤ f(x) ≤ 5
The range of f include the following: D. -5 ≤ f(x) ≤ 5.
What is a domain?In Mathematics and Geometry, a domain is the set of all real numbers for which a particular function is defined.
Additionally, the vertical extent of any graph of a function represents all range values and they are always read and written from smaller to larger numerical values, and from the bottom of the graph to the top.
By critically observing the graph shown in the image attached above, we can reasonably and logically deduce the following domain and range:
Domain = {-6, 5} or -6 ≤ x ≤ 5.
Range = {-5, 5} or -5 ≤ f(x) ≤ 5.
Read more on domain here: brainly.com/question/17440903
#SPJ1