Answer:
[tex] Area = 538.5 m^2 [/tex]
Step-by-step Explanation:
Given:
∆XVW
m < X = 50°
m < W = 63°
XV = w = 37 m
Required:
Area of ∆XVW
Solution:
Find side length XW using Law of Sines
[tex] \frac{v}{sin(V)} = \frac{w}{sin(W)} [/tex]
W = 63°
w = XV = 37 m
V = 180 - (50+63) = 67°
v = XW = ?
[tex] \frac{v}{sin(67)} = \frac{37}{sin(63)} [/tex]
Cross multiply
[tex] v*sin(63) = 37*sin(67) [/tex]
Divide both sides by sin(63) to make v the subject of formula
[tex] \frac{v*sin(63)}{sin(63)} = \frac{37*sin(67)}{sin(63)} [/tex]
[tex] v = \frac{37*sin(67)}{sin(63)} [/tex]
[tex] v = 38 [/tex] (approximated to nearest whole number)
[tex] XW = v = 38 m [/tex]
Find the area of ∆XVW
[tex] area = \frac{1}{2}*v*w*sin(X) [/tex]
[tex] = \frac{1}{2}*38*37*sin(50) [/tex]
[tex] = \frac{38*37*sin(50)}{2} [/tex]
[tex] Area = 538.5 m^2 [/tex] (to nearest tenth).
Ahmed wants to get a loan from his credit union for $20,000 to buy a new car. He can get an interest rate of 5% and can pay off the loan in 5 years. How much will Ahmed pay each month?, How much will Ahmed pay in interest?
Answer:
Step-by-step explanation:
The cost of the new car is $20,000.
We would apply the periodic interest rate formula which is expressed as
P = a/[{(1+r)^n]-1}/{r(1+r)^n}]
Where
P represents the monthly payments.
a represents the amount of the loan
r represents the annual rate.
n represents number of monthly payments. Therefore
a = $20000
r = 0.05/12 = 0.0042
n = 12 × 5 = 60
Therefore,
P = 20000/[{(1+0.0042)^60]-1}/{0.0042(1+0.0042)^60}]
20000/[{(1.0042)^60]-1}/{0.0042(1.0042)^60}]
P = 20000/{1.286 -1}/[0.0042(1.286)]
P = 20000/(0.286/0.0054012)
P = 20000/52.95
P = $378
Ahmed will pay $378 each month
The total payment is
378 × 60 = $22680
The amount that Ahmed will pay in interest is
22680 - 20000 = $2680
whats the equation for this
Answer:
[tex]x^2 + y^2 + 4x + 4y = -119/16[/tex]
Step-by-step explanation:
The axes x and y are calibrated in 0.25
If the circle is carefully considered, the radius r of the circle is:
r = -1.25 - (-2)
r = 0.75 units
The equation of a circle is given by:
[tex](x - a)^2 + (y - b)^2 = r^2[/tex]
The center of the circle (a, b) = (-2, -2)
Substituting (a, b) = (-2, -2) and r = 0.75 into the given equation:
[tex](x - (-2))^2 + (y - (-2))^2 = (3/4)^2\\\\(x + 2)^2 + (y + 2)^2 = (3/4)^2\\\\x^2 + 4x + 4 + y^2 + 4y + 4 = 9/16\\\\x^2 + y^2 + 4x + 4y + 8 = 9/16\\\\16x^2 + 16y^2 + 64x + 64y + 128 = 9\\\\16x^2 + 16y^2 + 64x + 64y = -119\\\\x^2 + y^2 + 4x + 4y = -119/16\\[/tex]
3. Callum rolled a single six sided die 12 times and it landed on a six, three of the times. The probability that it will land on a six on the 13th roll is?
Answer:
1/6
Step-by-step explanation:
Each roll is independent. So the probability of rolling a six is 1/6, regardless of the previous rolls.
If the triangle on the grid below is translated three units left and nine units down, what are the coordinates of C prime? On a coordinate plane, triangle A B C has points (negative 1, 0), (negative 5, 2), (negative 1, 2). (–4, –7) (–4, 2) (2, –7) (2, 11)
Answer:
A ( -4, -7)
Step-by-step explanation:
if you translate -1, three units to the left u get -4 and then when u go nine units down u get -7 do it on a grid and u will see wut im talkin about : )
Answer:
A.
Step-by-step explanation:
Bruhhh I need help dude !!!
Answer:
(B), in which the first two values are 2 and 10.
Step-by-step explanation:
We can tell that this is a proportional relationship because we can examine the numbers in there.
(2,10)
(4,20)
and (6,30).
If you notice, the x value times 5 gets us the y value for every single point there.
Therefore, B is proportional and it's equation is y = 5x.
Hope this helped!
Answer:
B.
Step-by-step explanation:
B. Is the only one that proportional because,
(2,10)
(4,20)
(6,30)
All these x values multiply by 5 to get the y value.
So the equation is y = 5x meaning it is linear and it goes through the origin which makes it proportional.
Thus,
answer choice B is correct.
Hope this helps :)
Find the slope and y-intercept of each line:
a. (x+2)(x+3)=(x-2)(x-3)+y
b. x=my+b
Please show workings, and I won't accept nonsense answers! Don't answer the question if you don't know what it means!!
Answer:
See below
Step-by-step explanation:
Part A:
[tex](x+2)(x+3) = (x+2)(x-3) + y[/tex]
Resolving Parenthesis
[tex]x^2+3x+2x+6=x^2-3x-2x+6+y\\x^2+5x+6 = x^2-5x+6+y[/tex]
Subtracting [tex]x^2[/tex] and 6 to both sides
[tex]5x= -5x+y[/tex]
Adding 5x to both sides
[tex]y = 5x+5x\\y = 10x[/tex]
Comparing it with [tex]y = mx+b[/tex] where m is the slope while b is the y-intercept
So,
Slope = m = 10
Y-intercept = b = 0
Part B:
[tex]x = my+b[/tex]
Subtracting b to both sides
[tex]my = x-b[/tex]
Dividing both sides by m
[tex]y = \frac{x-b}{m}\\ y = \frac{x}{m} - \frac{b}{m}[/tex]
Comparing it with [tex]y = mx+b[/tex] where m is the slope while b is the y-intercept
So,
Slope = m = [tex]\frac{1}{m}[/tex]
Y-intercept = b = [tex]-\frac{b}{m}[/tex]
On August 8, 1981, American Savings offered an insured tax-free account paying 23.24% compounded monthly. If you had invested $90,000 at that time, how much would you have on August 8, 2014, assuming that you could have locked the interest rate at the time of deposit? Someone please help me!!
Answer:
$181,432,754
Step-by-step explanation:
We use the formula for compound interest here, to determine the amount
Mathematically, that would be;
A =I (1 + r/n)^nt
where A is the amount which we want to calculate
I is the initial amount which is $90,000
r is the rate = 23.24% = 23.24/100 = 0.2324
n is the number of times per year the interest is compounded = 12 (compounded monthly)
t is the number of years = 2014 - 1981 = 33
Substituting these values, we have;
A = 90,000(1 + 0.2324/12)^(33 * 12)
A = 90,000(1 + 0.0194)^396
A = 90,000(1.0194)^396
A = 181,432,754.27210504
Which is approximately $181,432,754 to the nearest whole dollars
help me please i jave 10 min left HELP
Answer:
Option (A).
Step-by-step explanation:
[tex]8\frac{4}{5}[/tex] is a mixed fraction and can be written as,
[tex]8\frac{4}{5}=8+\frac{4}{5}[/tex] [Combination of a whole number and a fraction]
When we multiply this mixed fraction by 7,
[tex]7\times 8\frac{4}{5}=7\times (8+\frac{4}{5})[/tex]
[tex]=(7\times 8)+(7\times \frac{4}{5})[/tex] [Distributive property → a(b + c) = a×b + a×c]
[tex]=56+\frac{28}{5}[/tex]
[tex]=56+5\frac{3}{5}[/tex]
[tex]=56+5+\frac{3}{5}[/tex]
[tex]=61+\frac{3}{5}[/tex]
[tex]=61\frac{3}{5}[/tex]
Therefore, [tex]7\times 8\frac{4}{5}=61\frac{3}{5}[/tex] will be the answer.
Option (A) will be the correct option.
A standard deck of of 52 playing cards contains 13 cards in each of four suits : diamonds, hearts , clubs and spades. Two cards are chosen from the deck at random.
Answer:
Probability of (one club and one heart) = 0.1275 (Approx)
Step-by-step explanation:
Given:
Total number of cards = 52
Each suits = 13
FInd:
Probability of (one club and one heart)
Computation:
Probability of one club = 13 / 52
Probability of one heart = 13 / 51
Probability of (one club and one heart) = 2 [(13/52)(13/51)]
Probability of (one club and one heart) = 0.1275 (Approx)
Answer:
D. 0.1275
Step-by-step explanation:
Justo took the Pre-Test on Edg (2020-2021)!!
Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula.
Answer:
The explicit formula for the sequence is
44 - 6nStep-by-step explanation:
The above sequence is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
a = 38
d = 32 - 38 = - 6 or 20 - 26 = - 6 or
14 - 20 = - 6
So the formula for the sequence is
A(n) = 38 + ( n - 1)-6
= 38 - 6n + 6
We have the final answer as
A(n) = 44 - 6nHope this helps you
Answer:
[tex]\huge\boxed{a_n=-6n+44}[/tex]
Step-by-step explanation:
This is an arithmetic sequence:
32 - 38 = -6
26 - 32 = -6
20 - 26 = -6
14 - 20 = -6
The common difference d = -6.
The explicit formula of an arithmetic formula:
[tex]a_n=a_1+(n-1)(d)[/tex]
Substitute:
[tex]a_1=38;\ d=-6[/tex]
[tex]a_n=38+(n-1)(-6)[/tex] use the distributive property
[tex]a_n=38+(n)(-6)+(-1)(-6)\\\\a_n=38-6n+6\\\\a_n=-6n+(38+6)\\\\a_n=-6n+44[/tex]
Drag each tile to the correct box.
Three geometric sequences are given below.
Sequence A: 160, 40, 10, 2.5,
Sequence B: -21, 63, -189, 567, ...
Sequence C: 8, 12, 18, 27,
Order the sequences from least common ratio to greatest common ratio.
Sequence A
Sequence C
Sequence B
Answer:
Sequence B, Sequence A, Sequence C
Step-by-step explanation:
Data obtained from the question include the following:
Sequence A: 160, 40, 10, 2.5,
Sequence B: -21, 63, -189, 567, ...
Sequence C: 8, 12, 18, 27
Next, we shall determine the common ratio of each sequence. This is illustrated below:
Common ratio (r) is simply obtained by dividing the 2nd term (T2) by the 1st term (T1) or by dividing the 3rd term (T3) by the 2nd term (T2). Mathematically, it is expressed as:
r = T2/T1 = T3/T2
For sequence A:
160, 40, 10, 2.5
2nd term (T2) = 40
Ist term (T1) = 160
Common ratio (r) =..?
r = T2/T1
r = 40/160
r = 1/4
r = 0.25
Therefore, the common ratio is 0.25.
For sequence B:
-21, 63, -189, 567
2nd term (T2) = 63
Ist term (T1) = -21
Common ratio (r) =..?
r = T2/T1
r = 63/-21
r = - 3
Therefore, the common ratio is - 3.
For Sequence C:
8, 12, 18, 27
2nd term (T2) = 12
Ist term (T1) = 8
Common ratio (r) =..?
r = T2/T1
r = 12/8
r = 3/2
r = 1.5
Therefore, the common ratio is 1.5.
Summary:
Sequence >>>>> Common ratio
A >>>>>>>>>>>>> 0.25
B >>>>>>>>>>>>> - 3
C >>>>>>>>>>>>> 1.5
From the above illustration,
Ordering the sequence from least to greatest common ratio, we have:
Sequence B, Sequence A, Sequence C.
The sum of ages Afful and Naomi is 34. In 5 years time , Afful will be 2 times the age on Naomi now. How old are they now.
Answer:
Afful is 21 and Naomi is 13.
Step-by-step explanation:
Let [tex]A[/tex] represent the age of Afful and [tex]N[/tex] represent the age of Naomi.
The sum of their ages is 34. In other words:
[tex]A+N=34[/tex]
In 5 years time, Afful will be two times the age of Naomi now. In other words:
[tex]A+5=2N[/tex]
Solve for the system. Substitute.
[tex]A+N=34\\A=34-N\\34-N+5=2N\\39=3N\\N=13\\\\A=34-N\\A=34-(13)\\A=21[/tex]
Afful is currently 21 and Noami is currently 13.
Answer:
Naomi=x
Afful=2x
In 5 years time= +5
So Naomi=x+5
and and Afful=2x+5
=x+5+2x+5=34
=3x+10=34
Subtract 10 on both sides
3x=24
Divide 3 on both sides
X=8
Check:
X=8
Naomi=16
In 5 years
=16+5=21
Naomi=8+5=13
13+21=34
Hope this helps
Step-by-step explanation:
In the diagram, PQRT is a rhombus. STUQ and
PUR are straight lines. Find the values of x and y.
Step-by-step explanation:
since PQRT is a rhombus,
URQ=TPU
y=180-90-24=66
x=180-32-90-24=34
I need help ASAP thank you!! Sorry if you can’t see it but you can zoom in:)
Answer:
432 aquariums
Step-by-step explanation:
To determine the number of aquariums the factory made, find the volume of 1 aquarium, then divide the total volume of water required.
Solution:
Volume of triangular prism aquarium = triangular base area × length of triangular prism
Volume = ½*b*h*l
Where,
b = 8 ft
h = 4 ft
l = 3 ft
Volume = ½*8*4*3 = 4*4*3
Volume = 48 ft³
Number of aquarium made = Volume of water required ÷ volume of 1 aquarium
= 20,736 ÷ 48 = 432 aquariums
I need this done help!!
Answer:
Because the triangle is isosceles, the base angles are congruent, meaning that the angles that are not right angles are x and x. Since the sum of angles in a triangle is 180°, we can write:
90 + x + x = 180
x + x = 90
2x = 90
x = 45°
Answer:
45 degrees
Step-by-step explanation:
This triangle is "isosceles..." two legs are equal. Thus, the triangle has two 45 degree angles. The indicated angle is 45 degreees.
convert 1000110binary into decimal number system
Answer:
70₁₀Step-by-step explanation:
In order to convert a binary number into a decimal, it is expanded in the power of 2. Then, by simplifying the expanded form of the binary number, we obtain a decimal number.
Let's solve:
[tex]1000110[/tex]
[tex] = 1 \times {2}^{6} + 0 \times {2}^{5} + 0 \times {2}^{4} + 0 \times {2}^{3} + 1 \times {2}^{2} + 1 \times {2}^{1} + 0 \times {2}^{0} [/tex]
[tex] = 1 \times 64 + 0 \times 32 + 0 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 \times 0 \times 1[/tex]
[tex] = 64 + 0 + 0 + 0 + 4 + 2 + 0[/tex]
[tex] = 70[/tex]₁₀
Hope I helped!
Best regards!!
Please answer question now what the answer
Answer:
100 degrees
Step-by-step explanation:
360-260=100
Answer:
x=100
Step-by-step explanation:
130+130+x=360
260+x=360
x=100
Have a great and magnificent day
How many minutes are in 324 hours?
Answer: 19440 minutes
Step-by-step explanation:
Hi there! Hopefully this helps!
--------------------------------------------------------------------------------------------------
Answer: There are 19440 minutes in 324 hours.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since there are 60 minutes in each hour, we need to multiply the time value by 60. Like this:
324 x 60 = 19440.
4) Flying to Tahiti with a tailwind a plane averaged 259 km/h. On the return trip the plane only
averaged 211 km/h while flying back into the same wind. Find the speed of the wind and the
speed of the plane in still air.
A) Plane: 348 km/h, Wind: 37 km/h B) Plane: 243 km/h, Wind: 30 km/h
C) Plane: 235 km/h, Wind: 24 km/h D) Plane: 226 km/h, Wind: 13 km/h
fundraiser Customers can buy annle nies and
Answer: C) Plane: 235 km/h, Wind: 24 km/h
Step-by-step explanation:
Given that :
Average Speed while flying with a tailwind = 259km/hr
Return trip = 211km/hr
Let the speed of airplane = a, and wind speed = w
Therefore ;
Average Speed while flying with a tailwind = 259km/hr
a + w = 259 - - - (1)
Return trip = 211km/hr
a - w = 211 - - - (2)
From (2)
a = 211 + w
Substitute the value of a into (1)
a + w = 259
211 + w + w = 259
211 + 2w = 259
2w = 259 - 211
2w = 48
w = 48/2
w = 24km = windspeed
Substituting w = 24 into (2)
a - 24 = 211
a = 211 + 24
a = 235km = speed of airplane
Trivikram jogs from one end of corniche to its other end on a straight 300 m road in 2 minutes 50 seconds and then turns around and jogs 100 m back on same track in another 1 minute. What is his average speed and velocity?
Answer:
1.76m/s ; 1.76m/s ; 1.74m/s, 0.86m/s
Step-by-step explanation:
Given the following :
Distance jogged in first direction (A to B) = 300m
Time taken = 2 minutes 50s = (2*60) + 50 = 120 + 50 = 170s
Distance jogged in opposite direction (B to C) = 100m
Time taken = 1minute = 60s
Recall:
Speed = distance / time
Therefore Average speed from A to B
Average speed = 300m/ 170s = 1.764 = 1.76m/s
Average Velocity = Displacement / time
Displacement = 300m ; time = 170s
= 300m / 170s = 1.76m/s
Average speed (A to C)
Therefore, average speed = total distance / total time taken
Total distance = (300 + 100)m = 400m
Total time taken = (170 + 60)s = 230s
Average speed = 400m / 230s
= 1.739m/s = 1.74m/s
Average velocity:
Displacement = distance between initials position and final position.
Initial distance covered = 300m. Then 100m was jogged in the opposite direction.
Distance between starting and ending positions, becomes : (300 - 100)m = 200m
200 / 230 = 0.87m/s
PLEASE HELP ME! Please do not comment nonsense, and actually comment the answer and the solution.
=================================================
Explanation:
For choice C, the x values are out of order, so it might be tricky at first. I recommend sorting the x values from smallest to largest to get -2, -1, 0, 1, 2. Do the same for the y values as well. Make sure the correct y values stay with their x value pairs. You should get the list of y values to be 4, 2, 1, 1/2, 1/4
Check out the attached image below for the sorted table I'm referring to
We can see the list of y values is going down as x increases. This is a good sign we have decay. Further proof is that we multiply each term by 1/2 to get the next one
4 times 1/2 = 2
2 times 1/2 = 1
1 times 1/2 = 1/2
1/2 times 1/2 = 1/4
and so on. Effectively we can say the decay rate is 50%
please solve the volume of the triangular prism
Answer:
V = 225 cm²
Step-by-step explanation:
The volume of a prism is the product of the base's area and the height
the base of this prism is triangular
the area of a triangle is given by the formula :
A = [tex]\frac{b*h}{2}[/tex]b is the base(6cm) and h the height (5cm)
A = [tex]\frac{5*6}{2}[/tex] A = 15 cm²So the volume is
V = 15*A V = 15*15 V = 225 cm²Answer:
225 cm³
Step-by-step explanation:
Area of cross-section × length = Volume of a triangular prism
Area of cross-section is the area of the triangle section.
Area of cross section:
5 × 6 × 0.5
30 × 0.5
= 15
Calculate volume:
15 × length
15 × 15
= 225
15 points are placed on a circle. How many triangles is it possible to form, such that their vertices will be the given points?
Answer: 445 triangles can be form with 15 dots of a circle (I hope good luck)
Step-by-step explanation:
Answer:
455
Step-by-step explanation:
There are 15 points on a circle.
We need three points to form a triangle
Therefore the number of triangles = 15 choose 3 = 15!/(3!x12!) = (15x14x13)/(3x2x1) = 5x7x13 = 455
Hence the number of triangles formed is 455
CAN ANYONE HELP IM VERY CLUELESS
Answer:
51°
Step-by-step explanation:
A circle has a total of 360 degrees. So,
360 = 62 + 66 + x + 73 + x + 57
Next, combine like terms:
360 = 2x + 258
Next, isolate your variable by subtracting 258 from both sides:
102 = 2x
Finally, divide both sides by 2 to get x:
x = 51
Answer:
x = 51
Step-by-step explanation:
x + 73 + x + 57 + 62 + 66 = 360
2x + 258 = 360
2x = 360 - 258
2x = 102
[tex]\frac{x}{2} =\frac{102}{2}[/tex]
x = 51
25 POINTS AND BRAINLIEST FOR THESE!
Answer:
Step-by-step explanation:
Hello,
For any function f which has an inverse function we can write
[tex]x=(f^{-1}of)(x)=(fof^{-1})(x)=f(f^{-1}(x))[/tex]
This is why, in practice, to find the inverse of f we will consider f(x) = y and we will look for x as a function of y, so we switch x and y and solve for y. Let's do it.
Step 1 - The function f(x) can be written as a variable. [tex]\boxed{y}=f(x)[/tex]
f(x) = y = 5x + 2
Step 2 - switch the variables x <-> y
x = 5y + 2
subtract 2 to both parts of the equation
<=> x - 2 = 5y + 2 - 2 = 5y
divide by 5 both parts of the equation
[tex]<=> y=\dfrac{x-2}{5}[/tex]
It means that the inverse of f is as below.
[tex]\boxed{ \ f^{-1}(x)=\dfrac{x-2}{5}\ }[/tex]
Step 3 - Find the inverse of g(x)
We already found that the inverse of f is g, so the inverse of g is f.
Let's do it again.
[tex]g(x)=y=\dfrac{x-2}{5} \ \ \text{ switch x and y } \\ \\ x= \dfrac{y-2}{5} \ \ \text{ solve for y }\\ \\ y-2=5x \ \ \text{ mulitply by 5 both parts of the equation } \\ \\ y = 5x+2 \ \ \text{ add 2 to both parts of the equation }[/tex]
And we found what we already known, meaning f is the inverse of g.
[tex](gof)(x)=(fog)(x)=x[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answers and Step-by-step explanation:
Step 1:
We want to find the variable that ff(x) represents. Well, we know it can't be x because we already have x on the other side of the equation: ff(x) = 5x + 2.
So, ff(x) must equal y.
Since ff(x) = y, we know then that ff(x) = y = 5x + 2. And our equation is:
y = 5x + 2
Step 2:
Let's switch the variables now. This means that what used to be y will be x and what used to be x will be y:
y = 5x + 2 ⇒ x = 5y + 2
Subtract 2 from both sides:
5y = x - 2
Divide by 5 from both sides:
y = (x - 2)/5
Step 3:
Let's find the inverse of g(x) by doing the exact same thing as we did with ff(x):
g(x) = y = (x - 2)/5
Switch the variables:
y = (x - 2)/5 ⇒ x = (y - 2)/5
Multiply by 5 on both sides:
5x = y - 2
Add 2 to both sides:
y = 5x + 2
Notice that this is the exact same as ff(x)! This means that ff(x) and g(x) are inverses.
What equation represents the slope intercept from the line below y intercept ( 0, 2) slope -3/7 ( PLEASE HELP FAST TOP ANSWER GETS BRAINLIEST!!)
Answer:
[tex]\boxed{Option \ A}[/tex]
Step-by-step explanation:
y-intercept = b = 2 [y-intercept is when x = 0]
Slope = m = -3/7
Putting this in slope-intercept equation
=> [tex]y = mx+b[/tex]
=> [tex]y = -\frac{3}{7}x + 2[/tex]
Answer:
a
Step-by-step explanation:
If you had a cube with a side length of 4, how can your write the calculations in exponential form? What are 2 other ways to read the exponent verbally?
Answer: 4^3
(Four cubed or Four to the power of 3)
Step-by-step explanation:
The triangles are congruent by the SSS congruence theorem. Triangles F G H and V W X are shown. Triangle F G H is rotated about point G and then is shifted to the right to form triangle V W X. Which rigid transformation(s) can map TriangleFGH onto TriangleVWX? reflection, then rotation reflection, then translation rotation, then translation rotation, then dilation
Answer:
C. rotation, then translation
Step-by-step explanation:
edge 2021
I think it's C "rotation, then translation"
not 100% sure so check other answers too
An electronics company designed a cardboard box for its new line of air purifiers. The figure shows the dimensions of the box.
The amount of cardboard required to make one box is___square inches.
a)130
b)111
c)109
d)84
Answer:
130
Step-by-step explanation:
just did test on plato/edmentum..it was correct
84 (the answer above) is incorrect
Answer:
Hi sorry for late respond but the answer in 130!!
Step-by-step explanation:
A box contains 10 red marbles and 10 green marbles. Sampling at random from this box five times without replacement, you have drawn a red marble all five times. Without replacing any of the marbles, what is the probability of drawing a red marble the 6th time?
Answer:
5/15 is the probability of choosing a red marble from the box.
Step-by-step explanation:
We know that,
There are 5 red marbles and 10 green marbles in the box.
Divide the number of events by the number of possible outcomes. This will give us the probability.
P(red marble) = P(5)
Possible outcomes
5 red, 10 green -> 15 possibilities
Probability = [tex]\frac{5}{15}[/tex]
Please leave a 'thanks' if this helped!
The required probability of drawing a red marble the 6th time is 1/2.
Given that,
A box contains 10 red marbles and 10 green marbles.
Sampling at random from this box five times without replacement, you have drawn a red marble all five times.
Without replacing any of the marbles.
We have to determine,
What is the probability of drawing a red marble the 6th time?
According to the question,
There are 10 red marbles and 10 green marbles,
The initial condition is to the same state at every step, so the probability to get a red marble is the same in each sampling and is equal to the ratio of the number of red marbles to the total number of samples.
Therefore,
The probability of drawing a red marble the 6th time is,
[tex]P = \dfrac{10}{10+10}\\\\P = \dfrac{10}{20}\\\\P = \dfrac{1}{2}[/tex]
Hence, The required probability of drawing a red marble the 6th time is 1/2.
To know more about Probability click the link given below.
https://brainly.com/question/14210034