Nitrates and phosphates are examples of
a. disease-causing agents
b. oxygen-demanding wastes
c. sediment
d. organic chemicals
e. inorganic plant nutrients

Answers

Answer 1

Nitrates and phosphates are examples of inorganic plant nutrients. They are essential elements for plant growth and are commonly found in fertilizers. Option (e)

Nitrates are made up of nitrogen and oxygen and are converted into nitrites by bacteria. They are essential for the production of proteins and nucleic acids in plants. Phosphates, on the other hand, are made up of phosphorous and oxygen and are involved in energy transfer and storage in plants. However, excess nitrates and phosphates can also contribute to environmental problems such as eutrophication, which can lead to oxygen depletion in bodies of water and harm aquatic life. Proper management of fertilizers and waste disposal is important to prevent negative impacts on the environment.

Learn more about Nitrates and phosphates

https://brainly.com/question/17027283

#SPJ4

Answer 2

Nitrates and phosphates are examples of inorganic plant nutrients. They are essential elements for plant growth and are commonly found in fertilizers.

Nitrates are made up of nitrogen and oxygen and are converted into nitrites by bacteria. They are essential for the production of proteins and nucleic acids in plants. Phosphates, on the other hand, are made up of phosphorous and oxygen and are involved in energy transfer and storage in plants. However, excess nitrates and phosphates can also contribute to environmental problems such as eutrophication, which can lead to oxygen depletion in bodies of water and harm aquatic life. Proper management of fertilizers and waste disposal is important to prevent negative impacts on the environment.

Learn more about Nitrates and phosphates

brainly.com/question/17027283

#SPJ11


Related Questions

when you boil water, bubbles begin to form before the water boils. this happens because . question 12 options: the vapor pressure is increasing the water has salt dissolved in it it is simmering the dissolved air is coming out of the water

Answers

The dissolved air is coming out of the water, causing bubbles to form before the water boils. Option 4 is correct.

As the water is heated, the solubility of gases, such as air, decreases, causing the dissolved gases to be released as bubbles. This process is called nucleation and occurs at sites of imperfections in the container or impurities in the water, which provide a surface for the bubbles to form.

Once the water reaches its boiling point, the vapor pressure of the liquid equals atmospheric pressure, causing bubbles to form throughout the liquid, not just at the nucleation sites. Hence Option 4 is correct.

To learn more about vapor pressure, here

https://brainly.com/question/11864750
#SPJ4

a certain mass of nitrogen gas occupies a volume of 8.52 l at a pressure of 5.06 atm. at what pressure will the volume of this sample be 10.90 l? assume constant temperature and ideal behavior.

Answers

The pressure of the nitrogen gas would need to decrease to 3.94 atm in order for the volume to increase to 10.90 L, assuming constant temperature and ideal behavior.

To solve this problem, we can use the ideal gas law equation: PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is the temperature.

Since the temperature is constant, we can simplify the equation to P1V1 = P2V2. We know that the initial pressure (P1) is 5.06 atm and the initial volume (V1) is 8.52 L.

We want to find the final pressure (P2) when the volume (V2) is 10.90 L. Plugging these values into the equation, we get (5.06 atm)(8.52 L) = P2(10.90 L). Solving for P2, we get P2 = (5.06 atm)(8.52 L) / (10.90 L) = 3.94 atm.

To learn more about : pressure

https://brainly.com/question/24719118

#SPJ11

what is the change in system entropy for a reversible process in which 3 kj of heat is added at 27 oc?

Answers

The change in system entropy for this reversible process is approximately 9.995 J/K.

For a reversible process, the change in system entropy can be calculated using the formula ΔS = Q/T, where ΔS is the change in entropy, Q is the heat added, and T is the temperature in Kelvin.

In this case, 3 kj of heat is added at 27°C, which is 300 K (since Kelvin = Celsius + 273). Thus, the change in system entropy would be ΔS = 3 kJ / 300 K = 0.01 kJ/K.
Hello! I'd be happy to help you with your question.

To find the change in system entropy (∆S) for a reversible process in which 3 kJ (3000 J) of heat is added at 27°C, we can use the following formula:

∆S = Q/T

where ∆S is the change in entropy, Q is the heat added, and T is the temperature in Kelvin.

First, let's convert 27°C to Kelvin:
T(K) = T(°C) + 273.15
T(K) = 27 + 273.15 = 300.15 K

Now, we can plug the values into the formula:
∆S = Q/T
∆S = 3000 J / 300.15 K

∆S ≈ 9.995 J/K

Learn more about entropy here:

https://brainly.com/question/13950080

#SPJ11

The change in system entropy for a reversible process in which 3 kJ of heat is added at 27°C is 0.01 kJ/K.

To calculate the change in system entropy for a reversible process in which 3 kJ of heat is added at 27°C, we need to use the equation:

ΔS = Qrev/T

Where ΔS is the change in system entropy, Qrev is the heat added in a reversible process, and T is the temperature at which the heat is added.

We need to convert the temperature from Celsius to Kelvin scale by adding 273.15 to it.

So, T = (27 + 273.15) K = 300.15 K

Substituting the values in the equation, we get:

ΔS = (3 kJ) / (300.15 K)

ΔS = 0.01 kJ/K

For more question on entropy click on

https://brainly.com/question/419265

#SPJ11

the molar solubility of cadmium hydroxide cd(oh)2 is 1.842 x 10^-5 m. what is the ksp value of cadmium hydroxide

Answers

The Ksp value for cadmium hydroxide is 2.09 x 10^-13.

The molar solubility of cadmium hydroxide, Cd(OH)2, is 1.842 x 10^-5 M. The Ksp value can be calculated using the formula Ksp = [Cd2+][OH-]^2, where [Cd2+] represents the concentration of cadmium ions and [OH-] represents the concentration of hydroxide ions in the solution.

To determine the concentration of cadmium ions, we can use the molar solubility and the stoichiometry of the reaction, which is Cd(OH)2(s) ⇌ Cd2+(aq) + 2OH-(aq). At equilibrium, the concentration of Cd2+ is equal to the molar solubility, so [Cd2+] = 1.842 x 10^-5 M.

Next, we need to determine the concentration of hydroxide ions in the solution. Since cadmium hydroxide is a strong base, it dissociates completely in water, giving two hydroxide ions for each cadmium ion that dissolves. Therefore, [OH-] = 2 x [Cd2+] = 2 x 1.842 x 10^-5 M = 3.684 x 10^-5 M.

Now we can substitute these values into the Ksp formula to obtain the Ksp value for cadmium hydroxide:

Ksp = [Cd2+][OH-]^2
Ksp = (1.842 x 10^-5 M)(3.684 x 10^-5 M)^2
Ksp = 2.09 x 10^-13

This means that in a saturated solution of cadmium hydroxide, the product of the concentrations of cadmium ions and hydroxide ions is equal to 2.09 x 10^-13. Any concentration product larger than this value will result in precipitation of solid cadmium hydroxide.

To learn more about : cadmium

https://brainly.com/question/31322258

#SPJ11

for how many minutes must a current of 1.4 amp be provided to deliver 890 coulombs?group of answer choices121191010.595

Answers

A current of 1.4 amp must be provided for approximately 635.71 seconds, or about 10.59 minutes, to deliver 890 coulombs of charge.

The time required to deliver a certain amount of charge is directly proportional to the amount of charge and inversely proportional to the current.

We can use the formula:

charge (Q) = current (I) x time (t)

to solve for the time required. Rearranging the formula gives:time (t) = charge (Q) / current (I)

Substituting the given values, we get:

time (t) = 890 coulombs / 1.4 amp = 635.71 seconds

Therefore, a current of 1.4 amp must be provided for approximately 635.71 seconds, or about 10.59 minutes, to deliver 890 coulombs of charge.

Learn more about coulombs ,

https://brainly.com/question/12498766

#SPJ4

A current of 1.4 amps must be provided for 635 seconds (or approximately 10.6 minutes) to deliver 890 coulombs.

To deliver 890 coulombs with a current of 1.4 amps, we can use the formula:

Q = I x t

where Q is the charge in coulombs, I is the current in amperes, and t is the time in seconds.

We need to find t, so we can rearrange the formula to solve for t:

t = Q / I

Plugging in the values we have:

t = 890 coulombs / 1.4 amps

t = 635 seconds


To find the time (in minutes) needed to deliver 890 Coulombs with a current of 1.4 Amps, use the formula Q = I*t, where Q is the charge in Coulombs, I is the current in Amps, and t is the time in seconds.

1. First, solve for t: t = Q/I
2. Plug in the values: t = 890/1.4
3. Calculate t: t ≈ 635.71 seconds

To convert seconds to minutes, divide by 60:

4. t ≈ 635.71/60
5. t ≈ 10.595 minutes

So, a current of 1.4 Amps must be provided for approximately 10.595 minutes to deliver 890 Coulombs.

To learn more about amps click here

brainly.com/question/4692514

#SPJ11

In this list of elements, which one would have the least lone pairs in its Lewis structure?A) Ge B) Si C) Pb D) In.

Answers

Indium (In), option D, would have the fewest lone pairs in its Lewis structure of the elements listed.

An element is represented in a Lewis structure by its symbol, and valence electrons are shown as dots or lines. Valence electron pairs known as lone pairs don't participate in chemical bonding.

Subtracting the total number of electrons involved in bonding from the total number of valence electrons for that element yields the amount of lone pairs in a Lewis structure.

Indium (In) is the element with the lowest atomic number and the fewest valence electrons in the list of elements. As a result, of the above structures, its Lewis structure would have the fewest lone pairs.

To know more about Lewis structure, visit,

https://brainly.com/question/20300458

#SPJ4

The element that would have the least lone pairs in its Lewis structure is D) In (indium).

In this list of elements (Ge, Si, Pb, In), the one with the least lone pairs in its Lewis structure would be Si (Silicon). To understand why, let's briefly discuss the concept of lone pairs and Lewis structures. Lone pairs are pairs of valence electrons that do not participate in bonding, while Lewis structures represent the arrangement of atoms, bonding electrons, and lone pairs in a molecule or ion. Now, let's consider the elements in your list: A) Ge (Germanium) has 4 valence electrons and typically forms 4 covalent bonds with no lone pairs. B) Si (Silicon) has 4 valence electrons and generally forms 4 covalent bonds with no lone pairs. C) Pb (Lead) has 4 valence electrons but can form 2 or 4 covalent bonds, which could leave 1 or 0 lone pairs. D) In (Indium) has 3 valence electrons and generally forms 3 covalent bonds, leaving 1 lone pair. Comparing the elements, both Si and Ge have no lone pairs in their typical Lewis structures. However, Si is the better answer due to its smaller atomic size and higher electronegativity, which make it less likely to form structures with lone pairs compared to Ge. Pb and In typically have lone pairs in their Lewis structures, making them less suitable choices for this question

To learn more about Lewis structure click here

brainly.com/question/20300458

#SPJ11

the molar solubility of pbi 2 is 1.5 × 10 −3 m. calculate the value of ksp for pbi 2 .4.5 x 10 -6

Answers

The value of Ksp for PbI2 is 4.05 × 10^-8 if the molar solubility of PBI 2 is 1.5 × 10 −3 m.

The molar solubility of PBI 2 = 1.5 × 10 −3 m

The solubility product constant  = 2 .4.5 x 10 -6

The solubility product constant (Ksp) for PbI2 can be estimated using the molar solubility of PbI2, the stoichiometry of the equilibrium equation is:

[tex]PbI2(s) = Pb2+(aq) + 2I-(aq)[/tex]

The equation for Ksp is:

Ksp = [tex][Pb2+][I-]^2[/tex]

[Pb2+] = S = 1.5 × 10−3 M,

[I-] = 2S = 3 × 10−3 M

The stoichiometric coefficient of I- is 2. Substituting these values into the Ksp equation we get:

Ksp =[tex](1.5 × 10^-3) × (3 × 10^-3)^2[/tex]

Ksp = 4.05 × 10^-8

Therefore, we can conclude that the value of Ksp for PbI2 is 4.05 × 10^-8.

To learn more about Molar Solubility

https://brainly.com/question/31479331

#SPJ4

The value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6. The expression for the solubility product constant (Ksp) of a sparingly soluble salt such as PbI2 is: Ksp = [Pb2+][I-]^2

where [Pb2+] and [I-] are the molar concentrations of the lead ion and iodide ion, respectively, in a saturated solution of PbI2.

Given that the molar solubility of PbI2 is 1.5 × 10^-3 M, we can assume that [Pb2+] and [I-] in the saturated solution are also equal to 1.5 × 10^-3 M. Therefore, we can substitute these values into the Ksp expression and solve for Ksp:

Ksp = (1.5 × 10^-3 M)(1.5 × 10^-3 M)^2
Ksp = 3.375 × 10^-9

So the value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6 (if that was a typo in the question).

Learn more about soluble salt here: brainly.com/question/9537918

#SPJ11

How much pressure is exerted on the floor of the science room is an elephant that weighs 19,980 N is standing on 1 foot? The area of the elephants foot is 0. 18 m2. Answer

Answers

The pressure exerted on the floor of the science room by an elephant weighing 19,980 N standing on one foot is 111,000 Pa.

The pressure exerted on the floor of the science room by an elephant standing on one foot can be calculated using the formula: Pressure = Force/Area. In this case, the force exerted by the elephant on the floor is its weight, which is given as 19,980 N. The area of the elephant's foot is 0.18 m2.

Substituting the given values in the formula, we get:

Pressure = 19,980 N / 0.18 m2

Pressure = 111,000 Pa

This pressure may not be enough to damage the floor or cause any harm, as the floor is designed to handle the weight of people, equipment, and other heavy objects.

However, repeated or prolonged exposure to such pressure may cause wear and tear on the floor, and it is important to ensure that the floor is regularly inspected and maintained to prevent any damage or safety hazards.

To learn more about pressure

https://brainly.com/question/12977546

#SPJ4

two ways in witch earth system relies on energy from the sun

Answers

The Earth system relies on energy from the sun in various ways. Here are two examples:

Solar Radiation: The sun emits a tremendous amount of energy in the form of solar radiation, including visible light, ultraviolet (UV) radiation, and infrared (IR) radiation. This solar radiation is essential for Earth's climate, weather patterns, and energy balance. Solar radiation drives processes such as evaporation, photosynthesis, and the water cycle, which are critical for sustaining life on Earth. For example, plants and other organisms use sunlight through the process of photosynthesis to produce energy-rich molecules such as carbohydrates, which are used as a source of food and energy by other living organisms.

Solar Heating: Solar radiation also heats the Earth's atmosphere, land, and oceans. Sunlight warms the Earth's surface, causing air masses to rise and creating weather patterns such as winds, clouds, and precipitation. Solar heating also drives the global circulation of ocean currents, which play a crucial role in distributing heat around the planet, regulating climate, and influencing weather patterns. Additionally, solar heating is harnessed through various technologies to generate renewable energy, such as solar thermal systems and solar panels, which convert sunlight into heat or electricity for human use.

In summary, solar radiation and solar heating are two essential ways in which the Earth system relies on energy from the sun to sustain life, drive weather and climate processes, and support human activities.

References:

Earth System Science: A Very Short Introduction by Tim Lenton and Andrew Watson. This book provides an overview of Earth system science, including the role of solar energy in Earth's processes.

NASA's Earth Observatory (https://earthobservatory.nasa.gov/): This website provides a wealth of information about Earth's systems and how they interact, including the role of solar energy in Earth's climate, weather, and ecosystems.

IPCC (Intergovernmental Panel on Climate Change) reports: The IPCC is a leading scientific body that assesses climate change and its impacts. Their reports, available at https://www.ipcc.ch/reports/, include extensive information on Earth's energy budget, solar radiation, and climate system.

Textbooks on Earth Science, Atmospheric Science, or Environmental Science, published by reputable academic publishers, such as Cambridge University Press, Wiley, or Springer, often cover the Earth system and its dependence on solar energy.

When referencing scientific information, it's important to use reliable and peer-reviewed sources and properly cite them according to the appropriate citation style.

A 25.0 mL sample of 0.400 M NH3(aq) is titrated with 0.400 M HCI(aq). What is the pH at the equivalence point? (Kb of NH3 = 1.8 x 10^-5) a. 2.72 b. 4.97 C. 7.00 d. 9.03 e. 11.28

Answers

At the equivalence point, moles of HCl equal moles of [tex]$NH_{3}$[/tex]. So, 0.01 moles of HCl is present in 25 mL, giving a pH of 7.00 (answer c).

The balanced chemical equation for the reaction between [tex]$NH_{3}$[/tex] and HCl is:

[tex]$NH_{3}$[/tex](aq) + HCl(aq) →  NH₄Cl (aq)

At the equivalence point, all the [tex]$NH_{3}$[/tex] has reacted with the HCl, and the solution contains only  NH₄Cl, which is the salt of a strong acid and weak base. The [NH₄]⁺ ion is acidic, and its hydrolysis produces. Therefore, the pH at the equivalence point can be calculated using the Kb value of [tex]$NH_{3}$[/tex] and the concentration of [NH₄]⁺+ ion in the solution.

The initial moles of [tex]$NH_{3}$[/tex] in the solution can be calculated as:

moles of [tex]$NH_{3}$[/tex]= volume of solution (L) × concentration of[tex]$NH_{3}$[/tex] (mol/L)

moles of [tex]$NH_{3}$[/tex] = 0.025 L × 0.400 mol/L

moles of [tex]$NH_{3}$[/tex] = 0.010 mol

Since [tex]$NH_{3}$[/tex] HCl reacts in a 1:1 ratio, the moles of HCl required to reach the equivalence point is also 0.010 mol.

Therefore, the volume of HCl required can be calculated as:

volume of HCl = moles of HCl / concentration of HCl

volume of HCl = 0.010 mol / 0.400 mol/L

volume of HCl = 0.025 L

At the equivalence point, the moles of [NH₄]⁺ ion produced is also 0.010 mol, and its concentration can be calculated as:

concentration of [NH₄]⁺ = moles of [NH₄]⁺ / volume of solution

concentration of [NH₄]⁺ = 0.010 mol / 0.050 L

concentration of [NH₄]⁺ = 0.200 mol/L

The Kb expression for [tex]$NH_{3}$[/tex] is:

Kb = [[tex]$NH_{3}$[/tex]][OH-] [NH₄]⁺

At the equivalence point, [[tex]$NH_{3}$[/tex]] = 0 and [NH₄]⁺ = 0.200 M. Therefore, the concentration of [tex]OH^-[/tex] can be calculated as:

Kb = [[tex]$NH_{3}$[/tex]][OH-] [NH₄]⁺

[tex]1.8 × 10^-5 = (0)([OH-]) / 0.200[/tex]

[OH-] = 0

Since [OH-] = 0, the concentration of [tex]H^+[/tex]at the equivalence point is equal to the concentration of [NH₄]⁺ ions, which is 0.200 M.

Therefore, the pH at the equivalence point can be calculated as:

pH = -log [tex]H^+[/tex]

pH = -log(0.200)

pH = 0.699

Therefore, the answer is (C) 7.00.

Learn more about equivalence point

https://brainly.com/question/11046523

#SPJ4

determine the limiting reactant when 1 mole of silver nitrate is reacted with 0.8 moles of sodium chloride.

Answers

This shows that you have insufficient moles of silver nitrate to allow for all the moles of sodium chloride to react → silver nitrate is a limiting reagent.

What is AgNO3's limiting reactant?

According to the balanced chemical equation's coefficients, 2 moles of silver (I) nitrate and 1 mole of copper combine to generate 2 moles of silver. is the limiting reactant, as silver (I) nitrate produces fewer moles of silver.

We can determine the theoretical quantity of silver chloride that can be created from one mole of silver nitrate using the molar ratios in the balancing equation:

1 mole silver nitrite x (1 mole silver chloride / 1 mole silver nitrite) = 1 mole silver chloride

In a similar manner, we may determine how much silver chloride, theoretically, can be created from 0.8 moles of sodium chloride:

0.8 mole sodium chloride x (1 mole silver chloride / 1 mole sodium chloride) = 0.8 mole silver chloride

Sodium chloride is the limiting reactant because the predicted yield of silver chloride is smaller for sodium chloride (0.8 mole) than for silver nitrate (1 mole).

To know more about sodium chloride visit:-

https://brainly.com/question/9811771

#SPJ1

what is the voltage of a galvanic cell that does 788 j of work when 255 coulomb of charge is transferred?

Answers

The voltage of the  galvanic cell is 3.09 volts when the work done to  transfer the charge of 255 colombs is 788 joules.

The voltage of a galvanic cell can be calculated using the formula:
[tex]Voltage (V) = Work (J) / Charge (C)[/tex]
Given that the galvanic cell does 788 J of work and transfers 255 coulombs of charge, we can plug  these values into the formula:

[tex]Voltage (V) = Work (J) / Charge (C)[/tex]
[tex]Voltage (V) = 788 J / 255 C = 3.09 V[/tex]
So, the voltage of the galvanic cell is approximately 3.09 volts.

Learn more about galvanic cell here:

https://brainly.com/question/13031093

#SPJ11

the half life of pyruvic acid in the presence of an aminotransferase enzyme (which converts it to alanine) was found to be 221 s. how long will it take for the concentration of pyruvic acid to fall to 1/42 of its initial value in this first order reaction?

Answers

The time taken for the concentration of pyruvic acid to fall to 1/42 of its initial value in this first-order reaction is  roughly 1623.3 seconds

The half-life of a first-order response is characterized as the time it takes for the concentration of the reactant to diminish by half. We are able to utilize the half-life to determine the rate steady (k) of the response, which could be steady that depends on the response conditions and the particular reactants included.

The half-life of a first-order response is given by the condition:

t1/2 = ln(2) / k

where t1/2 is the half-life, ln(2) is the normal logarithm of 2 (which is around 0.693), and k is the rate constant of the reaction.

In this case, the half-life of pyruvic corrosive is 221 s, so ready to utilize this data to discover the rate consistent (k):

t1/2 = ln(2) / k

221 s = 0.693 / k

k = 0.693 / 221 s

k = 0.003135 [tex]s^-1[/tex]

Presently that we have the rate constant, we are able to utilize it to decide the time it'll take for the concentration of pyruvic corrosive to drop to 1/42 of its starting esteem:

ln(Ct / Co) = -kt

where Ct is the concentration of pyruvic corrosive at time t,

Co is the initial concentration of pyruvic corrosive,

and t is the time slipped by.

We need to find the time it takes for the concentration to drop to 1/42 of its beginning esteem, which suggests that Ct/Co = 1/42. In this manner, able to modify the condition and illuminate for t:

ln(1/42) = -k t

t = ln(1/42) / (-k)

t = ln(42) / k

t = ln(42) / 0.003135 s^-1

t = 1623.3 s

In this manner, it'll take roughly 1623.3 seconds, or approximately 27 minutes, for the concentration of pyruvic corrosive to drop to 1/42 of its starting esteem in this first-order response. 

To know more about pyruvic acid refer to this :

https://brainly.com/question/15538186

#SPJ4

When 1 g gaseous I2 is heated to 1000 K in a
1.00 L sealed container, the resulting equilibrium mixture contains 0.83 g of I2. Calculate
Kc for the dissociation equilibrium
I2(g) ⇀↽ 2 I(g).

Answers

The equilibrium constant, Kc, for the dissociation of I2(g) to 2I(g) at 1000 K is approximately 0.000567 (rounded to three significant figures).

What is Equilibrium?

In chemistry, equilibrium refers to a state of balance or stability in a chemical system where the rates of forward and reverse reactions are equal, and the concentrations of reactants and products remain constant over time. It is a dynamic process, as reactions continue to occur, but the overall concentrations of species in the system do not change.

To calculate the equilibrium constant, Kc, for the dissociation of I2(g) to 2I(g), we can use the concentrations of the species at equilibrium.

Given:

Initial moles of I2(g) = 1 g / molar mass of I2 = 1 g / 253.8 g/mol = 0.00395 mol

Final moles of I2(g) = 0.83 g / molar mass of I2 = 0.83 g / 253.8 g/mol = 0.00327 mol

Since 1 mole of I2 dissociates to form 2 moles of I(g), the change in moles of I(g) is 2 times the change in moles of I2:

Change in moles of I(g) = 2 * (Initial moles of I2 - Final moles of I2)

= 2 * (0.00395 mol - 0.00327 mol)

= 0.00136 mol

Now, we can calculate the equilibrium concentration of I2, [I2], and the equilibrium concentration of I(g), [I], in mol/L.

[I2] = Final moles of I2 / Volume of container

= 0.00327 mol / 1.00 L

= 0.00327 mol/L

[I] = Change in moles of I(g) / Volume of container

= 0.00136 mol / 1.00 L

= 0.00136 mol/L

Finally, we can use the concentrations of I2 and I at equilibrium to calculate the equilibrium constant, Kc, using the following expression:

Kc = [tex]l^{2}[/tex] / [I2]

= [tex](0.00136 mol/L)^{2}[/tex]^2 / 0.00327 mol/L

= 0.000567

Learn more about Equilibrium from the given link

https://brainly.com/question/517289

#SPJ1

what is the net cell reaction for the iron-silver voltaic cell? express your answer as a chemical equation.

Answers

The electrons already balance, so we can combine the reactions directly:
Fe (s) + 2Ag⁺ (aq) → Fe²⁺ (aq) + 2Ag (s)

The net cell reaction for the iron-silver voltaic cell involves two half-reactions. The anode half-reaction involves the oxidation of iron, while the cathode half-reaction involves the reduction of silver ions. The half-reactions can be expressed as follows:

Anode (oxidation): Fe (s) → Fe²⁺ (aq) + 2e⁻

Cathode (reduction): 2Ag⁺ (aq) + 2e⁻ → 2Ag (s)

To find the net cell reaction, we combine these half-reactions, ensuring that the number of electrons in the oxidation half-reaction equals the number of electrons in the   half-reaction. In this case,

This is the net cell reaction for the iron-silver voltaic cell, represented as a chemical equation.

To learn more about : electrons

https://brainly.com/question/26084288

#SPJ11

Carbon dioxide is reduced by using electrons obtained from inorganic molecules, such as ammonia or hydrogen gas by ______________ since they do not use solar energy.

Answers

Answer:

chemoautotrophs

Explanation:

What is the total number of oxygen atoms on the right-hand side of this chemical equation? 3 ΗNO, (α )- ΗNO, (α g) +H,0()+2NO (g)

Answers

The total number of oxygen atoms on the right-hand side of the balanced equation is 8.

The compound condition gave isn't adjusted, so it should be adjusted first prior to deciding the absolute number of oxygen iotas on the right-hand side. Here is the fair condition:

3 HNO2 (α) + H2O (l) → 2 NO (g) + 2 HNO3 (aq)

Presently, we can count the absolute number of oxygen particles on the right-hand side of the situation. There are two NO particles, every one of which contains one oxygen iota, for a sum of 2 oxygen molecules.

There are likewise two HNO3 particles, every one of which contains three oxygen iotas, for a sum of 6 oxygen molecules. So the complete number of oxygen iotas on the right-hand side of the situation is:

2 + 6 = 8

Thusly, there are a sum of 8 oxygen particles on the right-hand side of the reasonable substance condition.

To learn more about balanced chemical equation, refer:

https://brainly.com/question/17036425

#SPJ4

Which of the following experiments most directly supports particle-like nature of light? black-body radiation alpha-particle scattering by metal foil the emission spectrum of the hydrogen atom electron diffraction by crystal the photoelectric effect

Answers

The emission spectrum of the hydrogen atom experiment most directly supports the particle-like nature of light. This experiment showed that when hydrogen gas is excited, it emits light at specific wavelengths, creating a unique spectral pattern.

This can be explained by the idea that the energy of the excited electrons in the hydrogen atom is quantized, meaning they can only release energy in discrete packets (photons) at specific wavelengths. This supports the particle-like nature of light, as it suggests that light behaves like individual packets of energy rather than a continuous wave.
The experiment that most directly supports the particle-like nature of light among the given options is the photoelectric effect.The photoelectric effect involves the emission of electrons from a material when it is exposed to light. This phenomenon supports the particle-like nature of light because it shows that light is composed of individual packets of energy called photons. When these photons interact with the material, they transfer their energy to the electrons, allowing them to be emitted from the material. This process cannot be explained solely by the wave-like nature of light and thus demonstrates the particle-like nature of light.

lean more about atom here

https://brainly.com/question/29913273

#SPJ11

The experiment that most directly supports the particle-like nature of light is the photoelectric effect.

Which experiments support the particle nature of light?

This phenomenon occurs when light shines on a material, and electrons are ejected from the surface of that material. The photoelectric effect demonstrated that light has particle-like properties because the energy of ejected electrons depends on the frequency of the incident light, not its intensity. This behavior can only be explained if light consists of discrete energy packets, called photons, rather than behaving as continuous waves.

To know more about Photoelectric Effect:

https://brainly.com/question/26465043

#SPJ11

the ph of a 0.115m solution of chloroacetic acid, clch2cooh, is measured to be 1.92. calculate ka for this monoprotic acid.

Answers

The Ka value for chloroacetic acid is 1.4 x 10^-3.

The pH of a 0.115M solution of chloroacetic acid (ClCH2COOH) was measured to be 1.92. To determine the acid dissociation constant (Ka) for this monoprotic acid,

we can use the formula Ka = [H3O+][ClCH2COO-]/[ClCH2COOH]. To begin, we first need to find the concentration of H3O+ ions in solution. Since pH is defined as -log[H3O+],

we can rearrange the formula to find [H3O+] = 10^-pH. Substituting the pH value of 1.92 into this equation gives us [H3O+] = 6.31 x 10^-2 M. We can then use the equation for Ka and substitute the appropriate values to obtain Ka = (6.31 x 10^-2)^2 / (0.115 - 6.31 x 10^-2) = 1.4 x 10^-3.

To learn more about : chloroacetic

https://brainly.com/question/17137710

#SPJ11

aldehydes and ketones prefer to fragment by ___ which produces a resonance stabilized acylium ion

Answers

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

https://brainly.com/question/12308782

#SPJ4

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

brainly.com/question/12308782

#SPJ4

What is the ph of a solution prepared by diluting 25. 00 ml of 0. 020 m ba(oh)2 with enough water to produce a total volume of 250. 00 ml? c1v1

Answers

The pH of the solution prepared by diluting 25.00 mL of 0.020 M Ba(OH)2 with enough water to produce a total volume of 250.00 mL is 10.98.

Ba(OH)2 is a strong base and completely dissociates in water to produce 2 OH- ions per formula unit. The initial concentration of OH- ions in the solution is (2 mol/L) x (0.020 L) = 0.040 mol. After dilution, the final volume of the solution is 250.00 mL, so the final concentration of OH- ions is:

(0.040 mol) / (0.250 L) = 0.160 M

Using the fact that pOH + pH = 14, we can calculate the pH of the solution as:

pH = 14 - pOH = 14 - (-log[OH-]) = 10.98

Therefore, the pH of the solution is 10.98.

To learn more about pH of the solution, here

https://brainly.com/question/30934747

#SPJ4

What mass (grams) of nitrogen dioxide gas, NO2, is there in 67.2 liters at stop conditions

Answers

At STP (Standard Temperature and Pressure) conditions, 1 mole of gas occupies 22.4 L of volume.

What mass of nitrogen dioxide gas is present in STP conditions?

We can use the following conversion factor to find the number of moles of NO₂ gas:

1 mole NO₂ = 22.4 L at STP

To find the mass of NO₂ gas, we need to use the molar mass of NO₂, which is 46.0055 g/mol.

Putting all this together, we get:

(67.2 L) / (22.4 L/mol) = 3 moles of NO₂ gas

3 moles of NO₂ gas x 46.0055 g/mol = 138.02 g of NO₂ gas

Therefore, there are 138.02 grams of nitrogen dioxide gas in 67.2 liters of gas at STP conditions.

Learn more about nitrogen dioxide here:

https://brainly.com/question/6840767

#SPJ1

you need to prepare 250.0 ml of a 0.100 m aqueous solution using a pure solid with a molar mass of 278.5 g/mol. how many grams of solid should you use to make this solution?

Answers

we need to use 6.96 grams of the solid to prepare a 0.100 m aqueous solution with a volume of 250.0 ml.

To prepare a 0.100 m aqueous solution with a volume of 250.0 ml, we need to calculate the number of moles of the solute required using the formula:
Molarity = moles of solute / volume of solution in liters

0.100 mol/L = moles of solute / 0.250 L

moles of solute = 0.100 mol/L x 0.250 L = 0.025 mol

Now we can use the molar mass of the solid to calculate the mass required:

mass = moles of solute x molar mass

mass = 0.025 mol x 278.5 g/mol = 6.96 g

Therefore, we need to use 6.96 grams of the solid to prepare a 0.100 m aqueous solution with a volume of 250.0 ml.


To prepare a 250.0 mL of a 0.100 M aqueous solution using a pure solid with a molar mass of 278.5 g/mol, you will need to use the following formula:

mass (g) = volume (L) × molarity (M) × molar mass (g/mol)

First, convert the volume from mL to L:
250.0 mL = 0.250 L

Next, plug in the values into the formula:
mass (g) = 0.250 L × 0.100 M × 278.5 g/mol

Calculate the mass of the solid:
mass (g) = 6.9625 g

You should use 6.9625 grams of the solid to make the 250.0 mL of 0.100 M aqueous solution.

Visit here to learn more about  molarity : https://brainly.com/question/8732513
#SPJ11

To prepare a 0.100 m aqueous solution with a volume of 250.0 ml, we need to use the formula:

moles of solute = Molarity x Volume (in liters)

First, we need to convert the volume from milliliters to liters:
250.0 ml = 0.250 L

Now, we can substitute the given values into the formula:
moles of solute = 0.100 mol/L x 0.250 L
moles of solute = 0.025 mol

Next, we need to calculate the mass of the solid we need to use. We can use the formula:

moles of solute = mass of solute / molar mass

Rearranging the formula, we get:
mass of solute = moles of solute x molar mass

Substituting the given values, we get:
mass of solute = 0.025 mol x 278.5 g/mol
mass of solute = 6.9625 g

Therefore, you should use 6.9625 grams of the solid to prepare a 250.0 ml of a 0.100 m aqueous solution.

To know more about mass of solute:

https://brainly.com/question/29482678

#SPJ11

what is the gravitational force acting on a 59kg person due to another 59kg person standing 2 m away? (G=6.67x10^-11 m^2/kg^2)

Answers

the gravitational force acting on one person due to the other person is about 2.07 x 10^-8 Newtons.

To calculate the gravitational force between two objects, we'll need to use the formula:

F = G * (m1 * m2) / r^2

where F is the gravitational force, G is the gravitational constant (6.67 x 10^-11 N*m^2/kg^2), m1 and m2 are the masses of the two objects, and r is the distance between their centers of mass.

In this case, we have two people with the same mass (59 kg) standing 2 meters apart. So we can plug in the values and get:

F = (6.67 x 10^-11 N*m^2/kg^2) * (59 kg * 59 kg) / (2 m)^2

F = 2.07 x 10^-8 N

So the gravitational force acting on one person due to the other person is about 2.07 x 10^-8 Newtons.

Visit to know more about Gravitational force:-

brainly.com/question/29276623

#SPJ11

Write the formulas for the following compounds:a. mercury(II) nitrateb. ammonium phosphatec. calcium silicated. lead(II) chromate

Answers

Formulas of the following compounds are:

mercury (ii) nitrate is [tex]Hg(NO_3)_2[/tex]

ammonium phosphate is [tex](NH_4)_3PO_4[/tex]

calcium silicate is [tex]CaSiO_3[/tex]

lead(II) chromate is [tex]PbCrO_4[/tex]

The formulas of the compound are created by writing the ions of the compound. Then the charge on each ion is crossed with each other and becomes their subscript.

Thus, one can write the formula of mercury (ii) nitrate as

ions = [tex]Hg^{2+[/tex]  and [tex]NO_3^-[/tex]

cross the valency of both that is 2 and 1

thus we can write the formula as [tex]Hg(NO_3)_2[/tex]

One can write the formula of ammonium phosphate as

ions = [tex]NH_4^+[/tex]  and [tex]PO_4^{3-[/tex]

cross the valency of both that is 1 and 3

thus we can write the formula as [tex](NH_4)_3PO_4[/tex]

One can write the formula of calcium silicate as

ions = [tex]Ca^{2+[/tex]  and [tex]SiO_3^{2-[/tex]

cross the valency of both that is 2 and 2. These valencies cross each other out and the subscript is 1 each

thus we can write the formula as [tex]CaSiO_3[/tex]

One can write the formula of lead(II) chromate as

ions = [tex]Pb^{2+[/tex]  and [tex]CrO_4^{2-[/tex]

cross the valency of both that is 2 and 2. These valencies cross each other out and the subscript is 1 each

thus we can write the formula as [tex]PbCrO_4[/tex]

Learn more about Chemical formulas:

https://brainly.com/question/11574373

#SPJ4

A buffer solution contains 0.24 M NH3 and 0.20 M NH4Cl.a. What is the pH of this buffer if Kb=1.8×10−5?b. What is the pH if 0.0050 moles of solid KOH is added to 0.500 L of this solution, assuming the total volume does not change?c. Briefly explain how the buffer capacity could be increased while maintaining the pH.

Answers

A buffer solution of [tex]NH[/tex]₃ and [tex]NH[/tex]₄[tex]Cl[/tex] with a pH of 9.25; adding [tex]KOH[/tex] increases pH to 9.54; buffer capacity can be increased by adding components.

a. To find the pH of this buffer, we can use the Henderson-Hasselbalch equation:

[tex]pH = pKa + log([A^-]/[HA])[/tex]

In this case, [tex]NH[/tex]₃ is the base (A⁻) and [tex]NH[/tex]₄⁺ is the conjugate acid (HA). The pKa can be calculated from the Kb:

[tex]Kw = Ka * Kb\\pKa + pKb = 14[/tex]

[tex]pKa = 14 - pKb = 14 - (-log10(1.8x10[/tex] ⁻ [tex]5)) = 9.54[/tex]

Substituting the values into the Henderson-Hasselbalch equation, we get:

pH = pKa + log([A⁻]/[HA])

= 9.54 + log(0.20/0.24)

= 9.25

Therefore, the pH of this buffer is 9.25.

b. When 0.0050 moles of solid [tex]KOH[/tex] is added to the buffer solution, it reacts with [tex]NH[/tex]₄⁺ (positively charged ammonium ion) to form [tex]NH[/tex]₃ and water:

[tex]KOH[/tex] + [tex]NH[/tex]₄⁺ → [tex]NH[/tex]₃ + [tex]H[/tex]₂[tex]O[/tex] + [tex]K[/tex]⁺

The number of moles of [tex]NH[/tex]₄⁺ initially present in the solution is:

0.20 M x 0.500 L = 0.100 moles

Since 0.0050 moles of [tex]KOH[/tex] are added, the remaining moles of [tex]NH[/tex]₄⁺ is:

0.100 - 0.0050 = 0.0950 moles

The number of moles of [tex]NH[/tex]₃ initially present in the solution is:

0.24 M x 0.500 L = 0.120 moles

Since [tex]NH[/tex]₄⁺ and [tex]NH[/tex]₃ react in a 1:1 stoichiometric ratio, the remaining moles of [tex]NH[/tex]₃ are also 0.0950 moles.

The total volume of the solution is still 0.500 L, so the new concentration of [tex]NH[/tex]₄⁺ is:

0.0950 moles / 0.500 L = 0.190 M

The new concentration of [tex]NH[/tex]₃ is also 0.190 M since the number of moles of [tex]NH[/tex]₃ and [tex]NH[/tex]₄⁺ are equal.

Using the Henderson-Hasselbalch equation again, we get:

[tex]pH = 9.54 + log([0.190]/[0.190])[/tex]

= 9.54

Therefore, the pH of the buffer after adding [tex]KOH[/tex] is 9.54.

c. The buffer capacity can be increased by adding more of the weak acid and its conjugate base to the solution. This increases the concentration of both the acid and its conjugate base, which in turn increases the buffer capacity. The pH can be maintained by adjusting the ratio of acid to base in the buffer. Another way to increase the buffer capacity is to increase the total volume of the buffer solution, which dilutes any added acid or base and reduces its effect on the pH.

Learn more about buffer solutions at

brainly.com/question/24262133

#SPJ4

More than 40 compounds in tobacco and tobacco smoke are. A) antioxidants. B) carcinogens. C) infectious agents. D) carcinomas.

Answers

More than 40 compounds in tobacco and tobacco smoke are option D: carcinogens.

The U.S. Food and Drug Administration created a list of dangerous and possibly toxic components in tobacco smoke and unburned tobacco in 2012; 79 of these substances are regarded as carcinogens. All tobacco products contain nicotine, a highly addictive substance that may be found in the tobacco plant itself.

While nicotine makes people addicted and keeps them using tobacco products, it is not the cause of the extreme danger associated with tobacco use. Numerous compounds are found in tobacco and tobacco smoke. It is this concoction of chemicals, not nicotine, that renders tobacco smokers susceptible to fatal illnesses.

To know more about carcinogens, refer:

https://brainly.com/question/24501446

#SPJ4

aqueous hydrobromic acid will react with solid sodium hydroxide to produce aqueous sodium bromide and liquid water . suppose 4.05 g of hydrobromic acid is mixed with 3.7 g of sodium hydroxide. calculate the maximum mass of sodium bromide that could be produced by the chemical reaction. be sure your answer has the correct number of significant digits.

Answers

, the maximum mass of NaBr that can be produced is 5.14 g (rounded to two significant figures to match the significant figures in the given masses of reactants).

balanced chemical equation for the reaction between hydrobromic acid and sodium hydroxide is:

HBr (aq) + NaOH (s) → NaBr (aq) + H₂O (l)

To determine the maximum mass of sodium bromide that can be produced, we need to first calculate the limiting reactant, which is the reactant that is completely consumed in the reaction.

The molar mass of HBr is 80.91 g/mol, and the molar mass of NaOH is 40.00 g/mol. Using these values, we can calculate the number of moles of each reactant:

moles of HBr = 4.05 g / 80.91 g/mol = 0.050 mol

moles of NaOH = 3.7 g / 40.00 g/mol = 0.0925 mol

Since NaOH has a higher number of moles, it is in excess, and HBr is the limiting reactant.

Using the balanced chemical equation, we can now calculate the theoretical yield of NaBr:

1 mol HBr produces 1 mol NaBr

0.050 mol HBr produces 0.050 mol NaBr

The molar mass of NaBr is 102.89 g/mol, so the mass of NaBr produced is:

mass of NaBr = 0.050 mol × 102.89 g/mol = 5.1445 g

Learn more about reactants here:

https://brainly.com/question/17096236

#SPJ11

The maximum mass of sodium bromide that could be produced by this reaction is approximately 5.14 g, considering the correct number of significant digits.

How to determine the yield of a reaction?

To calculate the maximum mass of sodium bromide that could be produced by the reaction of aqueous hydrobromic acid and solid sodium hydroxide, we'll follow these steps:

1. Write the balanced chemical equation: HBr(aq) + NaOH(s) → NaBr(aq) + H₂O(l)
2. Calculate the moles of reactants:
  - For HBr (molecular weight = 80.91 g/mol): moles = 4.05 g / 80.91 g/mol ≈ 0.0500 mol
  - For NaOH (molecular weight = 40.00 g/mol): moles = 3.7 g / 40.00 g/mol ≈ 0.0925 mol
3. Determine the limiting reactant: Since the stoichiometry is 1:1, HBr is the limiting reactant with 0.0500 mol.
4. Calculate the moles of NaBr produced: 0.0500 mol HBr × (1 mol NaBr / 1 mol HBr) = 0.0500 mol NaBr
5. Calculate the mass of NaBr produced (molecular weight = 102.89 g/mol): mass = 0.0500 mol × 102.89 g/mol ≈ 5.14 g

To know more about Yield:

https://brainly.com/question/29655076

#SPJ11

The temperature of a sample of gas is 350K at 2.5 atm and 45.0 L. What is the new volume at standard temperature and pressure?

Answers

Answer:

The answer for V2 is 144 to the nearest whole number

Explanation:

P1V1/T1 = P2V2/T2.

P1=2.5atm

V1=45L

T1=350K

P2=1 atm at standard pressure

V2=?

T2=273 at standard temperature

P1V1/T1 = P2V2/T2.

V2=P1V1T2/P2T1

V2=2.5×45×350/1×273

V2=144.23

V2=144 to the nearest whole number

What is the third quantum number of a 3s² electron in phosphorus,
1s²2s²2p 3s²3p³?
A. m₁ = 3
B. m₁ = 2
C. m₁ = 0
D. m, = 1

Answers

Answer:

The third quantum number of a 3s² electron in phosphorus is m₁ = 0. The electron configuration of phosphorus is [Ne]3s²3p³. The outermost shell is the third shell, so here, n = 3.

I hope this helps!

Explanation:

(´▽`ʃ♡ƪ)  

Other Questions
find the reduced radical 36^3/4 36^-1/4 (show explanation please) what was considered a popular dance style of the 1960s? group of answer choices swing dancing rock dancing break dancing street dancing in a survey of 464 registered voters, 133 of them wished to see mayor waffleskate lose her next election. the waffleskate campaign claims that no more than 34% of registered voters wish to see her defeated. does the 98% confidence interval for the proportion support this claim? (hint: you should first construct the 98% confidence interval for the proportion of registered voters who wish to see waffleskate defeated.) I need help ASAPFor this assignment, you will be writing an abstract of a scientific paper. Can someone please summarize this section the picture that I posted in under 250 wordsAn abstract is a short, concise summary of a scientific study or literature review.Be sure you summarize each section of the research paper in your abstract.Keep your abstract under 250 wordsBe concise! find the equation that is parallel to the line y=-5x-8 and passes through the point (7,-2).Write the equation in slope intercept form In five paragraphs , compare and contrast the role television, music, movies, and the suburbs played in developing conformity and a counterculture in America during the 1950s. Analogies find the best matches the bold words6. MATRIARCHY: WOMENa) monarchy: royaltyb) people : democracyc) dictatorship : queensd) oligarchy: animals PLEASE ANSWER ASAP1. How many atoms are present in 8.500 mole of chlorine atoms?2. Determine the mass (g) of 15.50 mole of oxygen.3. Determine the number of moles of helium in 1.953 x 108 g of helium.4. Calculate the number of atoms in 147.82 g of sulfur.5. Determine the molar mass of Co.6. Determine the formula mass of Ca3(PO4)2.IT WOULD BE HELPFUL 5. This solid was created by joining two right rectangular prisms.4 cm8 cm4 cm-9 cm10 cmEnter the volume of the solid, in cubic centimeters. ___________ is the number of individual buy orders and the total number of shares that wish to buy. plsssss help I'll give brainliest!!!! ocean currents traveling from the equator toward the polar zones carry _____ water, which helps to _____air masses at the poes although arraylist data structures are great for creating stacks, we know that they suffer from o(n) time complexities for queues. however, two arraylist-based stacks are fine for implementing a queue. in this assignment, you will implement a stack, and then use two stacks to implement a queue. to implement a queue using two stacks, consider the following picture: the stack on the left represents the front of the queue. the stack on the right represents the back of the queue. when items are added to the queue, push them into the back stack. when items are removed from the queue, pop them from the front stack. the question is, however, how do items get from the back stack to the front stack? that is at the heart of the assignment. your overall enqueue and dequeue algorithms must be o(1) amortized time complexity. to simplify the assignment, there are two interfaces: stack and queue. public interface stack { void push(e element); e pop(); boolean isempty(); } public interface queue { void enqueue(e element); e dequeue(); boolean isempty(); } start by implementing the class stackimpl that uses an arraylist as its backing store. then implement twostackqueue, which uses two stacks to simulate a queue. nb: don't just implement a queue based on whatever you want. i won't accept a problem that isn't implemented using two stacks.\ assume that for some statistic 1000 tests were performed. to avoid the situation of the incorrectly found significance, bonferroni correction was applied. the resulting p-value is 0.00013. what significance level was chosen for the tests? the significance level was: The prime rate refers to:A. the interest rate on loans made by the Federal Reserve.B. the interest rate banks charge their customers.C. the interest rate on funds used to buy treasury securities.D. the interest rate the government pays on bank reserves. when a high voltage is applied to a low-pressure gas, causing it to glow, it will emit what type of spectrum? a. li 7. short-run supply and long-run equilibrium consider the competitive market for rhodium. assume that no matter how many firms operate in the industry, every firm is identical and faces the same marginal cost (mc), average total cost (atc), and average variable cost (avc) curves plotted in the following graph. 0 5 10 15 20 25 30 35 40 45 50 100 90 80 70 60 50 40 30 20 10 0 costs (dollars per pound) quantity (thousands of pounds) mc atc avc the following graph plots the market demand curve for rhodium. use the orange points (square symbol) to plot the initial short-run industry supply curve when there are 10 firms in the market. (hint: you can disregard the portion of the supply curve that corresponds to prices where there is no output since this is the industry supply curve.) next, use the purple points (diamond symbol) to plot the short-run industry supply curve when there are 20 firms. finally, use the green points (triangle symbol) to plot the short-run industry supply curve when there are 30 firms. supply (10 firms) supply (20 firms) supply (30 firms) 0 125 250 375 500 625 750 875 1000 1125 1250 100 90 80 70 60 50 40 30 20 10 0 price (dollars per pound) quantity (thousands of pounds) demand if there were 10 firms in this market, the short-run equilibrium price of rhodium would be $ per pound. at that price, firms in this industry would . therefore, in the long run, firms would the rhodium market. because you know that competitive firms earn economic profit in the long run, you know the long-run equilibrium price must be $ per pound. from the graph, you can see that this means there will be firms operating in the rhodium industry in long-run equilibrium. true or false: assuming implicit costs are positive, each of the firms operating in this industry in the long run earns negative accounting profit. true false the nurse is preparing to transfer a client from the icu to a medical unit in the hospital. to ensure consistent communication regarding the client's care needs to the receiving unit, in what sequence of steps should the nurse organize the report? Which of the following is least likely to pass the "mirror" test suggesting they have at least a rudimentary self-concept?a. An orangutanb. A 12-month-old human infantc. A 3-year-old human childd. A chimpanzee the process that uses nucleic acid probes to study gene expression in intact organisms is called . a resistance gene that allows a host cell containing a vector to grow on a toxic substance is called a(n)