You want to end up with [tex]A\sin(\omega t+\phi)[/tex]. Expand this using the angle sum identity for sine:
[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]
We want this to line up with [tex]2\sin(4\pi t)+5\cos(4\pi t)[/tex]. Right away, we know [tex]\omega=4\pi[/tex].
We also need to have
[tex]\begin{cases}A\cos\phi=2\\A\sin\phi=5\end{cases}[/tex]
Recall that [tex]\sin^2x+\cos^2x=1[/tex] for all [tex]x[/tex]; this means
[tex](A\cos\phi)^2+(A\sin\phi)^2=2^2+5^2\implies A^2=29\implies A=\sqrt{29}[/tex]
Then
[tex]\begin{cases}\cos\phi=\frac2{\sqrt{29}}\\\sin\phi=\frac5{\sqrt{29}}\end{cases}\implies\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)[/tex]
So we end up with
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
Answer:
y(t) = √29·sin(4πt +1.1903)amplitude: √29angular frequency: 4πphase shift: 1.1903 radiansStep-by-step explanation:
In the form ...
y(t) = Asin(ωt +φ)
you have ...
Amplitude = Aangular frequency = ωphase shift = φThe translation from ...
y(t) = 2sin(4πt) +5cos(4πt)
is ...
A = √(2² +5²) = √29 . . . . the amplitude
ω = 4π . . . . the angular frequency in radians per second
φ = arctan(5/2) ≈ 1.1903 . . . . radians phase shift
Then, ...
y(t) = √29·sin(4πt +1.1903)
_____
Comment on the conversion
You will notice we used "2" and "5" to find the amplitude and phase shift. In the generic case, these are "coefficient of sin( )" and "coefficient of cos( )". When determining phase shift, pay attention to whether your calculator is giving you degrees or radians. (Set the mode to what you want.)
If you have a negative coefficient for sin( ), you will need to add 180° (π radians) to the phase shift value given by the arctan( ) function.
Thank you for the help!!
Answer:
B. 5
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
You know that the empty barrel is 1/4 of the full barrel. Find 1/4 of 20 to get 0.25 x 20 = 5
Find the value of x in the isosceles triangle shown below.
Answer:
the answer is x = sqrt 48
Step-by-step explanation:
A bag contains two red marbles, four green ones, one lavender one, four yellows, and six orange marbles. HINT [See Example 7.] How many sets of four marbles include one of each color other than lavender
Answer:
192
Step-by-step explanation:
There are a total of 15 marbles . When the lavender is left out 14 remain.
Using combinations we find that each of the four color marbles can be chosen in the following way.
2C1*4C1*4C1*6C1= 2*4*4*6= 192
We select one of the two red marbles , one of the four green marbles, one of the four yellow marbles, one of the 6 orange marbles leaving the lavender out.. We apply combinations and then multiply to get the answer.
When using the Distance Formula, the solution is the perimeter of a polygon.
true or false?
Answer:
false
Step-by-step explanation:
When solving the distance formula it is the distance from one point to another. If you had a rectangle and used the distance formula from each point then you would have a perimeter
a.Find the L.C.M of 18, 40, and 75.
Answer:
1800
Step-by-step explanation:
Hello,
First of all we need to find the prime factorisation of the numbers.
18 = 2 * 3 * 3
40 = 2 * 2 * 2 * 5
75 = 3 * 5 * 5
It means that the LCM should have 5 * 5 , 2 * 2 * 2 and 3 * 3
Then LCM = 3 * 3 * 2 * 2 * 2 * 5 * 5 = 1800
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
1800
Step-by-step explanation:
→ First of all we need to find the prime factorisation of the numbers.
18 = 2 × 3 × 3 or 2 × 3²
40 = 2 × 2 × 2 × 5 or 2³ × 5
75 = 3 × 5 × 5 or 5² × 3
→ Now find the number that appear twice or more and write them down
3 and 3 from 18
2, 2 and 2 from 40
5 and 5 from 75
→ Now multiply all of these numbers together
3 × 3 × 2 × 2 × 2 × 5 × 5 = 3² × 2³ × 5² = 1800
Given the radius of a circle is 7 cm, what is the circumference?
Answer:
14π or 43.96
Step-by-step explanation:
C = 2πr and we know that r = 7 so C = 14π or 43.96.
Which of the following is the minor arc for the circle shown below?
A. AWR
B. AW
C. RAW
D. RA
Answer:
RA
Step-by-step explanation:
A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (ml) and standard deviation 7 ml. The fill
volumes are normally distributed. What is the probability that a bottle has a volume greater than 992 mL?
1.0000
0.8810
0.8413
0.9987
Answer:
0.8413
Step-by-step explanation:
Find the z score.
z = (x − μ) / σ
z = (992 − 999) / 7
z = -1
Use a chart or calculator to find the probability.
P(Z > -1)
= 1 − P(Z < -1)
= 1 − 0.1587
= 0.8413
The required probability that a bottle has a volume greater than 992 mL is 0.84134. Option C is correct
Given that,
A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (ml) and a standard deviation of 7 ml. The fill volumes are normally distributed. What is the probability that a bottle has a volume greater than 992 mL, is to be determined
Probability can be defined as the ratio of favorable outcomes to the total number of events.
We use Z-statistic to find out the probability,
z = (x − μ) / σ
x = raw score = 992 mL
μ = population mean = 999 mL
σ = standard deviation
z = [992 − 999]/7
z = -1
P-value from Z-Table:
P(x<992) = 0.15866
P(x>992) = 1 - P(x<992) = 0.84134
Thus, the required probability that a bottle has a volume greater than 992 mL is 0.84134
Learn more about probability here:
brainly.com/question/14290572
#SPJ2
A study regarding the relationship between age and the amount of pressure sales personnel feel in relation to their jobs revealed the following sample information. At the 0.10 significance level, is there a relationship between job pressure and age.
(Round your answers to 3 decimal places.)
Degree of Job Pressure
Age (years) Low Medium High
Less than 25 25 27 20
25 up to 40 49 53 40
40 up to 60 59 59 52
60 and older 35 42 44
H0: Age and pressure are not related. H1: Age and pressure are related.
Reject H0 if X2 > .
X2=
(Click to select)Reject Do not reject H0. Age and pressure (Click to select)areare not related.
Answer:
Reject H0
Age and pressure are related
Step-by-step explanation:
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value. In the given scenario we reject the null hypothesis because job pressure and age are related to each other.
The sum of a number and 9 is subtracted from 60. The result is 10. Find the number.
Answer:
Number : 41
Step-by-step explanation:
Say that this number is x. The sum of this number ( x ) and 9 subtracted from 60 will be 10. Therefore we can create the following equation to solve for x,
60 - (x + 9) = 10,
60 - x - 9 = 10,
51 - x = 10,
- x = 10 - 51 = - 41,
x = 41
This number will be 41
help please winth this will give bralienst
Answer:
1rst way they give is CORRECT WAY
The rest of the options are the INCORRECT WAY.
Step-by-step explanation:
When you do 620*7 + 6 = 4376 is the answer you get.
When you do the other math - you do not get the same initial value.
Amber says that the data set is left-skewed because the box is farther to the left on the number line. (A) Is Amber correct? (B) Explain your reasoning.
What is the length of in the right triangle below?
A.
150
B.
25
C.
D.
625
Answer:
25
Step-by-step explanation:
We can use the Pythagorean theorem to solve
a^2 + b^2 = c^2
We know the two legs and want to find the hypotenuse
15^2+ 20 ^2 = c^2
225 + 400 = c^2
625 = c^2
Taking the square root of each side
sqrt(625) = c^2
25 = c
the solution of the equation 0=4+4(m+1) is
Answer:
[tex]\boxed{m = -2}[/tex]
Step-by-step explanation:
[tex]0 = 4+4(m+1)[/tex]
Resolving Parenthesis
[tex]0 = 4+4m + 4[/tex]
[tex]0 = 4m+8[/tex]
Subtracting 8 to both sides
[tex]-8 = 4m[/tex]
[tex]4m = -8[/tex]
Dividing both sides by 4
m = -8/4
m = -2
Step-by-step explanation:
4+4m+4= 0
4m+8=0
4m=-8
m= -8/4=-2
Find the value of x, rounded to the nearest tenth.
Answer:
x = 8.9 units
Step-by-step explanation:
We will use the theorem of intersecting tangent and secant segments.
"If secant and tangent are drawn to a circle from an external point, the product of lengths of the secant and its external segment will equal the square of the length of tangent."
8(8 + 2) = x²
x² = 80
x = √80
x = 8.944
x ≈ 8.9 units
Therefore, length of the tangent = 8.9 units
Solve the System of equations.
Answer:
x=9y=12Step-by-step explanation:
Plug x as 2y-15 in the first equation and solve for y.
-5(2y-15)+4y=3
-10y+75+4y=3
-6y+75=3
-6y=-72
y=12
Plug y as 12 in the second equation and solve for x.
x=2(12)-15
x=24-15
x=9
HELP PLEASE! A Blue Jay wanted to store some acorns for the winter. If she hides 18 acorns per tree, she will be left with four acorns; if she hides 20 acorns per tree, there will be extra space for an additional four acorns (the number of trees is always the same). How many acorns is the Blue Jay going to store for the winter, and in how many trees?
Answer:
Step-by-step explanation:
Let
T = number of trees
A = number of acorns
Given:
A = 18T + 4 ...........................(1)
A = 20T -4 .........................(2)
Equate A from (1) and (2)
20T-4 = 18T+4
simplify and solve for T
20T - 18T = 4+4
2T = 8
T = 4 trees
A = 18T + 4 = 72+4 = 76 acorns, or
A = 20T - 4 = 80 - 4 = 76 acorns.
Carbon–14 is a radioactive isotope that decays exponentially at a rate of 0.0124 percent a year. How many years will it take for carbon–14 to decay to 10 percent of its original amount? The equation for exponential decay is At = A0e–rt.
Answer:
It will take 18,569.2 years for carbon–14 to decay to 10 percent of its original amount
Step-by-step explanation:
The amount of Carbon-14 after t years is given by the following equation:
[tex]A(t) = A(0)e^{-rt}[/tex]
In which A(0) is the initial amount and r is the decay rate, as a decimal.
Carbon–14 is a radioactive isotope that decays exponentially at a rate of 0.0124 percent a year.
This means that [tex]r = \frac{0.0124}{100} = 0.000124[/tex]
How many years will it take for carbon–14 to decay to 10 percent of its original amount?
This is t for which:
[tex]A(t) = 0.1A(0)[/tex]
So
[tex]A(t) = A(0)e^{-rt}[/tex]
[tex]0.1A(0) = A(0)e^{-0.000124t}[/tex]
[tex]e^{-0.000124t} = 0.1[/tex]
[tex]\ln{e^{-0.000124t}} = \ln{0.1}[/tex]
[tex]-0.000124t = \ln{0.1}[/tex]
[tex]t = -\frac{\ln{0.1}}{0.000124}[/tex]
[tex]t = 18569.2[/tex]
It will take 18,569.2 years for carbon–14 to decay to 10 percent of its original amount
What is 0.09% written as a decimal?
A. 0.9
B. 0.009
C. 0.0009
D. 0.09
Answer:
C. 0.0009
Step-by-step explanation:
0.09/100
= 0.0009
Answer:A
Step-by-step explanation:0.09=0.9
Find all of the angle measures in the image.
Answer:
Angle 2= 45
Angle 3= 45
Angle 4= 135
Angle 5= 135
Angle 6= 45
Angle 7= 45
Angle 8= 135
NEED HELP AS SOON AS POSSIBLE which interval describes where the graph of the function is negative
Answer:
2 < x < ∞
Step-by-step explanation:
We want where the value of y is less than zero
The value of the graph is less than zero is from x=2 and continues until x = infinity
2 < x < ∞
Answer:
[tex]\boxed{2 < x < \infty}[/tex]
Step-by-step explanation:
The value of y should be less than 0 for the graph of the function to be negative.
In the graph, when it startes from x is 2 the value becomes less than 0 and it keeps continuing until x is equal to infinity.
[tex]2 < x < \infty[/tex]
when using the rational root theorem, which of the following is a possible root of the polynomial function below f(x)=x^3-5x^2-12x+14
A.9
B.3
C.7
D.5
Answer:
[tex]\Large \boxed{\sf \ \ 7 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
The polynomial function is
[tex]x^3-5x^2-12x+14[/tex]
The rational root theorem states that each rational solution
[tex]x=\dfrac{p}{q}[/tex]
, written in irreducible fraction, satisfies the two following:
p is a factor of the constant term
q is a factor of the leading coefficient
In this example, the constant term is 14 and the leading coefficient is 1. It means that p is a factor of 14 and q a factor of 1.
Let's proceed with the prime factorisation of 14:
14 = 2 * 7
Finally, the possible rational roots of this expression are :
1
2
7
14
and we need to test for negative ones too
-1
-2
-7
-14
From your list, the correct answer is 7.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
the answer is C.) 7
In order to estimate the difference between the average Miles per Gallon of two different models of automobiles, samples are taken, and the following information is collected. Model A Model B Sample Size 50 55 Sample Mean 32 35 Sample Variance 9 10 a) At 95% confidence develop an interval estimate for the difference between the average Miles per Gallon for the two models. b) Is there conclusive evidence to indicate that one model gets a higher MPG than the other
Answer:
At 95% confidence limits for the true difference between the average Miles per Gallon for the two models is -1.8210 to 4.1789
Yes 95 % confidence means that there's conclusive evidence to indicate that one model gets a higher MPG than the other.
Step-by-step explanation:
Model A Model B
Sample Size 50 55
Sample Mean x` 32 35
Sample Variance s² 9 10
At 95 % confidence limits are given by
x1`-x2` ± 1.96 [tex]\sqrt{\frac{s^{2} }{n1} +\frac{s^{2}}{n2} }[/tex]
Putting the values
32-35 ± 1.96 [tex]\sqrt\frac{9}{50}+\frac{10}{55}[/tex] ( the variance is the square of standard deviation)
-3 ± 1.96 [tex]\sqrt{ \frac{495+500}{2750}[/tex]
-3 ± 1.96( 0.6015)
-3 ± 1.17896
-1.8210; 4.1789
Thus the 95% confidence limits for the true difference between the average Miles per Gallon for the two models is -1.8210 to 4.1789.
Yes 95 % confidence means that there's conclusive evidence to indicate that one model gets a higher MPG than the other.
What is the value of Sine theta in the diagram below?
Answer:
C) 24/25
Step-by-step explanation:
did the quiz and got it right
The value of the sine theta in the first quadrant in the diagram given is [tex]\mathbf{\dfrac{24}{25}}[/tex]
What is the trigonometric function in the first quadrant?The explanation of the trigonometric functions (i.e cosine, sine, tangent) in respect of point coordinates on the unit circle informs us of the signs and meanings of the trigonometric functions for each of the four(4) quadrants, depending on the signs of the x, as well as, y coordinates in each quadrant.
In the first quadrant;
cos(θ) > 0, sin(θ) > 0 andtan(θ) > 0Thus, we have a positive x and y-axis.
Taking the forms x and y, i.e. (x, y) = (cos θ, sin θ)
The value of sine theta in [tex]\mathbf{(\dfrac{7}{25}, \dfrac{24}{25} ) = \dfrac{24}{25} }[/tex]
Learn more about Trigonometric functions here:
https://brainly.com/question/24349828
#SPJ2
3(x+4)-1=-7 plz help
Answer:
x = -6
Step-by-step explanation:
3(x+4)-1=-7
Add 1 to each side
3(x+4)-1+1=-7+1
3(x+4)=-6
Divide by 3
3/3(x+4)=-6/3
x+4 = -2
Subtract 4 from each side
x+4-4 = -2-4
x = -6
Answer:
- 6Step-by-step explanation:
[tex]3(x + 4) - 1 = - 7[/tex]
Distribute 3 through the parentheses
[tex]3x + 12 - 1 = - 7[/tex]
Calculate the difference
[tex]3x + 11 = - 7[/tex]
Move constant to R.H.S and change it's sign
[tex]3x = - 7 - 11[/tex]
Calculate
[tex]3x = - 18[/tex]
Divide both sides of the equation by 3
[tex] \frac{3x}{3} = \frac{ - 18}{3} [/tex]
Calculate
[tex]x = - 6[/tex]
hope this helps
Best regards!!
Roberta sold goods costing $35,500, her expenses totaled $2,500 and her freight in totaled $750.
Her company's average stock of goods during the same period was $9,500.
The inventory turnover ratio for Roberta's company is
Answer:
Inventory turnover ratio is 3.74
explanation:
Inventory turnover is a ratio of the number of times a company's inventory is sold and replaced in a given period.
Inventory turn over ratio is calculated as ; Cost of goods sold ÷ Average stock of goods sold
= $35,500 / $9500
= 3.74
which of the binomials below is a factor of this trinomial? 8x^2 + 10x-3
Answer:
The factors are (4x-1) and (2x+3)
Step-by-step explanation:
The factors of 8x^2 + 10x -3 can be found by grouping terms
8x^2 - 2x + 12x - 3
2x (4x -1) + 3(4x-1)
(4x-1)(2x+3)
Consider a triangle ABC like the one below. Suppose that B=36°, C= 62°, and b= 40. (The figure is not drawn to scale.) Solve the triangle.
Round your answers to the nearest tenth.
If there is more than one solution, use the button labeled "or".
Answer:
A=82°
a= 67.4
c = 60.1
Step-by-step explanation:
For A
A+B+C =180°
A= 180-(B+C)
A= 180-(36+62)
A= 189-(98)
A= 82°
For a
a/sinA= b/sinB
a/sin82= 40/sin36
a= (40*sin82)/sin36
a=( 40*0.9903)/0.5878
a=67.39
Approximately = 67.4
For c
c/sinC= b/sinB
c= (sinC*b)/sinB
c= (sin62*40)/sin36
c =(0.8829*40)/0.5878
c = 60.08
Approximately = 60.1
1. What is the length of the shortest side if the perimeter of the rectangle is
56 inches?
3х
5х – 4
Answer:
Length of Shortest Side = 12 inches
Step-by-step explanation:
Length of Shortest Side = L = 3x
Length of Longest Side = W = 5x-4
Condition:
2L+2W = Perimeter
2(3x)+2(5x-4) = 56
6x+10x-8 = 56
16x-8 = 56
Adding 8 to both sides
16x = 56+8
16x = 64
Dividing both sides by 14
=> x = 4
Now,
Length of the Shortest Side = L = 3(4) = 12 inches
Length of the Longest Side = W = 5(4)-4 = 16 inches
Answer:
12 inches
Step-by-step explanation:
The length is the longest side.
The width is the shortest side.
Length : [tex]l=5x-4[/tex]
Width : [tex]w=3x[/tex]
Apply formula for the perimeter of a rectangle.
[tex]P=2l+2w[/tex]
[tex]P=perimeter\\l=length\\w=width[/tex]
Plug in the values.
[tex]56=2(5x-4)+2(3x)[/tex]
[tex]56=10x-8+6x[/tex]
[tex]56=16x-8[/tex]
[tex]64=16x[/tex]
[tex]4=x[/tex]
The shortest side is the width.
[tex]w=3x[/tex]
Plug in the value for x.
[tex]w=3(4)[/tex]
[tex]w=12[/tex]
(x*129)-3=126 what is x
Answer:
x should equal 1
Step-by-step explanation:
(1*129)-3=126
129-3=126
126=126
Answer:
x=1
Step-by-step explanation:
We can start by adding 3 to both sides to get rid of the -3
That leaves us with 129x=129
It ends up working out really evenly because by dividing both sides by 129, we are left with x=1