Answer:
2√137
Step-by-step explanation:
To find AB, we can use the Pythagorean Theorem (a² + b² = c²). In this case, a = 22, b = 8 and we're solving for c, therefore:
22² + 8² = c²
484 + 64 = c²
548 = c²
c = ± √548 = ± 2√137
c = -2√137 is an extraneous solution because the length of a side of a triangle cannot be negative, therefore, the answer is 2√137.
Evaluate the expression.
Answer:
work is shown and pictured
Points A,B,C and D are midpoints of the sides of the larger square. If the smaller square has area 60, what is the area of the bigger square?
Answer:
80
Step-by-step explanation:
A lease provides that the tenant pays $760 minimum rent per month plus 4% of the gross sales in excess of $150,000 per year. If the tenant paid a total rent of $20,520 last year, what was the gross sales volume?
Answer:
$435,000
Step-by-step explanation:
$760 per month * 12 months = $9,120
The minimum rent requires an annual rental cost of $9,120.
The annual rent was $20,520.
The excess was $20,520 - $9,120 = $11,400.
The amount of $11,400 of the rent was due to the gross sales in excess of $150,000.
$11,400 is 4% of the amount in excess of $150,000.
Let the amount in excess of $150,000 = x.
$11,400 = 4% of x
0.04x = 11,400
x = 285,000
$285,000 is the amount in excess of $150,000.
Total gross sales volume = $285,000 + $150,000 = $435,000
Amy have 398.5 L of apple juice . Avery have 40098 ml of apple juice how many do they have all together
Answer: 438.5L = 438000ml
Step-by-step explanation:
Simplify the expression.
Write your answer without negative exponents. NEED AN ANSWER ASAP
Answer:
[tex]\boxed{\frac{-3b^4 }{a^6 }}[/tex]
Step-by-step explanation:
[tex]\frac{-18a^{-8}b^{-3}}{6a^{-2}b^{-7}}[/tex]
[tex]\frac{-18}{6} \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
[tex]-3 \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
Apply the law of exponents, when dividing exponents with same base, we subtract the exponents.
[tex]-3 \times a^{-8-(-2)} \times b^{-3- (-7)}[/tex]
[tex]-3 \times a^{-8+2} \times b^{-3+7}[/tex]
[tex]-3 \times a^{-6} \times b^{4}[/tex]
[tex]{-3a^{-6}b^{4}}[/tex]
The answer should be without negative exponents.
[tex]a^{-6}=\frac{1}{a^6 }[/tex]
[tex]\frac{-3b^4 }{a^6 }[/tex]
Answer:
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]Step-by-step explanation:
[tex] \frac{ - 18 {a}^{ - 8} {b}^{ - 3} }{6 {a}^{ - 2} {b}^{ - 7} } [/tex]
Reduce the fraction with 6
[tex] \frac{ - 3 {a}^{ - 8} {b}^{ - 3} }{ {a}^{ - 2} {b}^{ - 7} } [/tex]
Simplify the expression
[tex] \frac{ - 3 {b}^{4} }{ {a}^{6} } [/tex]
Use [tex] \frac{ - a}{b} = \frac{a}{ - b} = - \frac{a}{b \: } [/tex] to rewrite the fraction
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]
Hope this helps...
Best regards!!
PLEASE HELP ASAP. Drag each tile to the correct box
Answer:
3 <1<4<2
hope it worked
pls mark me as
BRAINLIEST
plss
Answer:
3>1>2>4
Step-by-step explanation:
In the given diagram, find the values of x, y, and z.
a. x = 36°, y = 36°, z = 34°
b. x = 44º, y = 44°, z = 44°
c. x = 34º, y = 34°, z = 34°
d. x = 36°, y = 34°, z = 34°
Answer:
a. x = 36°, y = 36°, z = 34°
Step-by-step explanation:
X = 36° because x and 144° are supplementary angles and the sum of supplementary angles = 180°
The sum of interior angles in a triangle is equal to 180° since one of the angle is given as 110° the sum of z and y must be equal to 70° the option that fits these qualities is a. x = 36°, y = 36°, z = 34°
A company is evaluating which of two alternatives should be used to produce a product that will sell for $35 per unit. The following cost information describes the two alternatives.
Process A Process B
Fixed Cost $500,000 $750,000
Variable Cost per Unit $25 $23
Requirement:;
i) Calculate the breakeven volume for Process A. (show calculation to receive credit)
ii) Calculate the breakeven volume for Process B. (show calculation to receive credit)
III) Directions: Show calculation below and Circle the letter of the correct answer.
If total demand (volume) is 120,000 units, then the company should
select Process A with a profit of $940,000 to maximize profit
select Process B with a profit of $450,000 to maximize profit
select Process A with a profit of $700,000 to maximize profit
select Process B with a profit of $690,000 to maximize profit
Answer:
A.50,000 units
B.62,500 units
C.Process A with a profit of $700,000 to maximize profit
Step-by-step explanation:
A.Calculation for the breakeven volume for Process A
Using this formula
Breakeven volume for Process A= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process A=500,000/(35-25)
Breakeven volume for Process A=500,000/10
Breakeven volume for Process A=50,000 units
B.Calculation for the breakeven volume for Process B
Using this formula
Breakeven volume for Process B= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process B=750,000/(35-23)
Breakeven volume for Process B=750,000/12
Breakeven volume for Process B=62,500 units
C. Calculation for what the company should do if the total demand (volume) is 120,000 units
Using this formula
Profit=(Total demand*(Sales per units-Variable cost per units for Process A)- Process A fixed cost
Let plug in the formula
Profit =120,000*($35-$25)-$500,000
Profit=120,000*10-$500,000
Profit=1,200,000-$500,000
Profit= $700,000
Therefore If total demand (volume) is 120,000 units, then the company should select Process A with a profit of $700,000 to maximize profit.
What is heron's formula
Answer:
[tex]\boxed{A=\sqrt{s(s-a)(s-b)(s-c)}}[/tex]
Step-by-step explanation:
We can use Heron’s formula to determine the area of a triangle when three side lengths of a triangle are given.
[tex]s=\frac{a+b+c}{2}[/tex]
[tex]s : \mathrm{semi \: perimeter}[/tex]
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]
[tex]A : \mathrm{area}[/tex]
Answer:
Heron's formula gives the area of a triangle when the length of all three sides are known. Use Heron's formula to find the area of triangle ABC, if AB=3,BC=2,CA=4 . Substitute S into the formula . Round answer to nearest tenth.
Step-by-step explanation:
Find the midpoint of the segment between the points (17,−11) and (−14,−16)
Answer:
(1.5, -13.5)
Step-by-step explanation:
Midpoint Formula: [tex](\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex]
Simply plug in our coordinates into the formula:
x = (17 - 14)/2
x = 3/2
y = (-11 - 16)/2
y = -27/2
Answer:
(-1.5, -13.5)
Step-by-step explanation:
To find the x coordinate of the midpoint, add the x coordinates and divide by 2
( 17+-14)/2 = 3/2 =1.5
To find the y coordinate of the midpoint, add the x coordinates and divide by 2
( -11+-16)/2 = -27/2= - 13.5
Brainliest for correct awnser Estimate the line of best fit using two points on the line.A.y = −8x + 80B.y = 4x + 80C.y = −4x + 80D.y = 8x + 80
Answer:
A.y = −8x + 80B
Step-by-step explanation:
first you have to find the slope :
P1(2,64). P2(6,32)
slope=Y2-Y1/X2-X1
slope=64-32/2-6
slope= -8
y= -8x + b. now solve for "b" by using one of the coordinates given above.
y= -8x + b. I will use coordinate p(2,64)
64= -8(2) + b
64 + 16 = b
80= b
you can use any of the coordinates i.e either P1(2,64)or P2(6,32) it doesn't affect the value of "b".
line of equation is :
.y = −8x + 80B
Answer: y= -8x+80
Step-by-step explanation:
Write these numbers in standard form 0.000 05
Answer:
5x 10 ^-5
Step-by-step explanation:
UHM that would be
NaN × [tex]10^{0}[/tex]
I hope this helps!
so my reasoning... Any number that can be written in the decimal form between 1.0 to 10.0 multiplied by the power of 10.
Determine whether 52c2y4 is a monomial, binomial, trinomial, or other polynomial.
Answer: Monomial.
Step-by-step explanation:
Ok, when we have a polynomial with only one term, this is a monomial.
If the polynomial has two terms, this is a binomial.
If the polynomial has 3 terms, this is a trinomial.
And so on.
In this particular case we have:
52*c^2*y^4
Where c and y may be variables.
We can see that here we have only one term, so this would be a monomial.
(notice that the number of variables does not affect the type of polynomial in this case, only the number of terms)
Answer:
binomial.
Step-by-step explanation:
The polynomial −50c3z3−41y220z4 has 2 terms, so it is a binomial.
Solve for x: 4 over x plus 4 over quantity x squared minus 9 equals 3 over quantity x minus 3. (2 points) Select one: a. x = -4 and x = -9 b. x = 4 and x = -9 c. x = -4 and x = 9 d. x = 4 and x = 9
Answer:
c. x = -4 or x = 9Step-by-step explanation:
[tex]\dfrac{4}{x}+\dfrac{4}{x^2-9}=\dfrac{3}{x-3}[/tex]
Domain:
[tex]x\neq0\ \wedge\ x^2-9\neq0\ \wedge\ x-3\neq0\\\\x\neq0\ \wedge\ x\neq\pm3[/tex]
solution:
[tex]\dfrac{4}{x}+\dfrac{4}{x^2-3^2}=\dfrac{3}{x-3}[/tex]
use (a - b)(a + b) = a² - b²
[tex]\dfrac{4}{x}+\dfrac{4}{(x-3)(x+3)}=\dfrac{3}{x-3}[/tex]
multiply both sides by (x - 3) ≠ 0
[tex]\dfrac{4(x-3)}{x}+\dfrac{4(x-3)}{(x-3)(x+3)}=\dfrac{3(x-3)}{x-3}[/tex]
cancel (x - 3)
[tex]\dfrac{4(x-3)}{x}+\dfrac{4}{x+3}=3[/tex]
subtract [tex]\frac{4(x-3)}{x}[/tex] from both sides
[tex]\dfrac{4}{x+3}=3-\dfrac{4(x-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x}{x}-\dfrac{(4)(x)+(4)(-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-\bigg(4x-12\bigg)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-4x-(-12)}{x}\\\\\dfrac{4}{x+3}=\dfrac{-x+12}{x}[/tex]
cross multiply
[tex](4)(x)=(x+3)(-x+12)[/tex]
use FOIL
[tex]4x=(x)(-x)+(x)(12)+(3)(-x)+(3)(12)\\\\4x=-x^2+12x-3x+36[/tex]
subtract 4x from both sides
[tex]0=-x^2+12x-3x+36-4x[/tex]
combine like terms
[tex]0=-x^2+(12x-3x-4x)+36\\\\0=-x^2+5x+36[/tex]
change the signs
[tex]x^2-5x-36=0\\\\x^2-9x+4x-36=0\\\\x(x-9)+4(x-9)=0\\\\(x-9)(x+4)=0[/tex]
The product is 0 if one of the factors is 0. Therefore:
[tex]x-9=0\ \vee\ x+4=0[/tex]
[tex]x-9=0[/tex] add 9 to both sides
[tex]x=9\in D[/tex]
[tex]x+4=0[/tex] subtract 4 from both sides
[tex]x=-4\in D[/tex]
A researcher predicts that the proportion of people over 65 years of age in a certain city is 11%. To test this, a sample of 1000 people is taken. Of this sample population, 126 people are over 65 years of age.
The following is the setup for this hypothesis test:
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106.
Come to a conclusion and interpret the results for this hypothesis test for a proportion (use a significance level of 5%) Select all that apply:
a. Reject the H0.
b. Fail to reject the H0.
c. There is NOT sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
d. There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
Answer:
Option b and d
Step-by-step explanation:
With the following data,
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106 and significance level of 0.05.
Since the p value (0.106) is great than 0.05, then we will fail to reject the null hypothesis and conclude that There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%
The area of a circle is found using the formula A=\pi r^(2) , where r is the radius. If the area of a circle is 36π square feet, what is the radius, in feet? A. 6 B. 6π C. 18 D. 9π
Answer:
A. 6 feetStep-by-step explanation:
[tex]A=\pi r^2\\Area = 36\pi\\r = ?\\36\pi = \pi r^2\\Divide \:both \:sides \:of\: the \:equation\: by\: \pi\\\frac{36\pi}{\pi} = \frac{\pi r^2}{\pi} \\r^2 = 36\\Find\: the\: square\: root\: of\: both\: sides\: \\\sqrt{r^2} =\sqrt{36} \\\\r = 6\: feet\\[/tex]
Solve the proportion below.
X =
A. 24
B. 49
c. 27
D. 6
Answer:
A. 24
Step-by-step explanation:
4/9 = x/54
x= 54*4/9 ===== multiplying both sides by 54
x= 24
Answer is 24, choice A is correct one
The question is with the image.
Answer:
A
Step-by-step explanation:
the graph of x'3 is B
the graph of x'(-1/3) is C
A man bought certain number of litches
at 20 per Rs 100 and an equal no. of 30 per
Rs 100. He mixed them and sold them at
25
per Rs 100. Find his
gain or loss
percent?
Answer: The loss is 4%
Step-by-step explanation:
Lets call litches that are 20 pcs per Rs 100 - litches A
that are 30 pcs per Rs 100- litches B
So a man can buy 2 pcs A per Rs 10
and 3 pcs B per Rs 10
OR
6x pcs A per Rs 30x
and 6x pcs B per Rs 20x
Now he gonna sell the 12x litches for y Rs
Lets find y from the proportion
12x cost y
25 cost 100
y/12=100/25
y=48 Rs
So the man bought 6x A + 6x B for 20x+30x=50 Rs
And then he sold them for 48 Rs
Obviously the man gonna loose the money.
Lets find the losses in %
(50-48)/50*100=200/50=4%
The loss is 4%
The drama club is selling T-shirts and caps to raise money for a spring trip. The caps sell for $5.00 each, and the T-shirts sell for $10.00 each. The drama club needs to raise at least $500.00 for the trip. The inequality that represents this situation is graphed, with x representing the number of caps sold and y representing the number of T-shirts sold. Which solution is valid within the context of the situation?
Answer:
The correct answer to this question is C: (72,24).
Step-by-step explanation:
We are given that:
The cost of 1 cap is $5 each
The cost of 1 t-shirt is $10 each
Let x be the number of caps sold
Let y be the number of t-shirt sold
In the context we are given that the drama club needs to raise at least $500 to go on the trip.
So based on this information we can create a inequality as:
the number of caps sold x (times) the cost of a single cap + the number of shirts x (times) the cost of a single t-shirt ≥ (greater than or equal to) 500
Inequality: 5x+10y ≥ 500 ( We used a greater than or equal to symbol because it said that the drama club need at least $500 for the trip.
Next we need to figure out how many caps and t-shirt were sold.
- We can already take out two of the options which are the two answer with negatives in them because we know that when you multiply a positive number with a negative number we get a negative number and we don't want that. (So Option A and Option D are out.)
Now all we do is plug x and y into our inequality equation ( 5x+10y ≥ 500 )
B) x=65 caps, y= 17.5 t-shirts ----> 5(65)+10(17.5) =500 which you get $500
YOU MAY THINK THIS IS THE ANSWER BUT! if you look closely at variable y it said they sold 17.5 t-shirt, but here there thing how do you sell 17 shirts and a half of shirt? Which means this option is also wrong!
C) x =72 caps, y =24 t-shirts ------> 5(72)+ 10(24)= $600 which is more than the original amount they were going for because it said at least $500.
So the correct option to this question is C, they sold 72 caps and 24 t-shirts and earned $600 dollars.
Answer: C
Step-by-step explanation: Each coordinate point is located within the solution set, as shown on the graph.
First, take out any solution that includes a negative number, since there cannot be a negative number of bags. So, (-2,10) and (9,-3) are not solutions.
Next, take out any solution that does not have all whole numbers because the bags are whole objects. So, (4.5,9) is not a solution.
So, (8,5) is a valid solution in the context of the situation.
Suppose , varies jointly with g and v, and j = 2 when g = 4 and v= 3.
Find j when g = 8 and v= 11.
Answer:
j = 44/3
Step-by-step explanation:
j varies jointly as g and v. This can be represented mathematically as:
[tex]j \alpha gv\\j = kgv[/tex].............(1)
Where k is a constant of proportionality
j = 2 when g = 4 and v = 3
Substitute these values into equation (1)
2 = k * 4 * 3
2 = 12 k
k = 1/6
when g = 8 and v = 11:
j = (1/6) * 8 * 11
j = 44/3
Calculate the length of the unknown side of this right angled triangle
Answer:
12.04
Step-by-step explanation:
Well to solve for the unknown side "c" we need to use the Pythagorean Theorem formula,
[tex]a^2 + b^2 = c^2[/tex]
We already have a and b which are 8 and 9 so we plug them in.
[tex](8)^2 + (9)^2 = c^2[/tex]
64 + 81 = c^2
145 = c^2
c = 12.04 rounded to the nearest hundredth.
Thus,
the unknown side is about 12.04.
Hope this helps :)
What is the measure of <A in the triangle below?
Answer:
62
Step-by-step explanation:
180-116 makes us find out that angle C is 64, thus to find out the inner angles you gotta do 64+ (2x+4)+(3x-13)=180
You follow this operation, find out x and perform 3(25)-13, which ends up giving you 62
Answer:
62°
Step-by-step explanation:
The sum of two interior angles in a triangle is equal to an exterior angle that is not sharing a common side
2x + 4 + 3x - 13 = 116° add like terms
5x - 9 = 116°
5x = 125° divide both sides by 5
x = 25 and angle A is 3x - 13 so 3×25 - 13 = 62°
Need help with trig questions
Answer:
-8 i + 19 j , 105.07°
Step-by-step explanation:
Solution:
- Define two unit vectors ( i and j ) along x-axis and y-axis respectively.
- To draw vectors ( v and w ). We will move along x and y axes corresponding to the magnitudes of unit vectors ( i and j ) relative to the origin.
Vector: v = 2i + 5j
Mark a dot or cross at the originMove along x-axis by 2 units to the right ( 2i )Move along y-axis by 5 units up ( 5j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in first quadrant
Vector: w = 4i - 3j
Mark a dot or cross at the originMove along x-axis by 4 units to the right ( 4i )Move along y-axis by 3 units down ( -3j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in 4th quadrant- The algebraic manipulation of complex numbers is done by performing operations on the like unit vectors.
[tex]2*v - 3*w = 2* ( 2i + 5j ) - 3*(4i - 3j )\\\\2*v - 3*w = ( 4i + 10j ) + ( -12i + 9j )\\\\2*v - 3*w = ( 4 - 12 ) i + ( 10 + 9 ) j\\\\2*v - 3*w = ( -8 ) i + ( 19 ) j\\[/tex]
- To determine the angle ( θ ) between two vectors ( v and w ). We will use the " dot product" formulation as follows:
v . w = | v | * | w | * cos ( θ )
v . w = < 2 , 5 > . < 4 , -3 > = 8 - 15 = -7
[tex]| v | = \sqrt{2^2 + 5^2} = \sqrt{29} \\\\| w | = \sqrt{4^2 + 3^2} = 5\\\\[/tex]
- Plug the respective values into the dot-product formulation:
cos ( θ ) = [tex]\frac{-7}{5\sqrt{29} }[/tex]
θ = 105.07°
Please answer this correctly without making mistakes
Shortest is Vindale to Wildgrove to Clarksville
18.9 + 13.2 = 32.1 km.
What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?
The lowest common denominator is lcm(5, 3), which is 15.
The sum of 2/5 + 5/3 + 9/3 is 6/15 + 25/15 + 45/15, which is 76/15 or [tex]5\frac{1}{15}[/tex].
What is (6b +4) when b is 2?
Answer:
16
Step-by-step explanation:
6*2 = 12
12 + 4 = 16
9. A college financial advisor wants to estimate the mean cost of textbooks per quarter for students at the college. For the estimate to be useful, it should have a margin of error of 20 dollars or less. The standard deviation of prices is estimated to be around 100 dollars. How large of a sample size needs to be used to be 95% confident, with the given margin of error?
Answer: 97
Step-by-step explanation:
Formula to compute the required sample size :
[tex]n= (\dfrac{\sigma\times z_{\alpha/2}}{E})^2[/tex]
, where [tex]\sigma[/tex] = standard deviation
E= Margin of error
[tex]z_{\alpha/2}[/tex] = Two tailed z-value.
Here, E= 20
[tex]\sigma[/tex] = 100
For 95% confidence level: [tex]z_{\alpha/2}[/tex] =1.96
Required sample size:
[tex]n=(\dfrac{100\times1.96}{20})^2\\\\=(5\times1.96)^2\\\\=96.04\approx97[/tex]
Hence, the required sample size : 97
In an ANOVA the F-calculated for the treatment 4.76 with 3 degrees of freedom in the numerator and 6 degrees of freedom in the error term. What is the approximate p-value
Answer:
0.0499
Step-by-step explanation:
The p-value can be calculated using technology. The p-value is computed by using F distribution right tailed excel function. The excel function "F.DIST.RT(4.76,3,6)" gives desired p-value which is 0.0499.
The p-value shows that the for 5% level of significance the null hypothesis can be rejected.
Name x1, x2, y1 and y2. Then, find the distance between the points.
Answer:
(5,6), (-2,8)
Step-by-step explanation:
I have a good math expertise. Don't question my skills as they are correct. woof woof waffling behavior. Thnak you hr welcne