Answer:
acute isosceles triangle
vertex angle, y = 44.0 degrees. (smallest angle)
Step-by-step explanation:
If the sides are in the ratio 4:4:3,
two of the sides have equal lengths, so it is an isosceles triangle.
Also, the sum of square of the two shorter sides is greater than the square of the longest side, so it is an acute triangle.
To find the smallest angle, we draw the perpendicular bisector of the base (side length 3) and form two right triangles.
The base angle x is given by the ratio
cos(x) = 1.5/4 = 3/8
Consequently the base angle is arccos(3/8) = 68.0 degrees.
The vertex angle equals twice the complement of 68.0
vertex angle, y = 2 (90-68.0) = 44.0 degrees. (smallest angle)
What is the five-number summary for this data set?
12, 15, 17, 20, 22, 25, 27, 30, 33, 37
Assume the numbers in each answer choice are listed in this order: min, Q1,
median, Q3, max.
Answer: min = 12, Q1 =17, median =23.5 , Q3 = 30, max = 37 .
Step-by-step explanation:
The five-number summary for this data set consists of min, Q1,
median, Q3, max.
Given data: 12, 15, 17, 20, 22, 25, 27, 30, 33, 37, which is already arranged in a order.
Minimum value = 12
Maximum value = 37
since , number of observations = 10 (even)
So , Median = Mean of middle most terms
Middle most terms = 22, 25
Median =[tex]\dfrac{22+25}{2}=23.5[/tex]
First quartile ([tex]Q_1[/tex])= Median of first half ( 12, 15, 17, 20, 22)
= middle most term
= 17
Third quartile ([tex]Q_3[/tex]) = Median of second half (25, 27, 30, 33, 37)
= middle most term
= 30
Hence, five-number summary for this data set :
min = 12, Q1 =17, median =23.5 , Q3 = 30, max = 37 .
Monica’s school band held a car wash to raise money for a trip to a parade in New York City. After washing 125 cars, they made $775 from a combination of $5.00 quick washes and $8.00 premium washes. This system of equations models the situation. x + y =125 5x + 8y = 775
Answer:
[tex] x+y = 125[/tex] (1)
[tex] 5x+8y = 775[/tex] (2)
We can solve for y from equation (1) and we got:
[tex] y = 125-x[/tex] (3)
And replacing (3) into (2) we got:
[tex] 5x +8(125-x) = 775[/tex]
And solving for x we got:
[tex] 1000-3x = 775[/tex]
[tex] 3x= 225[/tex]
[tex] x=75 [/tex]
And solving for y from (3) we got:
[tex] x= 125-75 =50[/tex]
And the solution would be x = 50 and y =75
Step-by-step explanation:
For this problem we have the following system of equations:
[tex] x+y = 125[/tex] (1)
[tex] 5x+8y = 775[/tex] (2)
We can solve for y from equation (1) and we got:
[tex] y = 125-x[/tex] (3)
And replacing (3) into (2) we got:
[tex] 5x +8(125-x) = 775[/tex]
And solving for x we got:
[tex] 1000-3x = 775[/tex]
[tex] 3x= 225[/tex]
[tex] x=75 [/tex]
And solving for y from (3) we got:
[tex] x= 125-75 =50[/tex]
And the solution would be x = 50 and y =75
The question is with the image.
Answer:
A
Step-by-step explanation:
the graph of x'3 is B
the graph of x'(-1/3) is C
Brainliest for correct awnser Estimate the line of best fit using two points on the line.A.y = −8x + 80B.y = 4x + 80C.y = −4x + 80D.y = 8x + 80
Answer:
A.y = −8x + 80B
Step-by-step explanation:
first you have to find the slope :
P1(2,64). P2(6,32)
slope=Y2-Y1/X2-X1
slope=64-32/2-6
slope= -8
y= -8x + b. now solve for "b" by using one of the coordinates given above.
y= -8x + b. I will use coordinate p(2,64)
64= -8(2) + b
64 + 16 = b
80= b
you can use any of the coordinates i.e either P1(2,64)or P2(6,32) it doesn't affect the value of "b".
line of equation is :
.y = −8x + 80B
Answer: y= -8x+80
Step-by-step explanation:
The shape of a garden is rectangular at the center and semicircular at the ends. Find the area and perimeter of this garden { length of the rectangle is 20 - (3.5+3.5) meters} The First, correct answer gets BRAINLIEST
Mensuration:
Mensuration is the branch of mathematics which concerns itself with the measurement of Lengths, areas & volume of different geometrical shapes or figures.
Plane Figure: A figure which lies in a plane is called a plane figure.
For e.g: a rectangle, square, a rhombus, a parallelogram, a trapezium.
Perimeter:
The perimeter of a closed plane figure is the total length of its boundary.
In case of a triangle or a polygon the perimeter is the sum of the length of its sides.
Unit of perimeter is a centimetre (cm), metre(m) kilometre(km) e.t.c
Area: The area of the plane figure is the measure of the surface enclose by its boundary.
The area of a triangle are a polygon is the measure of the surface enclosed by its sides.
A square centimetre (cm²) is generally taken at the standard unit of an area. We use square metre (m²) also for the units of area.
Circumference of a circle is the perimeter of a circle.
In a circle the radius is half of the diameter.
The approximate value of π( Pi) is= 22/7
==========================================================
From 1985 to 2007, the number B B of federally insured banks could be approximated by B ( t ) = − 329.4 t + 13747 B(t)=-329.4t+13747 where t is the year and t=0 corresponds to 1985. How many federally insured banks were there in 1990?
Answer:
12100
Step-by-step explanation:
If the number B of federally insured banks could be approximated by B ( t ) = − 329.4 t + 13747 from 1985 to 2007 where t = 0 correspond to year 1985
In order to determine the amount of federally insured banks that were there in 1990, we will first calculate the year range from initial time 1985 till 1990
The amount of time during this period is 5years. Substituting t = 5 into the modeled equation will give;
B ( t ) = − 329.4 t + 13747
B(5) = -329.4(5) + 13747
B(5) = -1647+13747
B(5) = 12100
This shows that there will be 12100 federally insured banks are there in the year 1990.
Solve the proportion below.
X =
A. 24
B. 49
c. 27
D. 6
Answer:
A. 24
Step-by-step explanation:
4/9 = x/54
x= 54*4/9 ===== multiplying both sides by 54
x= 24
Answer is 24, choice A is correct one
Multiply (x2 + 3x + 4)(3x2 - 2x + 1).
Answer:
The answer is
3x⁴ + 7x³ + 7x² - 5x + 4Step-by-step explanation:
(x² + 3x + 4)(3x² - 2x + 1)
Expand the terms
We have
3x⁴ - 2x³ + x² + 9x³ - 6x² + 3x + 12x² - 8x + 4
Group like terms
That's
3x⁴ - 2x³ + 9x³ + x² - 6x² + 12x² + 3x - 8x + 4
Simplify
We have the final answer as
3x⁴ + 7x³ + 7x² - 5x + 4Hope this helps you
Find the unknown side length x write your answer in simplest radical form
A.24
B.4squareroot37
C.2squareroot154
D.5squareroot117
Answer:
(B)[tex]4\sqrt{37}[/tex]
Step-by-step explanation:
First, we determine the height of the triangle which we label as y.
Using Pythagoras Theorem.
[tex]25^2=7^2+y^2\\y^2=25^2-7^2\\y^2=576\\y=\sqrt{576}\\y=24[/tex]
In the smaller right triangle with hypotenuse, x
Base = 7-3 =4 Units
Height, y= 24 Units
Therefore, applying Pythagoras Theorem.:
[tex]x^2=24^2+4^2\\x^2=592\\x=\sqrt{592}\\ x=4\sqrt{37}[/tex]
Help ASAP!!!!
1. Solve for x. Round to the nearest hundredth if necessary.
Answer:
The answer is option B
34.28Step-by-step explanation:
To solve for x we use tan
tan ∅ = opposite / adjacent
From the question
The adjacent is x
The opposite is 19
So we have
tan 29 = 19/ x
x = 19/ tan 29
x = 34.276
x = 34.28 to the nearest hundredthHope this helps
Answer:
x ≈ 34.28
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan29° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{19}{x}[/tex] ( multiply both sides by x )
x × tan29° = 19 ( divide both sides by tan29° )
x = [tex]\frac{19}{tan29}[/tex] ≈ 34.28 ( to the nearest hundredth )
A restaurant operator in Accra has found out that during the partial lockdown, if she sells a plate of her food for GH¢20 each, she can sell 300 plates, but for each GH¢5 she raises the price, 10 less plates are sold.
Draw a table of cost relating to number of plates using 6 values of cost and its corresponding number of plates bought.
What price in GH¢ should she sell the plates to maximize her revenue?
Answer:
Step-by-step explanation:
First, note this parameters from the question.
We let x = number of $5 increases and number of 10 decreases in plates sold.
Our Revenue equation is:
R(x) = (300-10x)(10+5x)
We expand the above equation into a quadratic equation by multiplying each bracket:
R(x) = 3000 + 1500x - 3000x - 1500x^2
R(x) = -1500x^2 - 1500x + 3000 (collect like terms)
Next we simplify, by dividing through by -1500
= 1500x^2/1500 - 1500x/1500 + 3000/1500
= X^2 - x + 2
X^2 - x + 2 = 0
Next, we find the axis of symmetry using the formula x = -b/(2*a) where b = 1, a = 1
X = - (-1)/2*1
X = 1/2
Number of $5 increases = $5x1/2 = $2.5
=$2.5 + $20 = $22.5 ticket price gives max revenue.
Two points on line p have
coordinates (2, 1) and (5, 3).
The slope of the line is?
A. 2
B. 3/2
C. 1
D. 2/3
E. 4
Answer:
D. 2/3Step-by-step explanation:
[tex](2, 1) (5, 3)\\x_1 =2 \\y_1 =1\\x_2=5\\y_2 =3\\m =\frac{y_2-y_1}{x_2-x_1} \\\\m = \frac{3-1}{5-2} \\\\m = 2/3[/tex]
The area of a circle is found using the formula A=\pi r^(2) , where r is the radius. If the area of a circle is 36π square feet, what is the radius, in feet? A. 6 B. 6π C. 18 D. 9π
Answer:
A. 6 feetStep-by-step explanation:
[tex]A=\pi r^2\\Area = 36\pi\\r = ?\\36\pi = \pi r^2\\Divide \:both \:sides \:of\: the \:equation\: by\: \pi\\\frac{36\pi}{\pi} = \frac{\pi r^2}{\pi} \\r^2 = 36\\Find\: the\: square\: root\: of\: both\: sides\: \\\sqrt{r^2} =\sqrt{36} \\\\r = 6\: feet\\[/tex]
What is the difference of the rational expressions below?
6/x - 5x/x+2
A.
5x + 6
2
O
B. 5x + 6x +12
** + 2x
O
c.
5x6
2x+2
D. 5x' +6x +12
2x + 2
The difference of the rational expressions 6/x - 5x/x+2 is (x + 12)/(x(x+2)).
Thus, the correct option would be:
C. (x + 12)/(x(x+2))
To find the difference of the rational expressions, we need to subtract the second expression from the first expression.
Let's simplify the expressions first:
The first expression is 6/x - 5x/(x+2).
To combine the terms, we need a common denominator, which is (x)(x+2).
Converting the first term, 6/x, to have a denominator of (x)(x+2), we get (6(x+2))/(x(x+2)).
Now, we can combine the terms:
[(6(x+2))/(x(x+2))] - [5x/(x+2)]
To subtract the fractions, we need to have a common denominator, which is (x)(x+2).
Expanding the numerators, we get:
[(6x + 12)/(x(x+2))] - [5x/(x+2)]
Now, we can subtract the fractions:
[(6x + 12 - 5x)/(x(x+2))]
Simplifying the numerator, we have:
(6x - 5x + 12)/(x(x+2))
Combining like terms, we get:
(x + 12)/(x(x+2))
Therefore, the difference of the rational expressions 6/x - 5x/x+2 is (x + 12)/(x(x+2)).
Thus, the correct option would be:
C. (x + 12)/(x(x+2))
For similar question on rational expressions.
https://brainly.com/question/29061047
#SPJ8
helpppp with this will give bralienst but need hurry
Answer:
20.25is how much each friend gets.Step-by-step explanation:
40.50/2 = 20.25
You have to divide by 2. This way both of the people will get the same amount of money.
Answer:
each friend will get
Step-by-step explanation:
20 .25
as 40 .50 ÷ 2 = 20 .25
hope this helps
pls can u heart and like and give my answer brainliest pls i beg u thx !!! : )
Points A,B,C and D are midpoints of the sides of the larger square. If the smaller square has area 60, what is the area of the bigger square?
Answer:
80
Step-by-step explanation:
Need help with trig questions
Answer:
-8 i + 19 j , 105.07°
Step-by-step explanation:
Solution:
- Define two unit vectors ( i and j ) along x-axis and y-axis respectively.
- To draw vectors ( v and w ). We will move along x and y axes corresponding to the magnitudes of unit vectors ( i and j ) relative to the origin.
Vector: v = 2i + 5j
Mark a dot or cross at the originMove along x-axis by 2 units to the right ( 2i )Move along y-axis by 5 units up ( 5j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in first quadrant
Vector: w = 4i - 3j
Mark a dot or cross at the originMove along x-axis by 4 units to the right ( 4i )Move along y-axis by 3 units down ( -3j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in 4th quadrant- The algebraic manipulation of complex numbers is done by performing operations on the like unit vectors.
[tex]2*v - 3*w = 2* ( 2i + 5j ) - 3*(4i - 3j )\\\\2*v - 3*w = ( 4i + 10j ) + ( -12i + 9j )\\\\2*v - 3*w = ( 4 - 12 ) i + ( 10 + 9 ) j\\\\2*v - 3*w = ( -8 ) i + ( 19 ) j\\[/tex]
- To determine the angle ( θ ) between two vectors ( v and w ). We will use the " dot product" formulation as follows:
v . w = | v | * | w | * cos ( θ )
v . w = < 2 , 5 > . < 4 , -3 > = 8 - 15 = -7
[tex]| v | = \sqrt{2^2 + 5^2} = \sqrt{29} \\\\| w | = \sqrt{4^2 + 3^2} = 5\\\\[/tex]
- Plug the respective values into the dot-product formulation:
cos ( θ ) = [tex]\frac{-7}{5\sqrt{29} }[/tex]
θ = 105.07°
For the population {0, 1, 2, 3, 5, 7},
(a) List all the simple random samples of size 5.
(b) Give an example of a systematic sample of size 3 where the elements are listed
in the order : 0, 1, 2, 3, 5, 7.
(c) Give an example of a proportional stratified sample of size 3 where the strata are
{0, 1, 2, 3}, {5, 7}.
(d) Give an example of a cluster sample size of 2 where the clusters are {0, 1}, {2,3},
{5, 7}.
4. Starcraft 2 player Serral won 36 out of his last 45 matches in high-level play. Continuing with that level of competition, where each match ends in a win or a loss, answer the following queries. (a) If Serral is scheduled to play exactly 6 games, what is the probability that Serral will lose at most 2 games. (b) If the venue instead has players keep playing until their first loss, what is the probability that Serral will have a win streak of at least 4 games
Answer:
Starcraft
a) Probability of losing at most 2 games = 33%
b) Probability of winning at least 4 games = 67%
Step-by-step explanation:
a) To lose 2 out of 6 games, the probability is 2/6 x 100 = 33.333%
b) To win at least 4 games out of 6, the probability is 4/6 x 100 = 66.667%
c) Since Serral is playing 6 games, for her to lose at most 2 of the games is described as a probability in this form 2/6 x 100. This shows the chance that 2 of the games out of 6 could be lost by Serral. On the other hand, the probability of Serral winning at least 4 of the 6 games is given as 4/6 x 100. It implies that there is a chance, 4 out of 6, that Serral would win the game.
A company is evaluating which of two alternatives should be used to produce a product that will sell for $35 per unit. The following cost information describes the two alternatives.
Process A Process B
Fixed Cost $500,000 $750,000
Variable Cost per Unit $25 $23
Requirement:;
i) Calculate the breakeven volume for Process A. (show calculation to receive credit)
ii) Calculate the breakeven volume for Process B. (show calculation to receive credit)
III) Directions: Show calculation below and Circle the letter of the correct answer.
If total demand (volume) is 120,000 units, then the company should
select Process A with a profit of $940,000 to maximize profit
select Process B with a profit of $450,000 to maximize profit
select Process A with a profit of $700,000 to maximize profit
select Process B with a profit of $690,000 to maximize profit
Answer:
A.50,000 units
B.62,500 units
C.Process A with a profit of $700,000 to maximize profit
Step-by-step explanation:
A.Calculation for the breakeven volume for Process A
Using this formula
Breakeven volume for Process A= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process A=500,000/(35-25)
Breakeven volume for Process A=500,000/10
Breakeven volume for Process A=50,000 units
B.Calculation for the breakeven volume for Process B
Using this formula
Breakeven volume for Process B= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process B=750,000/(35-23)
Breakeven volume for Process B=750,000/12
Breakeven volume for Process B=62,500 units
C. Calculation for what the company should do if the total demand (volume) is 120,000 units
Using this formula
Profit=(Total demand*(Sales per units-Variable cost per units for Process A)- Process A fixed cost
Let plug in the formula
Profit =120,000*($35-$25)-$500,000
Profit=120,000*10-$500,000
Profit=1,200,000-$500,000
Profit= $700,000
Therefore If total demand (volume) is 120,000 units, then the company should select Process A with a profit of $700,000 to maximize profit.
Amy have 398.5 L of apple juice . Avery have 40098 ml of apple juice how many do they have all together
Answer: 438.5L = 438000ml
Step-by-step explanation:
Simplify the expression.
Write your answer without negative exponents. NEED AN ANSWER ASAP
Answer:
[tex]\boxed{\frac{-3b^4 }{a^6 }}[/tex]
Step-by-step explanation:
[tex]\frac{-18a^{-8}b^{-3}}{6a^{-2}b^{-7}}[/tex]
[tex]\frac{-18}{6} \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
[tex]-3 \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
Apply the law of exponents, when dividing exponents with same base, we subtract the exponents.
[tex]-3 \times a^{-8-(-2)} \times b^{-3- (-7)}[/tex]
[tex]-3 \times a^{-8+2} \times b^{-3+7}[/tex]
[tex]-3 \times a^{-6} \times b^{4}[/tex]
[tex]{-3a^{-6}b^{4}}[/tex]
The answer should be without negative exponents.
[tex]a^{-6}=\frac{1}{a^6 }[/tex]
[tex]\frac{-3b^4 }{a^6 }[/tex]
Answer:
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]Step-by-step explanation:
[tex] \frac{ - 18 {a}^{ - 8} {b}^{ - 3} }{6 {a}^{ - 2} {b}^{ - 7} } [/tex]
Reduce the fraction with 6
[tex] \frac{ - 3 {a}^{ - 8} {b}^{ - 3} }{ {a}^{ - 2} {b}^{ - 7} } [/tex]
Simplify the expression
[tex] \frac{ - 3 {b}^{4} }{ {a}^{6} } [/tex]
Use [tex] \frac{ - a}{b} = \frac{a}{ - b} = - \frac{a}{b \: } [/tex] to rewrite the fraction
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]
Hope this helps...
Best regards!!
A researcher predicts that the proportion of people over 65 years of age in a certain city is 11%. To test this, a sample of 1000 people is taken. Of this sample population, 126 people are over 65 years of age.
The following is the setup for this hypothesis test:
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106.
Come to a conclusion and interpret the results for this hypothesis test for a proportion (use a significance level of 5%) Select all that apply:
a. Reject the H0.
b. Fail to reject the H0.
c. There is NOT sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
d. There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
Answer:
Option b and d
Step-by-step explanation:
With the following data,
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106 and significance level of 0.05.
Since the p value (0.106) is great than 0.05, then we will fail to reject the null hypothesis and conclude that There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%
35 is 10% of what number?
Answer:
Step-by-step explanation:
If you take 10 percent of a number and get 35, then what is that number?
In other words, you know that 10 percent of a number is 35 and you want to know what that initial number is.
To solve this problem you multiply 35 by 100 and then divide the total by 10 as follows:
(35 x 100) / 10
When we put that into our calculator, we get the following answer:
350
Therefore, you can derive that 10 percent of 350 equals 35.
The quotient of a number and -5 has a result of 2. What is the number?
Type the correct answer in the box. Use numerals instead of words.
Answer:
-10
-5 * 2 = -10
Hope this is right
Write as an algebraic expression and simplify if possible:
A number that is 20% greater than b
Answer:
1.2b
Step-by-step explanation:
When we say, "a number that is 20% greater than b," we're talking about a number that is ...
b + 20%×b
= b + 0.20b
= b(1 + 0.20)
= 1.2b
We wish to estimate what percent of adult residents in a certain county are parents. Out of 500 adult residents sampled, 175 had kids. Based on this, construct a 99% confidence interval for the proportion p of adult residents who are parents in this county. Express your answer in tri-inequality form. Give your answers as decimals, to three places.
Answer:
The 99% confidence interval is [tex]0.3003 < I < 0.3997[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 500[/tex]
The the number that are parents x = 175
The proportion of parents is mathematically represented as
[tex]\r p = \frac{x}{n}[/tex]
substituting values
[tex]\r p = \frac{175}{500}[/tex]
[tex]\r p = 0.35[/tex]
The level of confidence is given as 99% which implies that the level of significance is
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha =[/tex]1%
[tex]\alpha = 0.01[/tex]
The critical value for this level of significance is obtained from the table of critical value as
[tex]t_{x, \alpha } = t_{175, 0.05} = 2.33[/tex]
Generally the margin of error is mathematically evaluated as
[tex]M =\frac{ t_{175, 0.01 } * \sqrt{\r p (1-\r p)} }{\sqrt{n} }[/tex]
substituting values
[tex]M =\frac{ 2.33 * \sqrt{\r 0.35 (1-0.35)} }{\sqrt{500} }[/tex]
[tex]M = 0.0497[/tex]
Generally the 99% confidence interval is mathematically represented as
[tex]I = \r p \pm M[/tex]
[tex]\r p -M < I < \r p + M[/tex]
substituting values
[tex]0.35 -0.0497 < I < 0.35 + 0.0497[/tex]
[tex]0.3003 < I < 0.3997[/tex]
One positive integer is 6 less than twice another. The sum of their squares is 801. Find the integers
Answer:
[tex]\large \boxed{\sf 15 \ \ and \ \ 24 \ \ }[/tex]
Step-by-step explanation:
Hello,
We can write the following, x being the second number.
[tex](2x-6)^2+x^2=801\\\\6^2-2\cdot 6 \cdot 2x + (2x)^2+x^2=801\\\\36-24x+4x^2+x^2=801\\\\5x^2-24x+36-801=0\\\\5x^2-24x-765=0\\\\[/tex]
Let's use the discriminant.
[tex]\Delta=b^4-4ac=24^2+4*5*765=15876=126^2[/tex]
There are two solutions and the positive one is
[tex]\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{24+126}{10}=\dfrac{150}{10}=15[/tex]
So the solutions are 15 and 15*2-6 = 30-6 = 24
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
use what you know about zeros of a function and end behavior of a graph that matches the function f(x) = (x+3)(x+2)(x-1)
Answer:
The zeros are x=-3,-2,1
end behavior is one up one down
Step-by-step explanation:
The zeros are x=-3,-2,1
The end behaviors are one up one down because the function is of degree 3 meaning it is odd function and has opposite end directions.
PLEASE HELP ASAP. Drag each tile to the correct box
Answer:
3 <1<4<2
hope it worked
pls mark me as
BRAINLIEST
plss
Answer:
3>1>2>4
Step-by-step explanation: