Medical implants and high-quality jewelry items for body piercings are frequently made of a material known as G23Ti or surgical-grade titanium. The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium. What is the empirical formula for surgical-grade titanium

Answers

Answer 1

Answer:

The Empirical Formular is given as; Ti₆Al₄V

Explanation:

The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium.

Elements                        Titanium            Aluminium        Vanadium

Percentage                    64.39                 24.19                   11.42

Divide all through by their molar mass

                                     64.39 / 47.87      24.19 / 27               11.42 / 50.94

                                       =  1.345                = 0.896                 = 0.224

Divide all though  by the smallest number (0.224)

                                     1.345 / 0.224        0.896 / 0.224       0.224 / 0.224

                                     = 6                         = 4                             = 1

The Empirical Formular is given as; Ti₆Al₄V

Answer 2

Using the stepwise procedure for obtaining the empirical formula of a compound, the empirical formula is [tex] T_{6}Al_{4}V[/tex]

Titanium :

Percentage composition = 64.39%Molar mass = 47.87

Divide by Molar mass : = 64.39/47.87 = 1.345

Aluminum :

Percentage composition = 24.19%Molar mass = 27

Divide by Molar mass : = 24.19/27 = 0.896

Vanadium :

Percentage composition = 11.42%Molar mass = 50.94%

Divide by Molar mass : = 11.42/50.94 = 0.224

Divide by the smallest :

Titanium = 1.345 / 0.224 = 6.00

Aluminum = 0.896 / 0.224 = 4

Vanadium = 0.224 / 0.224 = 1

Hence, the empirical formula is [tex] T_{6}Al_{4}V[/tex]

Learn more : https://brainly.com/question/17091379


Related Questions

Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above

Answers

Answer:

Approximately [tex]10.88[/tex].

Explanation:

Equilibrium constant

[tex]\rm OBr^{-}[/tex] can act as a weak Bronsted-Lowry base:

[tex]\rm OBr^{-}\; (aq) + H_2O\; (l) \rightleftharpoons HOBr\; (l) + OH^{-}\; (aq)[/tex].

(Side note: the state symbol of [tex]\rm HOBr[/tex] in this equation is [tex]\rm (l)[/tex] (meaning liquid) because [tex]\rm HOBr[/tex] is a weak acid.)

However, the equilibrium constant of this reaction, [tex]K_\text{eq}[/tex], isn't directly given. The idea is to find [tex]K_\text{eq}[/tex] using the [tex]\rm pH[/tex] value at the half-equivalence point. Keep in mind that this system is at equilibrium all the time during the titration. If temperature stays the same, then the same [tex]K_\text{eq}[/tex] value could also be used to find the [tex]\rm pH[/tex] of the solution before the acid was added.

At equilibrium:

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At the half-equivalence point of this titration, exactly half of the base, [tex]\rm OBr^{-}[/tex], has been converted to its conjugate acid, [tex]\rm HOBr[/tex]. Therefore, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should both be equal to one-half the initial concentration of [tex]\rm OBr^{-}[/tex].

As a result, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should be the same. The expression for [tex]K_\text{eq}[/tex] can thus be simplified:

[tex]\begin{aligned}& K_\text{eq} \\&= \frac{\left(\text{half-equivalence $[\rm HOBr\; (l)]$}\right)\cdot \left(\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\right)}{\text{half-equivalence $[\rm OBr^{-}\; (l)]$}}\\ &=\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\end{aligned}[/tex].

In other words, the [tex]K_\text{eq}[/tex] of this system is equal to the [tex]\rm OH^{-}[/tex] concentration at the half-equivalence point. Assume that [tex]\rm p\mathnormal{K}_\text{w}[/tex] the self-ionization constant of water, is [tex]14[/tex]. The concentration of [tex]\rm OH^{-}[/tex] can be found from the [tex]\rm pH[/tex] value:

[tex]\begin{aligned}& \text{half-equivalence $[\rm OH^{-}\; (aq)]$} \\ &= 10^{\rm pH - p\mathnormal{K}_\text{w}}\;\rm mol \cdot L^{-1} \\ &= 10^{7.75 - 14}\; \rm mol \cdot L^{-1}\\ &= 10^{-6.25}\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

Therefore, [tex]\begin{aligned} K_\text{eq} &= 10^{-6.25}\end{aligned}[/tex].

Initial pH of the solution

Again, since [tex]\rm KOBr[/tex] is a soluble salt, all that [tex]0.200\; \rm M[/tex] of [tex]\rm KOBr[/tex] in this solution will be in the form of [tex]\rm K^{+}[/tex] and [tex]\rm OBr^{-}[/tex] ions. Before any hydrolysis takes place, the concentration of [tex]\rm OBr^{-}[/tex] should be equal to that of [tex]\rm KOBr[/tex]. Therefore:

[tex]\text{$[\rm OBr^{-}\; (aq)]$ before hydrolysis} = 0.200\; \rm M[/tex].

Let the equilibrium concentration of [tex][\rm OH^{-}\; (aq)][/tex] be [tex]x\; \rm M[/tex]. Create a RICE table for this reversible reaction:

[tex]\begin{array}{c|ccccccc} & \rm OBr^{-}\; (aq) &+&\rm H_2O\; (l)& \rightleftharpoons & \rm HOBr\; (l)& + & \rm OH^{-}\; (aq) \\ \textbf{I}& 0.200\; \rm M & & & & 0 \; \rm M & & 0\; \rm M \\ \textbf{C} & -x\; \rm M & & & & +x \; \rm M & & +x\; \rm M \\ \textbf{E}& (0.200 + x)\; \rm M & & & & x \; \rm M & & x\; \rm M \end{array}[/tex].

Assume that external factors (such as temperature) stays the same. The [tex]K_\text{eq}[/tex] found at the half-equivalence point should apply here, as well.

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At equilibrium:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x}[/tex].

Assume that [tex]x[/tex] is much smaller than [tex]0.200[/tex], such that the denominator is approximately the same as [tex]0.200[/tex]:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x} \approx \frac{x^2}{0.200}[/tex].

That should be equal to the equilibrium constant, [tex]K_\text{eq}[/tex]. In other words:

[tex]\displaystyle \frac{x^2}{0.200} \approx K_\text{eq} = 10^{-6.25}[/tex].

Solve for [tex]x[/tex]:

[tex]x \approx 3.35\times 10^{-4}[/tex].

In other words, the [tex]\rm OH^{-}[/tex] before acid was added was approximately [tex]3.35\times 10^{-4}\; \rm M[/tex], which is the same as [tex]3.35\times 10^{-4}\; \rm mol \cdot L^{-1}[/tex]. Again, assume that [tex]\rm p\mathnormal{K}_\text{w} = 14[/tex]. Calculate the [tex]\rm pH[/tex] of that solution:

[tex]\begin{aligned}\rm pH &= \rm p\mathnormal{K}_\text{w} + \log [\mathrm{OH^{-}}] \approx 10.88\end{aligned}[/tex].

(Rounded to two decimal places.)

Draw the curved arrow mechanism for the reaction between (2R,3R)-3,5-dimethylhexan-2-ol and PCl3.

Answers

Answer:

Sn2 mechanism

Explanation:

In this case, our nucleophile is the "OH" on (2R,3R)-3,5-dimethylhexan-2-ol. The alcohol group will attack the [tex]PCl_3[/tex] to produce a new bond between O and P with a positive charge in the oxygen. Additionally, when the OH attacks a Br atom leaves the molecule producing a bromide ion.

In the next step, the bromide ion produced will attack the carbon bonded to the OH that now is bonded to [tex]PCl_2[/tex]. An Sn2 reaction takes place and the substitution would be made in only one step. Due to this, we will have an inversion in the stereochemistry and the absolute configuration on carbon 2 will change from "R" to "S" to produce (2S,3R)-2-bromo-3,5-dimethylhexane.

I hope it helps!

If enough experimental data supports a hypothesis, then it

Answers

Answer:

Then the hypothesis is proved and becomes a theory.

If not, then another hypothesis should be proposed and tested.

4 Al + 3O2 → 2Al2O3 If 14.6 grams Al are reacted, how many liters of O2 at STP would be required?

Answers

Answer: 9.08 L

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}\times{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} Al=\frac{14.6g}{27g/mol}=0.54moles[/tex]

[tex]4Al+3O_2\rightarrow 2Al_2O_3[/tex]

According to stoichiometry :

4 moles of [tex]Al[/tex] require  = 3 moles of [tex]O_2[/tex]

Thus 0.54 moles of [tex]Al[/tex] will require=[tex]\frac{3}{4}\times 0.54=0.405moles[/tex]  of [tex]O_2[/tex]

Standard condition of temperature (STP)  is 273 K and atmospheric pressure is 1 atm respectively.

According to the ideal gas equation:

[tex]PV=nRT[/tex]

P = Pressure of the gas = 1 atm

V= Volume of the gas = ?

T= Temperature of the gas = 273 K      

R= Gas constant = 0.0821 atmL/K mol

n=  moles of gas= 0.405

[tex]V=\frac{nRT}{P}=\frac{0.405\times 0.0821\times 273}{1}=9.08L[/tex]

Thus 9.08 L of [tex]O_2[/tex] at STP would be required

Considering the reaction stoichiometry and STP conditions, 9.072 L of O₂ at STP would be required.  

The balanced reaction is:

4 Al + 3 O₂ → 2 Al₂O₃

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:

Al: 4 moles O₂: 3 moles Al₂O₃: 2  moles

Being 27 g/mole the molar mass of Al, this is the amount of mass that a substance contains in one mole, then if 14.6 grams Al are reacted,   the number of moles of Al that react is calculated as:

[tex]14.6 gramsx\frac{1 mole}{27 grams}= 0.54 moles[/tex]

Then you can apply the following rule of three: if by stoichiometry 4 moles of Al react with 3 moles of O₂, 0.54 moles of Al react with how many moles of O₂?

[tex]amount of moles of O_{2} =\frac{0.54 moles of Alx3 moles of O_{2} }{4 moles of Al}[/tex]

amount of moles of O₂= 0.405 moles

On the other side, the STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.

Then you can apply the following rule of three: if by definition of STP 1 mole of O₂ occupies 22.4 L, 0.405 moles of O₂, how much volume does it occupy?

[tex]volume=\frac{0.405 moles of O_{2}x22.4 L }{1 mole of O_{2} }[/tex]

volume= 9.072 L

Finally, 9.072 L of O₂ at STP would be required.  

Learn more:

brainly.com/question/16487206?referrer=searchResults brainly.com/question/14446695?referrer=searchResults brainly.com/question/11564309?referrer=searchResults brainly.com/question/4025026?referrer=searchResults brainly.com/question/18650135?referrer=searchResults

What do chemists use percent yield calculations for in the real world?
A. To balance the reaction equation.
B. To determine how much product they will need.
C. To determine how efficient reactions are.
D. To determine how much reactant they need.

Answers

Answer:

C. To determine how efficient reactions are.

D. To determine how much reactant they need.

Explanation:

When you are doing a reaction, you are hoping for a percent yield to close of 100%. You make the reaction and determine how many product you obtain. If you know the percent yield of a reaction you can calculate the amount of reactant you need to obtain a determined amount of product.

Having this in mind:

A. To balance the reaction equation.  false. To calculate percent yield you need to balance the reaction before. You don't use percent yield to balance the reaction

B. To determine how much product they will need.  false. You determine how much product you obtain after the reaction. How much product you need is independent of percent yield

C. To determine how efficient reactions are.  true. A way to determine efficience of a reaction is with percent yield. An efficient reaction has a high percent yield.

D. To determine how much reactant they need. true. If you know percent yield of a reaction you can know how many reactant you must add to obtain  the amount of product you want.

The following balanced equation describes the reduction of iron(III) oxide to molten iron within a blast furnace: Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. What is the theoretical yield of liquid iron, in grams? Just enter a numerical value. Do not enter units.

Answers

Answer:  313.6

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} Fe_2O_3=\frac{450g}{160g/mol}=2.8moles[/tex]

[tex]\text{Moles of} CO=\frac{260g}{28g/mol}=9.3moles[/tex]

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]

According to stoichiometry :

1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex]  of [tex]CO[/tex]

Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.

As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]

Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]

Theoretical yield of liquid iron is 313.6 g

Carbon-14 has a half-life of 5720 years and this is a fast-order reaction. If a piece of wood has converted 75 % of the carbon-14, then how old is it?

Answers

Answer:

11445.8years

Explanation:

Half-life of carbon-14 = 5720 years

First we have to calculate the rate constant, we use the formula :

16. A metal element and a non-metal element are brought near each other and allowed to react. What's the most likely type of compound
that will form between these two elements?
A. lonic and covalent
B. lonic
C. Covalent
D. Neither, metals and non-metals don't react.​

Answers

B) ionic. Generally, metals and non-metals form ionic bonds that are stronger than covalent bonds due to the higher electronegativity difference.

Answer:

B) Ionic

Explanation:

Arrange the following oxides in order of increasing acidity.
Rank from least acidic to most acidic. To rank items as equivalent,overlap them.
CaO
P2O5
SO3
SiO2
Al2O3
CO2

Answers

Answer:

Based on the Modern Periodic table, there is an increase in the electropositivity of the atom down the group as well as increases across a period. On comparing the electropositivities of the mentioned oxides central atom, it is seen that Ca is most electropositive followed by Al, Si, C, P, and S is the least electropositive.  

With the decrease in the electropositivity, there is an increase in the acidity of the oxides. Thus, the increasing order of the oxides from the least acidic to the most acidic is:  

CaO > Al2O3 > SiO2 > CO2 > P2O5 > SO3. Hence, CaO is the least acidic and SO3 is the most acidic.  

Since acidity increases across a period from left to right, and decreases down a group, the oxides can be ranked from the least acidic to the most acidic as follows:

[tex]\mathbf{CaO < Al_2O_3 < SiO_2 < CO_2 < P_2O_5 <SO_3}[/tex]

The least acidic is CaOThe most acidic is [tex]SO_3[/tex]

Note the following:

Acidity of an oxide depends on its electronegativity.Non-metals are more electronegative, while metals are less electronegative.Acidity of oxides increases across a period as you move from left to the right side of a periodic table.Acidity of oxides decreases down a group (column) in a periodic table.

Using the periodic table diagram given in the attachment below, we can rank the given oxides according to their increasing acidity.

CaO, is the least, because it is an oxide of the metal, Calcium, which is at the far left in group 2 in the periodic table.

The next is, [tex]Al_2O_3[/tex]. Aluminum is a metal from group 3.

[tex]SiO_2[/tex] is an oxide of Silicon, also in group 4 but below Carbon.

[tex]CO_2[/tex] is an oxide of Carbon, from group 4.

[tex]P_2O_5[/tex] is an oxide of the non-metal, Phosphorus, a group 5 element

[tex]SO_3[/tex] is an oxide of the non-metal, Sulphur, a group 6 element.

Therefore, since acidity increases across a period from left to right, and decreases down a group, the oxides can be ranked from the least acidic to the most acidic as follows:

[tex]\mathbf{CaO < Al_2O_3 < SiO_2 < CO_2 < P_2O_5 <SO_3}[/tex]

The least acidic is CaOThe most acidic is [tex]SO_3[/tex]

Learn more here:

https://brainly.com/question/12200588

A 1.0 kg object absorbs 1,303 J of heat energy and experiences a temperature increase of 5.2∘C. What is the object’s specific heat, in joules per gram-degree celsius? Report your answer with the correct number of significant figures.

Answers

Answer:

c = 250.58 J/kg/[tex]^{0}C[/tex]

Explanation:

The specific heat of a substance is the required quantity of heat to increase or decrease the temperature of its unit mas by 1 kelvin.

Q = mcΔθ

where: Q is the quantity of heat absorbed or released, m is the mass of the substance, c is its specific heat and Δθ is the change in temperature of the substance.

Given that; m = 1.0 kg, Q = 1303 J and Δθ = 5.2 [tex]^{0}C[/tex], then;

c = Q ÷ (mΔθ)

  = 1303 ÷ (1.0 × 5.2)

  = 1303 ÷ 5.2

  = 250.58 J/kg/[tex]^{0}C[/tex]

The specific heat of the object is 250.58 J/kg/[tex]^{0}C[/tex].

Answer:

0.25

Explanation:

True or False

1. Density is considered a chemical (i.e., not a physical) property. TRUE FALSE

2. When naming an ionic compound containing a transition element such as iron (Fe), the name must include a Roman numeral to indicate the charge of the metal ion. TRUE FALSE

3. The neutron was discovered about 20 years after the electron and proton because it has no charge (in order for it to be detected). TRUE FALSE

4. When we balance a chemical equation, we are observing the law of conservation of mass as well as the part of Dalton’s theory that atoms are neither created or destroyed in a chemical reaction TRUE FALSE

5. When a gas is heated up in a closed container, the kinetic energy of the molecules or atoms of the gas increase, which leads to a decrease in the pressure of the gas. TRUE FALSE

6. The amount of enthalpy (heat energy) for a reaction is directly proportional to the amount (number of moles or grams) of the reactants. TRUE FALSE

7. The combined gas law works for any gas (i.e., you do not need to know the chemical formula). TRUE FALSE

8. A balloon with 10.0 g of CO2 gas will have more molecules than a 10.0 g sample of NO gas. TRUE FALSE

9. Unless a sample is at absolute zero (kelvins), the particles in the sample will have kinetic energy and have some kind of motion. TRUE FALSE

Answers

Answer:

1. False

2. True

3. True

4. True

5. True

6. True

7. True

8. False

9. True

Explanation:

Density is a physical property since its measurement does not involve any chemical process.

Since transition elements exhibit variable oxidation states, the actual oxidation state of the transition element must be specified in the compound.

Due to the fact that neutron has no charge, it was discovered by Chadwick long after the electron and proton were discovered.

The balancing of chemical reaction equations is a demonstration that atoms are neither created no destroyed. It also shows that mass is neither created nor destroyed in chemical reactions.

When a gas is heated, it expands. Its volume and its kinetic energy increases. Since volume and pressure are inversely proportional (Boyle's law) the pressure decreases.

Enthalpy is said to be an extensive property. This implies that the magnitude of change in enthalpy is known to depend on the amount of reactants that is actually reacted.

The combined gas law is applicable to all ideal gas systems irrespective of their individual chemical formulas.

10g of CO2 contains 0.227 moles of CO2 while 10g of NO contains 0.33 moles of NO hence 10.0 g of NO will contain more molecules than 10.0g of CO2.

If a sample is not at absolute zero, the particles are known to possess kinetic energy which decreases continuously until absolute zero is attained.

Current is described as
A. moles of electrons.
B. the flow of electrons through a substance.
C. electricity.
D. the flow of ions through a substance.​

Answers

The answer is B the flow of electrons through a substance

Answer:

B!

Explanation:

I got it right in class!

2) Os foguetes são utilizados para levar pessoas ao espaço (os astronautas), mas principalmente cargas como, por exemplo, os satélites artificiais, os telescópios espaciais, levar sondas a outros planetas etc. Escreva V(verdadeiro) ou F (falso) em cada afirmação.

( ) Foguetes só levam astronautas ao espaço.

( ) Satélites artificiais servem para ajudar na previsão do clima.

( ) Satélites artificiais "fotografam" o planeta para descobrir queimadas ilegais.

( ) Satélites artificiais permitem vermos jogos ao vivo até do Japão.

( ) Foguetes são movidos com pólvora e dinamite.

Answers

Answer:

F, V, V , V, F

Explanation:

1 - "Os foguetes são utilizados para levar pessoas ao espaço (os astronautas), mas principalmente cargas como, por exemplo, os satélites artificiais, os telescópios espaciais, levar sondas a outros planetas etc".

2 - Tipo Meteorologia: utilizados para monitorar o tempo e o clima no planeta Terra, por exemplo, os da série Meteosat.

3 - ...

4 - ...

5 - Usam combustivel solido, liquido, hibridos (solido e liquido), iônica:

Solido:

 São sistemas simples que unem os dois propelentes envolvidos em uma massa sólida que, quando inflamada, não para de queimar até o esgotamento completo.

Liquido:

 São muito mais complexos e envolvem o bombeamento de quantidades imensas de propelentes para as câmaras de combustão dos motores.

Hibridos:

 O propelente sólido – normalmente o combustível – é distribuído ao longo do tanque de maneira homogênea. O propelente líquido ou gasoso "normalmente o oxidante" fica armazenado em tanques.

 Podem ser desligados depois de sofrerem ignição, além de permitirem um controle de queima relativamente preciso.

Iônica:

 Usando eletricidade (captada por painéis solares ou gerada por reatores atômicos) para ionizar átomos (normalmente gases nobres, como xenônio), e expulsá-los em velocidades altíssimas.

An aqueous solution containing 5.06 g of lead(II) nitrate is added to an aqueous solution containing 6.03 g of potassium chloride.Enter the balanced chemical equation for this reaction. Be sure to include all physical states.balanced chemical equation:What is the limiting reactant?lead(II) nitratepotassium chlorideThe percent yield for the reaction is 82.9% . How many grams of the precipitate are formed?precipitate formed:gHow many grams of the excess reactant remain?excess reactant remaining:

Answers

Answer:

Pb(NO3)2(aq) + 2KCl(aq) ------> 2KNO3(aq) + PbCl2(s)

3.52 g of PbCl2

3.76 g of KCl

Explanation:

The equation of the reaction is;

Pb(NO3)2(aq) + 2KCl(aq) ------> 2KNO3(aq) + PbCl2(s)

Number of moles of Pb(NO3)2 =mass/molar mass 5.06g/331.2 g/mol = 0.0153 moles

Number of moles of KCl= mass/ molar mass= 6.03g/74.5513 g/mol= 0.081 moles

Next we obtain the limiting reactant; the limiting reactant yields the least number of moles of products.

For Pb(NO3)2;

1 mole of Pb(NO3)2 yields 1 mole of PbCl2

Therefore 0.0153 moles of Pb(NO3)2 yields 0.0153 moles of PbCl2

For KCl;

2 moles of KCl yields 1 mole of PbCl2

0.081 moles of KCl yields 0.081 moles ×1/2 = 0.041 moles of PbCl2

Therefore Pb(NO3)2 is the limiting reactant.

Theoretical Mass of precipitate obtained = 0.0153 moles of PbCl2 × 278.1 g/mol = 4.25 g of PbCl2

% yield = actual yield/theoretical yield ×100

Actual yield = % yield × theoretical yield /100

Actual yield= 82.9 ×4.25/100

Actual yield = 3.52 g of PbCl2

If 1 mole of Pb(NO3) reacts with 2 moles of KCl

0.0153 moles of Pb(NO3)2 reacts with 0.0153 moles × 2 = 0.0306 moles of KCl

Amount of excess KCl= 0.081 moles - 0.0306 moles = 0.0504 moles of KCl

Mass of excess KCl = 0.0504 moles of KCl × 74.5513 g/mol = 3.76 g of KCl

What class of organic product results when 1-heptyne is treated with a mixture of mercuric acetate (HgSO4) in aqueous sulfuric acid (H2O/H2SO4)

Answers

Answer:

heptan-2-one

Explanation:

In this case, the final product would be a ketone: heptan-2-one. To understand why this molecule is produced we have to check the reaction mechanism.

The first step is the protonation of the triple bond to produce the more stable carbocation (a secondary one) by the action of sulfuric acid [tex]H_2SO_4[/tex]. The next step is the attack of water to the carbocation to produce a new bond between C and the O, producing a positive charge in the oxygen. Then, a deprotonation step takes place to produce an enol. Finally, we will have a rearrangement (keto-enol tautomerism) to produce the final ketone.

See figure 1

I hope it helps!

Which of the following properties should carbon (C) have based on its position on
the periodic table?
A. Shiny
B. Dense
C. Malleable
D. Poor conductor​

Answers

Answer:

D- poor conductor

Explanation:

metallic properties decrease as we go on the right of the periodic table. Carbon is a non metal hence it is dull and a poor conductor.

it has a low density and is ductile.

Answer: Poor conductor

Explanation:

The specific rotation of (S)-carvone (at 20°C) is +61. A chemist prepared a mixture of (R)-carvone and its enantiomer, and this mixture had an observed rotation of -55°.
A) What is the specific rotation of (R)-carvone at 20°C?
B) Calculate the % ee of this mixture.
C) What percentage of the mixture is (S)-carvone?

Answers

Answer:

a) Specific Rotation of (R)-carvone = -61°

b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%

c) The percentage of (S)-carvone in the mixture = 4.9%

Explanation:

a) The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.

Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.

Specific Rotation of (R)-carvone = -(61°) = -61°

b) Enantiometic excess is used to measure the optical purity of an enantiomeric mixture.

The enantiomeric excess is given mathematically as

ee% = (Observed rotation × 100)/(Specific rotation)

Hence, to calculate the enantiomeric excess of (R)-carvone,

Observed rotation of the mixture = -55°

Specific Rotation of (R)-carvone = -61°

ee% = (-55×100)/(-61) = 90.16% = 90.2%

c) An enantiomeric excess of 90.2% for (R)-carvone indicates that it's actual percentage is 90.2% more than the percentage of its enantiomeric partner, (S)-carvone, in the mixture.

Let the percentage of (R)-carvone in the mixture be x

Let the percentage of (S)-carvone in the mixture be y

x + y = 100

x - y = 90.2

2x = 190.2

x = (190.2/2) = 95.1%

y = 100 - x = 100 - 95.1 = 4.9%

Hence, the percentage of (R)-carvone in the mixture = 95.1%

The percentage of (S)-carvone in the mixture = 4.9%

Hope this Helps!!!

a) Specific Rotation of (R)-carvone = -61°

b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%

c) The percentage of (S)-carvone in the mixture = 4.9%

a) Calculation of Specific Rotation:

The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.

Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.

Specific Rotation of (R)-carvone = -(61°) = -61°

b) Calculation for Enantiomeric excess:

The enantiomeric excess is given mathematically as

ee% = (Observed rotation × 100)/(Specific rotation)

Hence, to calculate the enantiomeric excess of (R)-carvone,

Observed rotation of the mixture = -55°

Specific Rotation of (R)-carvone = -61°

ee% = (-55×100)/(-61) = 90.16% = 90.2%

c) Calculation of percentage:

Let the percentage of (R)-carvone in the mixture be x

Let the percentage of (S)-carvone in the mixture be y

x + y = 100

x - y = 90.2

2x = 190.2

x = (190.2/2) = 95.1%

y = 100 - x = 100 - 95.1 = 4.9%

Hence, the percentage of (R)-carvone in the mixture = 95.1%

The percentage of (S)-carvone in the mixture = 4.9%

Find more information about Specific rotation here:

brainly.com/question/5963685

When a solution is diluted with water, the ratio of the initial to final
volumes of solution is equal to the ratio of final to initial molarities
Select one:
True
-​

Answers

Hello!!

The correct answer for this problem would be TRUE.

Explanation: it is true that when a solution is diluted with water, the ratio of the initial to final volumes of solution is equal to the ratio of final to initial molarities.

When a solution is diluted with water, the ratio of the initial to final volumes of solution is equal to the ratio of final to initial molarities. The statement is True.

Concentration refers to the amount of a substance in a defined space. Another definition is that concentration is the ratio of solute in a solution to either solvent or total solution.

There are various methods of expressing the concentration of a solution.

Concentrations are usually expressed in terms of molarity, defined as the number of moles of solute in 1 L of solution.

Solutions of known concentration can be prepared either by dissolving a known mass of solute in a solvent and diluting to a desired final volume or by diluting the appropriate volume of a more concentrated solution (a stock solution) to the desired final volume.

Learn more about Concentrations, here:

https://brainly.com/question/10725862

#SPJ3

How many mL of calcium hydroxide are required to neutralize 25.0 mL of 0.50 M
nitric acid?

Answers

Answer:

6.5 mL

Explanation:

Step 1: Write the balanced reaction

Ca(OH)₂ + 2 HNO₃ ⇒ Ca(NO₃)₂ + 2 H₂O

Step 2: Calculate the reacting moles of nitric acid

25.0 mL of 0.50 M  nitric acid react.

[tex]0.0250L \times \frac{0.50mol}{L} = 0.013 mol[/tex]

Step 3: Calculate the reacting moles of calcium hydroxide

The molar ratio of Ca(OH)₂ to HNO₃ is 1:2. The reacting moles of Ca(OH)₂ are 1/2 × 0.013 mol = 6.5 × 10⁻³ mol

Step 4: Calculate the volume of calcium hydroxide

To answer this, we need the concentration of calcium hydroxide. Since the data is missing, let's suppose it is 1.0 M.

[tex]6.5 \times 10^{-3} mol \times \frac{1,000mL}{1.0mol} = 6.5 mL[/tex]

Calculate the mass of feso4 that would be produced by 0.5mole of Fe

Answers

Answer:76 grams

Explanation:

Fe+H₂SO₄-->FeSO₄+H₂

For one mole of Fe we get 1 mole of feso4, therefore for 0.5 moles of Fe we get 0.5 moles of feso4.

The molar mass of feso4 is AFe+AS+4AO(A is atomic mass)

56+32+4*16=152grams/mole

Now, we need to multiply the number of moles by the molar mass to get the mass that reacts

152*0.5=76 grams

Predict the order of acid strengths in the following series of cationic
species: CH3CH2NH3
+, CH3CH=NH2

Answers

Answer:

CH3CH=NH2+>CH3CH2NH3+

Explanation:

If we look at the both species under review, we will realize that they are both amines hence they possess the polar N-H bond.

Electrons are ordinarily attracted towards the nitrogen atom hence making both compounds acidic. It is worthy of note that certain features of a compound may make it more acidic than another of close structural proximity. 'More acidic' simply means that the proton is more easily lost.

CH3CH=NH2+ contains an sp2 hybridized carbon atom which is highly electronegative and further withdraws electron density from the N-H bond thereby leading to a greater acidity of CH3CH=NH2+ compared to CH3CH2NH3+

Complete ionic equation K2CO3(aq)+2CuF(aq) → Cu2CO3(s)+2KF(aq) Examine each of the chemical species involved to determine the ions that would be present in solution. Be sure to consider both the coefficients and subscripts of the molecular equation, and then write this precipitation reaction in the form of a balanced complete ionic equation. Express your answer as a chemical equation including phases.

Answers

Answer:

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

Explanation:

K2CO3(aq) + 2CuF(aq) → Cu2CO3(s) + 2KF(aq)

The complete ionic equation for the above equation can be written as follow:

In solution, K2CO3 and CuF will dissociate as follow:

K2CO3(aq) —› 2K+(aq) + CO3²¯(aq)

CuF(aq) —› Ca^2+(aq) + 2F¯(aq)

Thus, we can write the complete ionic equation for the reaction as shown below:

K2CO3(aq) + 2CuF(aq) —›

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

A compound X has a molecular ion peak in its mass spectrum at m/z 136. What information does this tell us about X

Answers

Explanation:

The mass to charge ratio =136

Night vision glasses detect
energy emitted from cooling objects?
ultraviolet
infrared
X-ray

Answers

Answer:

I think the answer is " Night vision glasses detect Infrared" energy emitted from cooling objects.

Explanation:

When 50.0 mL of 1.27 M of HCl(aq) is combined with 50.0 mL of 1.32 M of NaOH(aq) in a coffee-cup calorimeter, the temperature of the solution increases by 8.49°C. What is the change in enthalpy for this balanced reaction? HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l) Assume that the solution density is 1.00 g/mL and the specific heat capacity of the solution is 4.18 J/g⋅°C. Hint: You need to determine the limiting reagent.

Answers

Answer:

-55.9kJ/mol is the change in enthalpy of the reaction

Explanation:

In the reaction:

HCl(aq) + NaOH(aq) → H₂O(l) + NaCl

Some heat is released per mole of reaction.

To know how many moles reacts we need to find limiting reactant:

Moles HCl = 0.050L ₓ (1.27mol /  L) = 0.0635 moles HCl

Moles NaOH = 0.050L ₓ (1.32mol /  L) = 0.066 moles NaOH

As there are more moles of NaOH than moles of HCl, HCl is limiting reactant and moles of reaction are moles of limiting reactant, 0.0635 moles

Using the coffee-cup calorimeter equation we can find how many heat was released thus:

Q = C×m×ΔT

Where Q is heat released, C is specific heat of the solution (4.18J/g°C), m is mass of solution (100g because there are 100mL of solution -50.0mL of HCl and 50.0mL of NaOH- and density is 1g/mL) and ΔT is change in temperature (8.49°C)

Replacing:

Q = 4.18J/g°C×100g×8.49°C

Q = 3548.8J of heat are released in the reaction

Now, change in enthalpy, ΔH, is equal to change in heat (As is released heat ΔH < 0) per mole of reaction, that is:

ΔH = Heat / mol of reaction

ΔH = -3548.8J / 0.0635 moles of reaction

Negative because is released heat.

ΔH = -55887J / mol

ΔH =

-55.9kJ/mol is the change in enthalpy of the reaction

The heat of reaction is  -54.7 kJ/mol.

The equation of the reaction is;

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

Number of moles of HCl = 50/1000 L × 1.27 M = 0.064 moles

Number of moles of NaOH = 50/1000 L × 1.32 M = 0.066 moles

The limiting reactant is HCl

Total volume of solution = 100mL

Total mass of solution = 100 g

Temperature rise = 8.49°C

Heat capacity of solution = 4.18 J/g⋅°C

Using;

H = mcdT

m = mass of solution

c = heat capacity of solution

dT = temperature rise

H = 100 g ×  4.18 J/g⋅°C × 8.49°C = 3548.82 J

The heat of reaction = -ΔH/n = -(3.5kJ/0.064 moles)

= -54.7 kJ/mol

Learn more: https://brainly.com/question/6284546

Cyclohexane (C6H12) undergoes a molecular rearrangement in the presence of AlCl3 to form methylcyclopentane (CH3C5H9) according to the equation: C6H12 ⇌ CH3C5H9 If Kc = 0.143 at 25°C for this reaction predict the direction in which the system

Answers

Answer:

The reaction will shift leftwards, towards the formation of more cyclohexane at 25 °C

Explanation:

Hello,

In this case, for the given chemical reaction, we can write the law of mass action (equilibrium expression) as shown below:

[tex]Kc=\frac{[CH_3C_5H_9]}{[C_6H_{12} ]}[/tex]

Thus, since Kc < 1, we can conclude there are more moles of cyclohexane at equilibrium (denominator is greater than numerator), therefore, the reaction will shift leftwards, towards the formation of more cyclohexane at 25 °C.

Best regards.

Drag each image to the correct location on the model. Each image can be used more than once. Apply the rules and principles of electron configuration to draw the orbital diagram of aluminum. Use the periodic table to help you.

Answers

Answer:

The answer to your question is given below.

Explanation:

Aluminium has atomic number of 13. Thus, the electronic configuration of aluminium can be written as:

Al (13) —› 1s² 2s²2p⁶ 3s²3p¹

The orbital diagram is shown on the attached photo.

Answer: screen shot

Explanation:

The table below shows the electronegativity values of various elements on the periodic table. Electronegativities A partial periodic table. Which pair of atoms would form a covalent bond ? calcium (Ca) and bromine (Br) rubidium (Rb) and sulfur (S) cesium (Cs) and nitrogen (N) oxygen (O) and chlorine (Cl)

Answers

Answer:

Oxygen and Chlorine

Explanation:

Covalent bonds involve the sharing of electrons between nonmetals.

Answer:

oxygen (O) and chlorine (Cl)

Explanation:

cuz i said so

Which resulted from the study of chemistry?

A) Alchemy to turn base metals into noble metals

B) The understanding of earth, air, fire, and water as the basic components of matter.

C) A supernatural, mystical view of the world.

D) Discovering the role of oxygen in combustion

Answers

the answer is C
A supernatural, mystical view of the world

What is the molar mass of a protein if a solution of 0.020 g of the protein in 25.0 mL of solution has an osmotic pressure of 0.56 torr at 25 ∘ C

Answers

Answer:

26.5 kD  

Explanation:

Here we can apply the formula ∏ = iMRT, where ∏ = osmotic pressure = 0.56 - ( given ). This is only one part of the information we are given / can conclude in this case ....

i = van’t Hoff factor = 1 for a protein molecule,

R = gas constant = 62.36 L torr / K-mol,

T ( temperature in Kelvin ) = 25 + 273 - conversion factor C° + 273 = 298K

( Known initially ) ∏ = osmotic pressure = 0.56 torr

..... besides the part " M " in the formula, which we have no information on whatsoever, as we have to determine it's value.

_____

Substitute derived / known values to solve for M ( moles / liter ) -

∏ = iMRT

⇒ 0.56 = ( 1 )( M )( 62.36 )( 298 )

⇒ 0.56 = M( 18583.28 )

⇒ M = 0.56 / 18583.28 ≈ 0.00003013461 ....

_____

We know that M = moles / liter, so we can use this to solve for moles, and hence calculate the molar mass by the formula molar mass = g / mol -

M = mol / l

⇒ 0.00003013461 = 0.020 / 25 mL ( 0.025 L ),

0.020 / 0.025 = 0.8 g / L

⇒ 0.8 g = 0.00003013461 moles,

molar mass = 0.8 g / 0.00003013461 moles = 26,548 g / mol = 26.5 kD  

Other Questions
A diet high in saturated fats increases a person's risk of developing heart disease. Regular consumption of red wine reduces that risk. Per-capita consumption of saturated fats is currently about the same in France as in the United States, but there is less heart disease there than in the United States because consumption of red wine is higher in France. The difference in regular red-wine consumption has been narrowing, but no similar convergence in heart-disease rates has occurred. Which of the following, if true, most helps to account for the lack of convergence noted above?A. Consumption of saturated fats is related more strongly to the growth of fatty deposits on artery walls, which reduce blood flow to the heart, than it is to heart disease directly.B. Over the past 30 years, per-capita consumption of saturated fats has remained essentially unchanged in the United States but has increased somewhat in France.C. Reports of the health benefits of red wine have led many people in the United States to drink red wine regularly.D. Cigarette smoking, which can also contribute to heart disease, is only slightly more common in France than in the United States.E. Regular consumption of red wine is declining dramatically among young adults in France, and heart disease typically does not manifest itself until middle age. Geraths Windows manufactures and sells custom storm windows for three season porches and also provides installation service for the windows. The installation process does not involve changes in the windows, so this service can be performed by other vendors. Geraths enters into the following contract on July 1, 2014, with a local homeowner. The customer purchases windows for a price of $2,690 and chooses Geraths to do the installation. Geraths charges the same price for the windows irrespective of whether it does the installation or not. The price of the installation service is estimated to have a fair value of $590. The customer pays Geraths $2,300 (which equals the fair value of the windows, which have a cost of $1,700) upon delivery and the remaining balance upon installation of the windows. The windows are delivered on September 1, 2014, Geraths completes installation on October 15, 2014, and the customer pays the balance due. Prepare the journal entries for Geraths in 2014. (Round answers to 0 decimal places, e.g. 5,275.) ) Recall what you know about crossing over, independent assortment, and random joining of sex cells during sexual reproduction. Un avin volaba a 14.800 metros de altura. Primero baj 23.000 decmetros y luego baj 54 Hectmetros ms A qu altura, en Kilmetros, vuela ahora? AYUDA Convert the following numbers of calories orkilocalories into joules or kilojoules.a. 7845 calb. 4.55 x 104 calC. 62.142 kcald. 43,024 cal find the sum of even numbers between 1001 and 10,000 (Arithmetic progressions) DO STEP BY STEP PLEASE PLEASE HELP ME! I will not accept nonsense answers, but will give BRAINLIEST if you get it correct with solutions:) What the correct answer do not want the wrong answer please Find an equation of the line that passes through the point (2, 1) andis perpendicular to the line x + 2y=-2 CO! Oher...9pressure14.largeThe barometric height in a town is 65cmHg. Given that the standard atmospheric pressureis 76cmHg and density of mercury is 13600kg/m", determine the altitude of the town. (Density of(3mks)air is 1.25kg/m). Mariam went to a shop and bought 8 snickers, 3 galaxy and 3 kitkat. She payed 8 BD totally. Her friend Zainab bought 4 snicker, 9 galaxy and 4 kitkat. She payed 10.9BD. Is it possible to know the cost of each chocolate mathematically? If yes how. If not why? please hurry ! The Silk Road was abandoned after Vaco de Gama's maritime travels around the world. In what way would de Gama's findings affect the Ottoman Empire? a) Silk would no longer be a viable product to sell within the Ottoman Empire. b) The findings of de Gama would bring new imports to the Ottoman Empire. c) de Gamma's voyage would create another route to India, China, and Asia. d)Vasco de Gamma's findings would have no effect on the Ottoman Empire. Please help me with PLEASE I NEED THE ANSWERS ASAP!!! Simplify the following:1.7 72.18 23.454.50/55.22 456.48 - 127.(2-3) (1+3)) The director of admissions at Kinzua University in Nova Scotia estimated the distribution of student admissions for the fall semester on the basis of past experience. Admissions Probability 1,100 .2 1,400 .3 1,300 .5 Click here for the Excel Data File What is the expected number of admissions for the fall semester? Compute the variance and the standard deviation of the number of admissions. (Round your standard deviation to 2 decimal places.) Have Have! Always strength and hope! We are what our soul reaches! Have courage! Get moving! And the future you can ... Conquer! I feel the universe against me, I can't find a way to be happy I lost the battle, but this is not my end. From today, for what I want I will fight, my dreams will again pursue ... And I promise that I will never, ever give up! If you fail, don't fear, it doesn't matter ... How many times you fall, if you manage to stop. So I want to fall, stand up and learn to use my power! Have Have! Always strength and hope! You must have confidence in you! Don't let yourself be controlled! Don't be afraid to fly! Have Have! Always strength and hope! We are what our soul reaches! Have courage! Get moving! And the future you can ... Conquer! I will not bow before you! Even if you want to make me happy, you take away the things that are part of me. I will never ignore my heart again, because that was not the solution ... With pain, I learned this lesson! Faced with fear, you choose! It is simple! There are only two options ... Fight or you give up! But if you want to win, you will have to risk and fight until the end! Have Have! Always strength and hope! You must have confidence in you! Don't let yourself be controlled! Don't be afraid to fly! Have Have! Always strength and hope! We are what our soul reaches! Have courage! Get moving! And the future you can ... Conquer! Question 6: What is the average number of staghorn corals within this time frame? What is the quotient?x-1/7x2-3x-9 What are five reasons why traditional marriage is still relevant in Ghana society Which inequality is equivalent to this one y-8_