M moon = 7.35 times 10 to the 25 grams
M sun = 1.989 times 10 to the 33 grams
D earth-moon = 384,000 kilometers
D earth-sun = 1.50 times ten to the 8 kilometers

Using the above data to determine the ratio of the tidal force on you due to the Sun over the tidal force on you due to the Moon.

Answers

Answer 1

Answer:

Fs/Fm = 176.8

Explanation:

The tidal force due to a planet on earth can be given by Newton's Law of Gravitation:

F = Gm₁m₂/r²

where,

F = Tidal Force = ?

G = Gravitational Constant

m₁ = mass of 1st planet

m₂ =  mass of 2nd planet

r = distance between the planets

FOR TIDAL FORCE DUE TO SUN:

m₁ = Mass of Earth

m₂ = Mass of Sun = 1.989 x 10³³ g

r = distance between earth and sun = 1.5 x 10⁸ km

F = Fs

Therefore,

Fs = Gm₁(1.989 x 10³³ g)/(1.5 x 10⁸ km)²

Fs = Gm₁(1.989 x 10³³ g)/(2.25 x 10¹⁶ km²)

Fs = Gm₁(8.84 x 10¹⁶ g/km²)  ----- equation 1

FOR TIDAL FORCE DUE TO MOON:

m₁ = Mass of Earth

m₂ = Mass of Moon = 7.35 x 10²⁵ g

r = distance between earth and moon = 3.84 x 10⁵ km

F = Fm

Therefore,

Fm = Gm₁(7.35 x 10²⁵ g)/(3.84 x 10⁵ km)²

Fm = Gm₁(7.35 x 10²⁵ g)/(14.74 x 10¹⁰ km²)

Fm = Gm₁(5 x 10¹⁴ g/km²)  ----- equation 2

Dividing equation 1 by equation 2 we get:

Fs/Fm = Gm₁(8.84 x 10¹⁶ g/km²)/Gm₁(5 x 10¹⁴ g/km²)

Fs/Fm = 176.8


Related Questions

a bird experiences an acceleration of -1.80m/s^2 for 3.81 s and ends up 26.5 m to the left of its starting point. what is its final velocity?

Answers

For a questions which involves constant acceleration, you can use the SUVAT equations.

S - displacement - -26.5m ( If you to take the right as a positive value - since displacement is a vector quantity involving direction and magnitude)

U

V - Final Velocity - unknown

A - Acceleration - -1.8m/s^2

T - Time - 3.81s

s = vt - 1/2at^2

-26.5m = 3.81v - 1/2 • -1.8 • 3.81^2

Rearrange

-26.5m/-1/2•-1.8•3.81^2=3.81v

3.81v = -2.028~

v = -0.532~ (3sf)

Wind gusts create ripples on the ocean that have a wavelength of 3.03 cm and propagate at 3.37 m/s. What is their frequency (in Hz)?

Answers

Answer:

Their frequency is 111.22 Hz

Explanation:

Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration and is expressed in units of length (m).

Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

The propagation speed of a wave is the quantity that measures the speed at which the wave's disturbance propagates throughout its displacement. The speed at which the wave propagates depends on both the type of wave and the medium through which it propagates. Relate wavelength (λ) and frequency (f) inversely proportional using the following equation:

v = f * λ.

Then the frequency can be calculated as: f=v÷λ

In this case:

λ=3.03 cm=0.0303 m (1m=100 cm)v= 3.37 m/s

Replacing:

[tex]f=\frac{3.37 \frac{m}{s} }{0.0303 m}[/tex]

Solving:

f=111.22 Hz

Their frequency is 111.22 Hz

the capacitor is initially unchanged. immediatley after the switches closes, the capacitor voltage is

Answers

Answer:

Immediately after the switches closes, the capacitor voltage is zero.

Explanation:

Charge on capacitor is given as;

[tex]q_o = CV_{battery}[/tex]

after the switches closes, the charge on the capacitor is the same as before, therefore, the voltage drop in the capacitor is zero.

Apply Kirchoff's voltage rule for short term;

[tex]q = q_o[/tex] = 0 (since it is uncharged)

[tex]V_{battery} + IR =0[/tex]

Where;

q₀ is the charge on the capacitor before

q is the charge on the capacitor after

Therefore, immediately after the switches closes, the capacitor voltage is zero.

An eagle is flying horizontally at a speed of 4.6 m/s when the fish in her talons wiggles loose and falls into the lake 4.2 m below. Calculate the vertical component of the velocity of the fish relative to the water when it hits the water.

Answers

Answer:

v = 9.07 m/s

the vertical component of the velocity of the fish relative to the water when it hits the water is 9.07 m/s

Explanation:

Given;

An eagle is flying horizontally at a speed of 4.6 m/s

Initial horizontal velocity uh = 4.6 m/s

Initial vertical velocity uy = 0

Height to fall d = 4.2 m

Acceleration due to gravity g = 9.8 m/s^2

The final vertical velocity of the fish when it hits the water can be calculated using the equation of motion;

v^2 = u^2 + 2as

v^2 = uy^2 + 2gd

uy = 0

v^2 = 2gd

v = √(2gd)

Substituting the given values;

v = √(2×9.8×4.2)

v = 9.073036977771 m/s

v = 9.07 m/s

the vertical component of the velocity of the fish relative to the water when it hits the water is 9.07 m/s

79. An example of an electrical insulator is
a. graphite.
b. glass.
c. aluminum
d. tungsten

Answers

Answer:

B. Glass

Explanation:

An electrical insulator is a substance that does not conduct electricity.

Glass has tightly bounded electrons, that is why it is an insulator of electricity.

Hey there! The answer to your question is below.

The correct answer would be B.GLASS

Glass is a insulator and rubber too

Glass, wood, plastic and more are all insulators

So the answer would be B. Glass

Hope this helps!

By: xBrainly

A spring with k = 35.5 N/m has a mass of 5.50 kg attached to it. An external force F = (4.40 N)sin[(6.80 s−1)t] drives the spring mass system so that it oscillates without any resistive forces. What is the amplitude of the oscillatory motion of the spring-mass system?

Answers

Answer:

A = 0.02 m

Explanation:

The spring constant, k = 35.5 N/m

The attached mass, m = 5.50 kg

The expression for the external force, F =  (4.40 N)sin[(6.80 s⁻¹)t].....(1)

The general expression for the external force, F = F₀ sin (wt).............(2)

Comparing equations (1) and (2):

The forced frequency, [tex]\omega = 6.80 rad/s[/tex]

F₀ = 4.40 N

The natural frequency can be calculated using the formula:

[tex]\omega_0 = \sqrt{\frac{k}{m} } \\\\\omega_0 = \sqrt{\frac{35.5}{5.5} } \\\\\omega_0 = 2.54 rad/s[/tex]

The amplitude of oscillation of a spring-mass system in the steady state:

[tex]A = \frac{F_0}{m(\omega^2 - \omega_o^2)} \\\\A = \frac{4.4}{5.5(6.8^2 - 2.54^2)} \\\\A = 0.02 m[/tex]

The net torque acting on an object is zero. What can you say about the angular momentum (about the same axis) of the object?

Answers

Answer:

The angular momentum (about the same axis) of the object is constant

Explanation:

Torque is the time time derivative of angular momentum.

τ = dL / dt

where;

dL  is the change in  angular momentum

τ is torque acting on the object

dt is change in time

when net torque acting on an object is zero, then

dL / dt = 0

Change in angular momentum (ΔL) is zero, therefore we can say that the angular momentum (L) is constant.

Thus, the angular momentum (about the same axis) of the object is constant.

Each charge is equidistant from the origin. In which direction is the net electric field at the point P on the y-axis?

Answers

Answer:

"Upwards and towards the left" is the right answer.

Explanation:

The magnitude of the field will be:

⇒  [tex]E=\frac{kq}{r^2}[/tex]

And direction -> for negative charges, to positive charges, except charges.  

Charging across the y-axis. It would be up to the aggregate field.  Because the x-axis needs to charge. Total production is to the west.  

Thus the net field is upwards as well as to the left.

What causes an ionic bond to form between sodium and chlorine?

Sodium and chlorine atoms share electrons.

Sodium and chlorine atoms switch electrons.

Sodium atoms gain electrons.

Sodium atoms donate electrons.

Answers

Answer:

D

Sodium atoms donate electrons.

Explanation:

An ionic bond is formed between sodium and chlorine when sodium atoms donate electrons.

What is an ionic bond?

Ionic bond or electrovalent bond is a type of bond which is formed between two elements when there is an exchange of electrons which takes place between  the atoms resulting in the formation of ions.

When the atom looses an electron it develops a positive charge and forms an ion called the cation while the other atom gains the electron and develops a negative charge  and forms an ion called the anion.

As the two atoms are oppositely charged they attract each other which results in the formation of a bond called the ionic bond.Compounds having ionic bonds are called ionic compounds  and are hard and have a definite crystalline structure with a high melting point.

Learn more about ionic bond,here:

https://brainly.com/question/977324

#SPJ6

Which one of the following is the shortest length?
A)
100 meters
C)
104 millimeters
E)
10 nanometers
B)
10² centimeters
D)
105 micrometers

Answers

Convert all lengths to metres

A) 100 meters B) 1 meters C) 0.104 meters D) 0.000105 meters E) 0.00000001 meters

Therefore D is the answer

Answer:

Option E (10 nanometers) is the shortest length

Explanation:

From,

1cm = [tex]10^{-2}m[/tex]

1mm = [tex]10^{-3}m[/tex]

1nanometer = [tex]10^{-9[/tex]

1micrometer = [tex]10^{-6[/tex]

Therefore,

A) [tex]10^0[/tex] meters = 1meter

B) [tex]10^2[/tex] cm = [tex]10^2 * 10^{-2} = 1meter[/tex]

C) [tex]10^4[/tex] mm = [tex]10^4 * 10^{-3} = 10meter[/tex]

D) [tex]10^5[/tex] micrometer = [tex]10^5 * 10^{-6} = 0.1meter[/tex]

E) [tex]10[/tex] nanometer = [tex]10 * 10^-9 = 1*10^{-8}[/tex]

Therefore 10nanometers is the shortest length

For more information on length conversions, visit

https://brainly.com/subject/physics

Total energy of a particle executing S.H.M of amplitude A is proportional to:
(a)A?
(b) A-2
(c) A
(d) A-​

Answers

Answer:

If x = A sin w t    where w is the angular frequency

then v = w A cos w t

Since KE = 1/2 m Vmax^2 and Vmax = w A     maximum KE

the total energy is proportional to A^2

Also, since the maximum potential energy is

PEmax = 1/2 K A^2    where the KE is zero (maximum amplitude)

one can again see that the total energy is proportional to A^2

"Index of refraction is defined as the speed of light in a vacuum divided by the speed of light in the medium. What is the index of refraction for a glass sample

Answers

Complete Question

Index of refraction is defined as the speed of light in a vacuum divided by the speed of light in the medium. What is the index of refraction for a glass sample? Speed of light in a vacuum c = 3.0 x 108 m/s. Speed of light in the glass = 1.50 x 108 m/s.

Answer:

The  index of refraction is  [tex]n_g = 2[/tex]

Explanation:

From the question we are told that

    The  speed of light in a vacuum is  [tex]c = 3.0 *10^{8} \ m/s[/tex]

      The speed of the in the glass is  [tex]c_g = 1.50 *10^{8} \ m/s[/tex]

From the question the index of refraction for a glass is mathematically evaluated as

        [tex]n_g = \frac{c}{c_g }[/tex]

       [tex]n_g = \frac{3.0 *10^{8}}{1.50 *10^{8} }[/tex]

       [tex]n_g = 2[/tex]

     

An object of mass 4kg is moving along a horizontal plane. If the coefficient of kinetic friction is 0.2 find the friction force acting on the object.

Answers

Answer:

The friction force acting on the object is 7.84 N

Explanation:

Given;

mass of object, m = 4 kg

coefficient of kinetic friction, μk = 0.2

The friction force acting on the object is calculated as;

F = μkN

F = μkmg

where;

F is the frictional force

m is the mass of the object

g is the acceleration due to gravity

F = 0.2 x 4 x 9.8

F = 7.84 N

Therefore, the friction force acting on the object is 7.84 N

Consider the waveform expression. y(x,t)=ymsin(2.39+693t+0.197x) The transverse displacement ( y ) of a wave is given as a function of position ( x in meters) and time ( t in seconds) by the expression. Determine the wavelength, frequency, period, and phase constant of this waveform.

Answers

Answer:

-   λ = 31.89

-   f = 110.29Hz

-   Ф = 2.39

Explanation:

You have the following waveform expression:

[tex]y(x,t)=ym\ sin(2.39+693t+0.197x)[/tex]      (1)

The general expression for a wave can be written as:

[tex]y(x,t)=y_o\ sin(kx\pm \omega t+\phi)[/tex]          (2)

The sign of the term wt determines the direction of the motion of the wave.

In comparison with the equation (1) you have:

k: wavenumber = 0.197

w: angular frequency = 693

Ф: phase constant of the wave = 2.39

- The wavelength of the wave is given by the following formula:

[tex]\lambda=\frac{2\pi}{k}=\frac{2\pi}{0.197}=31.89m[/tex]

The wavelength of the wave is 31.89m

- The frequency is:

[tex]f=\frac{\omega}{2\pi}=\frac{693}{2\pi}=110.29Hz[/tex]

The frequency of the wave is 110.29Hz

- The phase constant is 2.39

What is the current in the circuit at the instant the capacitor begins to charge (the instant the switch is first closed)?

Answers

Complete  Question

The  complete question is shown on the first uploaded image

Answer:

The current is  [tex]I = 4.2 \ A[/tex]

Explanation:

From the question we are told that

    The  voltage of battery is  [tex]V = 25 V[/tex]

     The  capacitance of capacitor is  [tex]C = 15 \mu F[/tex]

      The resistance of the resistor is  [tex]R = 6 \Omega[/tex]

Generally the current at the instant the capacitor starts charging is  

             [tex]I = \frac{V}{R}[/tex]

substituting values

           [tex]I = \frac{25}{6}[/tex]

         [tex]I = 4.2 \ A[/tex]

A point charge of -4.28 pC is fixed on the y-axis, 2.79 mm from the origin. What is the electric field produced by this charge at point P, which is on the x-axis, 9.83 mm from the origin

Answers

Answer:

E = (-3.61^i+1.02^j) N/C

magnitude E = 3.75N/C

Explanation:

In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:

[tex]\vec{E}=-k\frac{q}{r^2}cos\theta\ \hat{i}+k\frac{q}{r^2}sin\theta\ \hat{j}\\\\\vec{E}=k\frac{q^2}{r}[-cos\theta\ \hat{i}+sin\theta\ \hat{j}][/tex]              (1)

Where the minus sign means that the electric field point to the charge.

k: Coulomb's constant = 8.98*10^9Nm^2/C^2

q = -4.28 pC = -4.28*10^-12C

r: distance to the charge from the point P

The point P is at the point (0,9.83mm)

θ: angle between the electric field vector and the x-axis

The angle is calculated as follow:

[tex]\theta=tan^{-1}(\frac{2.79mm}{9.83mm})=74.15\°[/tex]

The distance r is:

[tex]r=\sqrt{(2.79mm)^2+(9.83mm)^2}=10.21mm=10.21*10^{-3}m[/tex]

You replace the values of all parameters in the equation (1):

[tex]\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}[/tex]

The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C

A chain lying on the ground is 10 m long and its mass is 70 kg. How much work (in J) is required to raise one end of the chain to a height of 6 m

Answers

Answer:

The work done in moving the chain is 4116 J

Explanation:

Given;

mass of the chain, m = 70 kg

length of the chain, l = 10 m

vertical height through which one end of the chain was raised, h = 6 m

Work done in raising this chain to this height is equal to potential energy due to this vertical height

W = PE

W = mgh

where;

m is mass of the chain

g is acceleration due to gravity

h is the vertical height through which the chain was raised

W = 70 x 9.8 x 6

W = 4116 J

Therefore, the work done in moving the chain is 4116 J

An evacuated tube uses an accelerating voltage of 50 kV to accelerate electrons to hit a copper plate and produce X-rays. Non-relativistically, what would be the maximum speed (in m/s) of these electrons

Answers

Answer:

Explanation:

Accelerating voltage = 50 x 10³ V

energy created = q V where q is charge on electron and V is accelerating potential

So qV = 1/2 m v² , m is mass of electron and v is velocity

Putting values

1.6 x 10⁻¹⁹ x 50 x 10³ = 1/2 x 9.1 x 10⁻³¹ x v²

v² = 175.8 x 10¹⁴

v = 13.25 x 10⁷ m /s

A brass rod with a mass of 0.300 kg slides on parallel horizontal iron rails, 0.440 m apart, and carries a current of 15.0 A. The coefficient of friction between the rod and rails is 0.300. What vertical, uniform magnetic field is needed to keep the rod moving at a constant speed

Answers

Answer:

The magnitude of the magnetic field is  [tex]B = 0.0890 \ T[/tex]

Explanation:

From the question we are told that

   The mass of the rod is  [tex]m =0.300 \ kg[/tex]

    The distance of separation is  [tex]d = 0.440 \ m[/tex]

     The current is  [tex]I = 15.0 \ A[/tex]

     The coefficient of friction is   [tex]\mu = 0.300[/tex]

     

Generally for the rod the rod to continue moving at a constant speed

   The frictional force must equal to the magnetic field force so

    [tex]F_m = F_f[/tex]

Where  [tex]F_m = B* I * d[/tex]

and     [tex]F_f = \mu * m * g[/tex]

   [tex]B*I *d = \mu * m * g[/tex]

=>    [tex]B = \frac{\mu * m * g }{I * d }[/tex]

substituting values

       [tex]B = \frac{0.2 * 0.300 * 9.8 }{ 15 * 0.440 }[/tex]

       [tex]B = 0.0890 \ T[/tex]

The amount of heat necessary to change 1 kg of a solid into a liquid at the same temperature is called the Group of answer choices

Answers

Answer:

Latent heat of fusion

Explanation:

The amount of heat required to change the state of a unit mass (say 1kg) of a substance is called latent heat. This change typically occurs without a significant change in temperature. The latent heat occurs as a result of the work required to break the forces that hold atoms or molecules in a given matter (solid, liquid or gas). Now, since the transformation is from solid into liquid, the amount of heat required to do this is called the latent heat of fusion. This transformation takes place at the melting point of the solid.

A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s. The dipole is initially oriented so that the charge Q is located in the plane that bisects the dipole. Assume that r>>s
Immediately after the dipole is released:
a. What is the magnitude of the force on the dipole?
b. What is the magnitude of the torque on the dipole?

Answers

Answer:

a) the magnitude of the force is

F= Q([tex]\frac{kqs}{r^3}[/tex]) and where k = 1/4πε₀

F = Qqs/4πε₀r³

b)  the magnitude of the torque on the dipole

τ = Qqs/4πε₀r²

Explanation:

from coulomb's law

E = [tex]\frac{kq}{r^{2} }[/tex]

where k = 1/4πε₀

the expression of the electric field due to dipole at a distance r is

E(r) = [tex]\frac{kp}{r^{3} }[/tex] , where p = q × s

E(r) = [tex]\frac{kqs}{r^{3} }[/tex] where r>>s

a) find the magnitude of force due to the dipole

F=QE

F= Q([tex]\frac{kqs}{r^3}[/tex])

where k = 1/4πε₀

F = Qqs/4πε₀r³

b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces

τ = F sinθ × s

θ = 90°

note: sin90° = 1

τ = F × r

recall  F = Qqs/4πε₀r³

τ = (Qqs/4πε₀r³) × r

τ = Qqs/4πε₀r²

Part A: The expression of the force on the dipole is [tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex].

Part B: The expression of the torque on the dipole is [tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex].

How do you calculate the force and torque on the dipole?

Given that a point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s. Also, r>>s.

Part A

The electric field due to dipole at a distance r is given below.

[tex]E_r = \dfrac {qs}{4\pi \epsilon_0 r^3}[/tex]

The magnitude of the force can be given as below.

[tex]F = QE_r[/tex]

[tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex]

Hence the expression of the force on the dipole is [tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex].

Part B

The torque on the dipole will dependent on the perpendicular forces on the dipole. The expression of the torque is given below.

[tex]\tau = F \times r \times sin \theta[/tex]

For the perpendicular forces, θ = 90°. Hence the torque is given below.

[tex]\tau = F\times r[/tex]

[tex]\tau = \dfrac {Qqs}{4 \pi \epsilon_0 r^3} \times r[/tex]

[tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex]

Hence the expression of the torque on the dipole is [tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex].

To know more about force and torque, follow the link given below.

https://brainly.com/question/18992494.

A small object with mass 3.80 kg moves counterclockwise with constant speed 1.65 rad/s in a circle of radius 2.70 m centered at the origin. It starts at the point with position vector 2.70 m. Then it undergoes an angular displacement of 8.70 rad.
(a) What is its new position vector?
in meters
(b) In what quadrant is the particle located and what angle does its position vector make with the positive x-axis?
(c) What is its velocity?
in m/s
(d) In what direction is it moving?
_____° from the +x direction.
(e) What is its acceleration?
in m/s2
(f) What total force is exerted on the object?
in N

Answers

Answer:

Explanation:

angular velocity

ω = 1.65 rad /s

radius R = 2.70 m

angular displacement = 8.70 rad

a )

New position vector in vector form

= R cos8.7 i + R sin8.7 j

= 2.7 cos8.7 i + 2.7 sin8.7 j

= 2.7 x .748 i + 2.7 x .663 j

= 2.01 i + 1.79 j

b )

8.7 radian = 180/π x 8.7 degree

= 498.72 degree

= 498.72 - 360

= 138.72 degree

It will be in second quadrant .

angle made with positive x - axis

= 138.72 degree .

c )

velocity

v = ω R

= 1.65 x 2.7

= 4.455 m /s

d )

It is moving in a direction making 138.72° with positive x direction .

e )

acceleration will be centripetal acceleration

= v²/ R  

= 4.455² / 2.7

= 7.35 m /s²

f ) force = mass x acceleration

= 3.8 x 7.35

= 27.93 N .

4. The capacitance of a capacitor is increased by a factor of 1.5 when it is completely filled
with a certain dielectric material. Find the dielectric constant of the material and its
electric susceptibility​

Answers

Answer:

a. Dielectric constant, ε = 1.5 b. Electric susceptibility, χ = 0.5

Explanation:

a. Dielectric constant

Since the capacitance of the capacitor is increased by a factor of 1.5. Let its initial capacitance be C and its final capacitance after adding the material be C'.

Since C' = εC where ε = relative permittivity,

Also, C' = 1.5C

Comparing both equations for C', ε = 1.5.

Since ε = relative permittivity = dielectric constant,

dielectric constant = 1.5

So, the dielectric constant = 1.5

b. Electric susceptibility

The electric susceptibility χ is given by

χ = ε - 1 where ε = dielectric constant

Since ε = 1.5,

χ = ε - 1

χ = 1.5 - 1

χ = 0.5

So the electric susceptibility χ = 0.5

A small truck has a mass of 2065 kg. How much work is required to decrease the speed of the vehicle from 23.0 m/s to 12.0 m/s on a level road

Answers

Answer:

397.51 kJ

Explanation:

Since the change in velocity is done on a level road, there is no change in the potential energy. The workdone is the workdone on reducing the kinetic energy.

Workdone W = change in kinetic energy ∆K.E

W = ∆K.E

K.E = 0.5mv^2

∆K.E = 0.5m(m1^2 - m2^2)

Given;

Mass m = 2065 kg

Initial velocity v1 = 23.0 m/s

Final velocity v2 = 12.0 m/s

W = ∆K.E = 0.5m(m1^2 - m2^2)

Substituting the given values;

W = ∆K.E = 0.5×2065(23^2 - 12^2)

W = 397512.5J

W = 397.51 kJ

To water the yard, you use a hose with a diameter of 3.0 cm. Water flows from the hose with a speed of 2.2 m/s. If you partially block the end of the hose so the effective diameter is now 0.50 cm, with what speed does water spray from the hose

Answers

Answer:

v₂ = 79.69 m/s

Explanation:

The initial diameter of the hose, d₁ = 3.0 cm = 0.03 m

Initial Cross Sectional Area, A₁ = πd₁²/4

A₁ = (π* 0.03²)/4

A₁ = 0.00071 m²

The initial speed of water from the hose, v₁ = 2.2 m/s

The diameter of the hose after blocking the end, d₂ = 0.50 cm = 0.005 m

Cross Sectional Area of the hose after blocking the end, A₂ = πd₂²/4

A₂ = (π* 0.005²)/4

A₂ = 0.0000196 m²

To get the speed, v₂, at which the water spray from the hose after blocking the end, we will use the continuity equation:

A₁v₁ = A₂v₂

0.00071 * 2.2 = 0.0000196 v₂

0.001562 = 0.0000196 v₂

v₂ = 0.001562/0.0000196

v₂ = 79.69 m/s

If the diameter of a radar dish is doubled, what happens to its resolving power, assuming that all other factors remain unchanged? Its resolving power

a. is reduced to one-half its original value.
b. Quadruples.
c. is reduced to one-quartet its original value.
d. Halves.
e. Doubles.

Answers

Answer:

e. Doubles.

Explanation:

Resolving power is given by the formula as follows :

[tex]\dfrac{1}{d\theta}=\dfrac{D}{1.22\lambda}[/tex]

Here, [tex]d\theta[/tex] is the angle subtended by two distant objects

D is diameter of the telescope

Here, the diameter of a radar dish is doubled, assuming all other factors remain unchanged, then the resolving power gets doubled. Hence, the correct option is (e).

A wheel 2.40 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.40 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3° with the horizontal at this time. At t = 2.00 s, find the following.
A. What is the tangential speed?
B. Total acceleration
C. Angular position of point P.

Answers

Answer:

Explanation:

Radius of wheel = 1.2 m

A )

To know angular speed after t sec , we use the formula

ω = ω₀ + α t  , where ω₀ is initial velocity , α is angular acceleration

ω = 0 + 4.4 x 2

= 8.8 rad / s

v= ωR , v is tangential speed , ω is angular speed , R is radius of wheel .

= 8.8 x 1.2 = 10.56 m /s

B )

radial acceleration

Ar = v² / R

= 10.56² / 1.2

= 92.93 m /s²

Tangential acceleration

At = angular acceleration x radius

= 4.4 x 1.2 = 5.28 m /s²

Total acceleration

=  √ ( At² + Ar² )

=√ (5.28² +92.93²)

= 93 m /s²

C )

θ = ωt + 1/2 α t²     where θ is angular position after time t .

= 0 + .5 x 4.4 x 2²

= 8.8 rad

= 180x 8.8/ 3.14  = 504.45 degree

initial position = 57.3°

final position = 504 .45 + 57.3

= 561.75 °

= 561.75 - 360

= 201.75 ° .

Position of radius vector of point P will be at angle of 201.75 from horizontal axis .

A piece of iron rests on top of a piece of wood floating in a bathtub. If the iron is removed from the wood, and kept out of the water, what happens to the water level in the tub?

a. It goes up.
b. It does not change.
c. It goes down.
d. It is impossible to determine from the information given.

Answers

Answer:

It goes down.

The water level remain the same.

Explanation:

This can be explained using Archimedes principle which states that a body fully or partially submerged in a fluid is acted by an upward bouyant force which is equal to the weight of the fluid the body displaced.

The wood will only sink if the weight of the wood is greater than the weight of the fluid the wood displaced, but the weight of the wood is equal to the weight of fluid displaced, therefore the wood will float.

Therefore, the weight of the wood is the same as the weight of the fluid displaced, so the wood will be at the same level as the water.

If the iron is removed, the level of the water goes down because iron weight is bigger than the water displaced and it tends to increase the water level but since it is removed, the water level will decrease.

How did the horizontal velocity vector component change during the flight of the cannonball in the simulation

Answers

Answer:

The horizontal velocity vector of the canonball does not change at all, but is constant throughout the flight.

Explanation:

First, I'll assume this is a projectile simulation, since no simulation is shown here. That been the case, in a projectile flight, there is only a vertical component force (gravity) acting on the body, and no horizontal component force on the body. The effect of this on the canonball is that the vertical velocity component on the canonball goes from maximum to zero at a deceleration of 9.81 m/s^2, in the first half of the flight. And then zero to maximum at an acceleration of 9.81 m/s^2 for the second half of the flight before hitting the ground. Since there is no force acting on the horizontal velocity vector of the canonball, there will be no acceleration or deceleration of the horizontal velocity component of the canonball. This means that the horizontal velocity component of the canonball is constant throughout the flight

A woman is listening to her radio, which is 174 m from the radio station transmitter. (a) How many wavelengths of the radio waves are there between the transmitter and radio receiver if the woman is listening to an AM radio station broadcasting at 1540 kHz

Answers

Explanation:

It is given that,

The distance between the radio and the radio station is 174 m

We need to find how many wavelengths of the radio waves are there between the transmitter and radio receiver if the woman is listening to an AM radio station broadcasting at 1540 kHz.

f = 1540 kHz

Wavelength,

[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{1540\times 10^3}\\\\\lambda=194.8\ m[/tex]

Let there are n wavelengths of the radio waves. So,

[tex]n=\dfrac{d}{\lambda}\\\\n=\dfrac{174}{194.8}\\\\n=0.89\ \text{wavelengths}[/tex]

There are 0.89 wavelengths.

Other Questions
Using Volume Formulas: Tutorial14 of 23 Save & ExitQuestion 2Suppose that you want to design a set of four congruent square pyramids whose combined volume is the same as the volume of a singlerectangular pyramid. What values of land h for the four square pyramids and what values of I, w, and h for the rectangular pyramid will produceidentical volumes? There is more than one correct answer.BTUXXFont SizesA. AE JESquare PyramidsRectangular PyramidVolumeBase Length HeightVolumeVolume x4 Base Length Base Width Height(2x)3(lxwh3ICharacters used: 110 / 15000Submit Find the indicated values, where g(t) = t^2 - t and f(x) = 1 + x g(f(3)-2f(1)) Of the following elements,________has the most negative electron affinity. A. Sb B. Sn C. Sr D. Te E. IOf the following elements,________has the most negative electron affinity. A. Sb B. Sn C. Sr D. Te E. I Descartes believed in dualism, the view that the mind and the body are: a. empirical.b. opposing physical entities.c. separate.d. the same thing. In Triangle ABC, AB = 10. AC = 14, and angle A = 51. Find the length of BC to the nearest hundredth Suppose that you go to a bank at which you have no account, give the bank cash, and in return obtain a check drawn against that bank which you will use to pay someone else. This is called a WILL AWARD BRAINLIEST HELP If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation?0.112 / 2110 The second statement is the ___ of the first. ab ba A) converse B) contrapostive C) contradition D) inverse determine the rate of reaction that follows the rate= k[A]^m[B]^n Which sentence contains a dangling modifier? Hungry after practice, the team gobbled up their sandwiches. Looking through his backpack, Tyler finally spotted his calculator. After trying the new recipe, chicken pizza tasted delicious. With a sigh of exhaustion, Mrs. Granger put her feet up. I promise I will mark as brainiest How many minutes is it before 12 noon, if 48 minutes ago it was twice as many minutes past 9 a.m.? i want step by step explanation Explain the difference between an affirmative act and acts of omission. Estimate the indicated probability by using the normal approximation as an approximation to the binomial distribution. (PROBLEMS 4 & 5) 4. Two percent of hair dryers produced in a certain plant are defective. Estimate the probability that of 10,000 randomly selected hair dryers, at least 219 are defective. 5. In one county, the conviction rate for speeding is 85%. Estimate the probability that of the next 100 speeding summonses issued, there will be at least 90 convictions. What is the measure of angle DOC, given that AB is congruent to DC The Earth's inner core reaches temperatures that are at times greater than 9000F. What causes this layer to remain solid despite the high temperature? A photopsin is a protein A. of a photopigment within cone photoreceptors. B. of a photopigment within rod photoreceptors. C. that is derived from Vitamin E. D. that allows ions to flow into rod and cone photoreceptors given that the electronic configuration of an element X is 1s2 2s2 2p6 3s2 3p4,it can be deduced that X:a. belongs to group VI in the periodic table b. belongs to period 4 in the periodic table c. contains 3 unpaired electrons in the ground state d. has atomic number 27 20 points brainlist thanks What is the distance from (2, 4) to (0, 6)? Round your answer to the nearest hundredth. 9.23 10.20 10.98 11.34 please explain how you got the awnser im having a hard time Write a personal narrative in which you explore your own experiences with discrimination. You do not have to write about discrimination that was targeted at you, though you can. You may choose to write about witnessing behaviors that were unjust or discriminatory, or you may write about a time when you learned about a historical example of discrimination. As you are writing, keep in mind the concepts you have learned in this unit: narrative structure, powerful use of language, the impact of context on a story. Since this is a personal narrrative, you can write from 1st person perspective (usually, you do not want to do this in academic writing). A simple random sample of size nequals17 is drawn from a population that is normally distributed. The sample mean is found to be x overbar equals 56 and the sample standard deviation is found to be sequals10. Construct a 95% confidence interval about the population mean. The lower bound is nothing. The upper bound is nothing. (Round to two decimal places as needed.)