Answer:
false!
Step-by-step explanation:
i just answered true and it was false. so false is correct!
The statement that the horizontal cross-sectional shapes of the given prism are all congruent is false.
What are prisms?Prisms are three-dimensional shapes that have its two ends to be parallel and congruent
The given prism is a trapezoidal prism.
For the horizontal sectional shapes given prism to be congruent, the prism must be cut through the middle
Since the prism can be divided at any point, then the given statement is false
Read more about prisms at:
https://brainly.com/question/1972490
#SPJ2
Sally has 20 coins in her piggy bank, all dimes and quarters. The total amount of money is $3.05 If d = the number of dimes and q = the number of quarters Sally has, one of the linear equations that could be used to model this situations is
Answer:
[tex]d + q = 20[/tex]
[tex]0.25d + 0.10q = 3.05[/tex]
Step-by-step explanation:
Given
Coins = 20
Value = $3.05
Required
Determine the equation that represent this
From the question, we have that
d = the number of dimes
q = the number of quarters
This implies that;
[tex]d + q = 20[/tex]
Also;
[tex]1 d=\$0.25\ \ and\ \\1 q= \$0.10[/tex]---------- Standard unit of conversion;
This implies that
[tex]0.25d + 0.10q = 3.05[/tex]
Hence, the equations are:
[tex]d + q = 20[/tex]
[tex]0.25d + 0.10q = 3.05[/tex]
Which expression represents a factorization of 32m + 56mp?
A. 8(4m +7p)
B. 8(4 + 7)mp
C. 8p(4 + 7m)
D. 8m(4 + 7p)
Answer:
The answer is option D
Step-by-step explanation:
32m + 56mp
First factor out the HCF out
The HCF of 32and 56 is 8
So we have
8 ( 4m + 7mp)
next factor m out
We have the final answer as
8m( 4 + 7p)Hope this helps you
One square corral at a stable has an area of 625 ft2. If one side of the corral is along a barn, how much of the barn’s wall is used for the edge of the corral? A 25 ft B 50 ft C 100 ft D 200 ft
Answer:
Option A 25 ft is the correct answer.
Step-by-step explanation:
Given that:
One square corral at a stable has an area 625 [tex]ft^2[/tex].
And one side corral is along a barn.
To find:
How much of a barn's wall is used for the edge of corral?
Solution:
First of all, kindly refer to the attached figure to have a better understanding of the given dimensions and situation.
Given that Corral is square shape with Area, A = 625 [tex]ft^2[/tex]
Formula for area of a square is given as:
[tex]A = Edge^2[/tex]
Putting the value of A as given to find the Edge:
[tex]625 = Edge^2\\\Rightarrow Edge^2 =25 \times 25\\\Rightarrow Edge = 25\ ft[/tex]
It is given that one side of Corral is along a barn.
So, barn's wall used for the edge of corral = 25 ft
Option A 25 ft is the correct answer.
Answer: A 25ft I did it on edge and got it correct and please do as brainlest and have a good day.
Use the distributive property to remove the parentheses -5(2x-3w-6)
Answer:
15w - 10x + 30.
Step-by-step explanation:
-5(2x - 3w - 6)
= (-5 * 2x) + (-5 * -3w) + (-5 * -6)
= -10x + 15w + 30
= 15w - 10x + 30.
Hope this helps!
Answer:
[tex] - 10x + 15w + 30[/tex]Step-by-step explanation:
[tex] - 5(2x - 3w - 6)[/tex]
Multiply each term in the parentheses by -5
[tex] - 5 \times 2x - 5 \times ( - 3w) - 5 \times ( - 6)[/tex]
Calculate the product
[tex] - 10x - 5 \times ( - 3x) - 5 \times ( - 6)[/tex]
Multiplying two negatives equals a positive [tex]( - ) \times ( - ) = ( + )[/tex]
[tex] - 10x + 5 \times 3w - 5 \times ( - 6)[/tex]
Calculate the product
[tex] - 10x + 15w - 5 \times ( - 6)[/tex]
Multiply the numbers
[tex] - 10x + 15w + 30[/tex]
Hope this helps..
Best regards!!
if p(x) = x+ 7/ x-1 and q (x) = x^2 + x - 2, what is the product of p(3) and q(2)? a. 50 b. 45 c. 40 d. 20 e. 6
Answer:
d. 20
Step-by-step explanation:
To answer the question given, we will follow the steps below:
we need to first find p(3)
p(x) = x+ 7/ x-1
we will replace all x by 3 in the equation above
p(3) = 3+7 / 3-1
p(3) = 10/2
p(3) = 5
Similarly to find q(2)
q (x) = x^2 + x - 2,
we will replace x by 2 in the equation above
q (2) = 2^2 + 2 - 2
q (2) = 4 + 0
q (2) = 4
The product of p(3) and q(2) = 5 × 4 = 20
What is the slope of the line through the points (2,8) and (5,7)
Answer:
-1/3
Step-by-step explanation:
The slope of the line can be found by
m = (y2-y1)/(x2-x1)
= ( 7-8)/(5-2)
= -1/3
Answer:
-1/3.
Step-by-step explanation:
The slope can be found by doing the rise over the run.
In this case, the rise is 8 - 7 = 1.
The run is 2 - 5 = -3.
So, the slope is 1 / -3 = -1/3.
Hope this helps!
After a dilation with a center of (0, 0), a point was mapped as (4, –6) → (12, y). A student determined y to be –2. Evaluate the student's answer. A. The student is correct. B. The student incorrectly calculated the scale factor to be –2. C. The student incorrectly divided by the scale factor instead of multiplying by it. D. The student incorrectly added the scale factor instead of multiplying by it.
Answer:
B. The student incorrectly calculated the scale factor to be –2
Step-by-step explanation:
Given that :
After a dilation with a center of (0, 0), a point was mapped as (4, –6) → (12, y).
The student determined y to be -2
If a figure dilated with a center of (0, 0) and scale factor k, then
(x , y) → (kx , ky)
(4, -6) → (12, y)
[tex]k = \dfrac{x'}{x}[/tex]
[tex]k = \dfrac{12}{4}[/tex]
k = 3
Thus; the scale factor is 3
Now; the y-coordinate can now be calculated as;
ky = (3 × -6)
ky = -18
Therefore; the value of y = -18 and the student incorrectly calculated the scale factor to be -2.
Find the length of the side labeled x. Round intermediate values to the nearest tenth. Use the rounded values to calculate the next value. Round your final answer to the nearest tenth.
Answer:
11.7
Step-by-step explanation:
Let H be the heipotenys of the big triangle:
sin68° = 26/H H= 26/sin68°H= 28.04
Let's calculate the third side using the pythagorian theorem:
H²= 26²+ d²(the third side)
d² = 28.04²-26²= 110.24
d= 10.49
let's calculate x now
tan42°= 10.49/xx= 10.49/tan42°x= 11.65 ≈ 11.7
The Royal Fruit Company produces two types of fruit drinks. The first type is 35% pure fruit juice, and the second type is 85% pure fruit juice. The company is attempting to produce a fruit drink that contains pure fruit juice. How many pints of each of the two existing types of drink must be used to make pints of a mixture that is pure fruit juice
Complete question:
The Royal Fruit Company produces two types of fruit drinks. The first type is 35% pure fruit juice, and the second type is 85% pure fruit juice. The company is attempting to produce a fruit drink that contains 70% pure fruit juice. How many pints of each of the two existing types of drink must be used to make 50 pints of a mixture that is 70% pure fruit juice?
Answer:
Juice A = 15
Juice B = 35
Step-by-step explanation:
Given the following:
Juice A:
Let juice A = a
35% pure fruit juice
Juice B:
Let juice B = b
85% pure fruit juice
We need to make 50 pints of juice from both: that is ;
a + b = 50 -------(1)
In terms of pure fruit:
a = 0.35 ; b = 0.85 ;
Our mixed fruit juice from a and b should be 70% pure fruit = 0.7
Mathematically,
0.35a + 0.85b = 50(0.7)
0.35a + 0.85b = 35 -------(2)
Multiply (2) by 100
35a + 85b = 3500 --------(3)
We can then solve the simultaneous equation:
a + b = 50 -------(1)
35a + 85b = 3500 --------(3)
Multiply (1) by 35
35a + 35b = 1750 -----(4)
35a + 85b = 3500 ---(5)
Subtract (5) from (4)
-50b = -1750
b = 35
Substitute b = 35 into (2)
0.35a + 0.85(35) = 35
0.35a + 29.75 = 35
0.35a = 35 -29.75
0.35a = 5.25
a = 5.25/0.35
a = 15
Juice A = 15
Juice B = 35
The final exam had three times as many points as the first test, plus a bonus question worth 25 points . The final exam was worth 160 points (including the bonus). How many points was the first test worth?
Answer:
45
Step-by-step explanation:
The final had an extra credit as 25, so without it it would be 135. Then, you would divide by three to find that the first test had 45 points.
Answer:
45
Step-by-step explanation:
The final had an extra credit as 25, so without it it would be 135. Then, you would divide by three to find that the first test had 45 points.
Use multiplication to solve the proportion
7/16 = x/4
Answer:
7/16=x/4
4 times 7/16= 4 times x/4
7/4=x
Step-by-step explanation:
Answer:
1.75Step-by-step explanation:
[tex] \frac{7}{16} = \frac{x}{4} [/tex]
Apply cross product property
[tex]16 x = 7 \times 4[/tex]
Multiply the numbers
[tex]16x = 28[/tex]
Divide both sides of the equation by 16
[tex] \frac{16x}{16} = \frac{28}{16} [/tex]
Calculate
[tex]x = 1.75[/tex]
Hope this helps...
Best regards!!
how to do this question plz
Answer:
148 cm ^2
Step-by-step explanation:
Hey there!
Well is the area of the base is 30 then we can conclude that the side lengths are 5 and 6.
Then if the volume is 120 we can do,
120 ÷ 30 = 4
So the height is 4 cm.
Now we already have the area of the base we just need to find the area of the rest of the rectangles.
If the bottom base is 30 then the top base is also 30.
30 + 30 = 60cm^2
Now we can do the two rectangles on the side that have side lengths of 5 and 4.
5*4 = 20
20+20 = 40 cm^2
Now we can do the two final rectangles that have side lengths of 6 and 4.
6*4=24
24 + 24 = 48 cm^2
Now we can add all the areas up,
48 + 40 + 60
= 148 cm^2
Hope this helps :)
Find the Probability that a point chosen randomly inside the
rectangle is inside the trapezoid. Enter your answer as a decimal.
10 ft
4 ft
6 ft
4 ft
12 ft
1
2 ft
Answer: 1/5
Step-by-step explanation:
We need to calculate the area of rectangle and trapezium and the Circumference of the circle.
Area of rectangle :
Length(L) = 10 ; width (W) = 6
Area = L * W = (10 * 6)ft = 60ft^2
Area of trapezium :
Height (h) = 4ft ; length(a) = 2ft ; length(b) = 4ft
Area = 0.5 ( a + b) h
Area = 0.5(2 +4) * 4 = 0.5(6)*4 = 12ft^2
Area of circle :
πr^2 ; r = radius of circle ; r= 2ft
3.142 * 2^2 = 3.142 * 4 = 12.568 ft^2
Probability = required outcome / Total possible outcomes.
P(point chosen inside rectangle is inside trapezium) = Area of trapezium / Area of rectangle
= 12/60
= 1/5
what is the distance formula
Answer:
14.42 units
Step-by-step explanation:
Assuming that this is a right triangle (i.e ∠ACB = 90°), we can use the Pythagorean formula to solve this:
AB² = AC² + BC²
AB² = 12² + 8²
AB = √(12² + 8²)
AB = 14.42 units
Please answer it now in two minutes
Answer:
[tex] C = 28.9 [/tex]
Step-by-step explanation:
Given the right angled triangle, ∆BCD, you are required to find the measure of angle C.
Apply the trigonometric ratio formula to find m < C.
Adjacent side = 7
Hypotenuse = 8
Trigonometric ratio formula to apply would be:
[tex] cos(C) = \frac{7}{8} [/tex]
[tex] cos(C) = 0.875 [/tex]
[tex] C = cos^{-1}(0.875) [/tex]
[tex] C = 28.9 [/tex]
(To nearest tenth)
The coefficient of x^ky^n-k in the expansion of (x+y)^n equals (nk). True or false.
Answer:
The correct option is;
False
Step-by-step explanation:
The coefficient of x^k·y^(n-k) is nk, False
The kth coefficient of the binomial expansion, (x + y)ⁿ is [tex]\dbinom{n}{k} = \dfrac{n!}{k!\cdot (n-k)!} = C(n,k)[/tex]
Where;
k = r - 1
r = The term in the series
For an example the expansion of (x + y)⁵, we have;
(x + y)⁵ = x⁵ + 5·x⁴·y + 10·x³·y² + 10·x²·y³ + 5·x·y⁴ + y⁵
The third term, (k = 3) coefficient is 10 while n×k = 3×5 = 15
Therefore, the coefficient of x^k·y^(n-k) for the expansion (x + y)ⁿ = [tex]C(n,k)[/tex] not nk
Answer:
True
Step-by-step explanation:
apec
Algebra 2 help needed!
Answer:
(g + f) (x) = (2^x + x – 3)^1/2
Step-by-step explanation:
The following data were obtained from the question:
f(x) = 2^x/2
g(x) = √(x – 3)
(g + f) (x) =..?
(g + f) (x) can be obtained as follow:
(g + f) (x) = √(x – 3) + 2^x/2
(g + f) (x) = (x – 3)^1/2 + 2^x/2
(g + f) (x) = (x – 3)^1/2 + (2^x)^1/2
(g + f) (x) = (x – 3 + 2^x)^1/2
Rearrange
(g + f) (x) = (2^x + x – 3)^1/2
Simplify the following expression. (m^2-m^3-4)-(4m^2+7m^3-3)
Answer:
2m
4
−2m
3
−26m
2
−23m+20
Step-by-step explanation:
Multiply using distributive property.
(d+8)(d-4)
PLEASE HELP!!! ASAP!!!
Answer:
Step-by-step explanation:
Use F.O.I.L
F - First
O- Outside
I- Inside
L- Last
First multiply the ds from both to get [tex]d^{2}[/tex], next multiply the first d and the -4 and get -4d, then the 8 and the second d = 8d, and finally the 8 and -4 to get -32
you get [tex]d^{2}[/tex]-4d + 8d - 32
You then simplify and end up with [tex]d^{2}[/tex] + 4d -32PLEASE HELP
What is the y-intercept of the given graph? -4 3 4 None of these choices are correct.
Answer:
3
Step-by-step explanation:
the line crosses the y-axis at (0,3)
Answer:
3
Step-by-step explanation:
The y intercept is where the graph crosses the y axis ( where x =0)
The lines crosses at y=3
Y intercept is 3
Chris purchased a tablet for $650. The tablet depreciates at a rate of $25 per month.
Write and simplify an equation that models the value V(m) of the tablet after m months.
Let d equal the final amount it depreciates.
Let m equal the number of months.
Since d is the final amount, we put this at the very end of the equation.
Since it depreciates $25 every month, this number is going to be subtracted from the total price of the tablet ($650).
The final equation comes out too: d = 650 - 25m
Best of Luck!
The area of a rectangle is 42 ft squared, and the length of the rectangle is 5 ft more than twice the width. Find the dimensions of the rectangle. length and width.
Answer:
Length = 12 ftWidth = [tex] \frac{7}{2} ft[/tex]
Step-by-step explanation:
Given,
Area of rectangle = [tex]42 \: {ft}^{2} [/tex]
Width = X
Length = 2x + 5
Now,
[tex]x(2x + 5) = 42[/tex]
[tex]2 {x}^{2} + 5x = 42[/tex]
[tex]2 {x}^{2} + 5x - 42 = 0[/tex]
[tex]2 {x}^{2} + 12x - 7x - 42 = 0[/tex]
[tex]2x(x + 6) - 7(x + 6) = 0[/tex]
[tex](2x - 7)(x + 6) = 0[/tex]
Either
[tex]2x - 7 = 0[/tex]
[tex]2x = 0 + 7[/tex]
[tex]2x = 7[/tex]
[tex]x = \frac{7}{2} [/tex]
Or,
[tex]x + 6 = 0[/tex]
[tex]x = 0 - 6[/tex]
[tex]x = - 6[/tex]
Negative value can't be taken.
So, width = [tex] \frac{7}{2} ft[/tex]
Again,
Finding the value of length,
Length = [tex]2x + 5[/tex]
[tex]2 \times \frac{7}{2} + 5[/tex]
[tex]7 + 5[/tex]
[tex]12[/tex]
Length = 12 ft
Answer:
length = 12 ft, width = 3.5 ft
Step-by-step explanation:
w = width
l = length = 2w + 5
A = wl = w(2w + 5) = 42
2w² + 5w - 42 = 0
(w + 6)(2w - 7) = 0
w + 6 = 0, w = -6 (dimension cannot be negative)
2w - 7 = 0, w = 3.5
l = 2(3.5) + 5 = 12
Please answer this question now
Answer:
This is simple! (Kind of)
Step-by-step explanation:
First, notice how HJ is tangent. HG is a radius intersecting HJ at H.
This means, (According to some theorem that I forgot the name of) that GHJ is a right angle.
Thus, we can use the 180* in a triangle theorem.
[tex]180=90+54+6x+6[/tex]
So, let's solve!
[tex]30=6x\\5=x[/tex]
So, there you go! Nice and simple!
Hope this helps!
Stay Safe!
Step-by-step explanation:
hope it helps yoy..........
the three-dimensional shape that this net represents is _______. The surface area of the figure is _____ square centimeters.
Answer:
Shape - Cube
Area= 864
Step-by-step explanation:
The shape folds to become a cube and all the edges are the same size.
Area of a cube is Length * Width * Height = Area
12*12*12= 864
Answer:
Shape - Cube
Area= 864
Step-by-step explanation:
The shape folds to become a cube and all the edges are the same size.
Area of a cube is Length * Width * Height = Area
12*12*12= 864
Someone pls help if you want more points just go to my other questions and answer them pls
Answer:
I would say the answer is C.
Angles α and β are angles in standard position such that: α terminates in Quadrant III and sinα = - 5/13 β terminates in Quadrant II and tanβ = - 8/15
Find cos(α - β)
-220/221
-140/221
140/221
220/221
Answer:
140/221.
Step-by-step explanation:
For the triangle containing angle α:
The adjacent side is -√(13^2-5^2) = -12.
For the triangle containing angle β:
Hypotenuse = √(-8)^2 + (15)^2) = 17.
cos(α - β) = cos α cos β + sin α sin β
= ((-12/13) * (-15/17) + (-5/13)* (8/17)
= 180/221 + - 40/221
= 140/221.
find the hypo when the opposite is 36 and the adjacent is 27
Answer:
45
Step-by-step explanation:
Given the legs of the right triangle.
Then using Pythagoras' identity
The square oh the hypotenuse h is equal to the sum of the squares on the other 2 sides, that is
h² = 36² + 27² = 1296 + 729 = 2025 ( take the square root of both sides )
h = [tex]\sqrt{2025}[/tex] = 45
Answer:
45
Step-by-step explanation:
When you are given the opposite and adjacent sides of a triangle, the easiest way to find the hypotenuse is through the Pythagorean theorem!
The formula is a^2 + b^2= c^2
Plugging in the values, your formula would now look like 36^2 + 27^2= c^2
Once you do square your values and add them up, the result would end up being 2025, but since that is squared, to find the actual value of c you have to take the square root of this number, this will result in 45.
76.
175/50
[tex] \frac{ \sqrt[3]{175} }{ \sqrt[3]{50} } [/tex]
Answer:
Step-by-step explanation:
Factorize 175 and 50
175 = 5 * 5 * 7
50 = 5 * 5 * 2
[tex]\frac{\sqrt[3]{175}}{\sqrt[3]{}50}=\sqrt[3]{\frac{175}{50}}\\\\\\ =\sqrt[3]{\frac{5*5*7}{5*5*2}}\\\\\\=\sqrt[3]{\frac{7}{2}}[/tex]
What can each term of the equation be multiplied by to eliminate the fractions before solving? x – + 2x = StartFraction one-half EndFraction x minus StartFraction 5 Over 4 EndFraction plus 2 x equals StartFraction 5 Over 6 EndFraction plus x. + x 2 6 10 12
Answer: while solving an equation involving fractions we eliminate the fraction by multiplying the LCD of all the denominators present in the equation . LCD means Least common Denominator so for this question when we try to eliminate the denominator we first try to find the LCM (2,4,6) because that will give us the LCD.
2=2
4=2·2
6=2·3
LCM = 2·2·3
LCM = 12
It means we need to multiply the 12 to each term of equation to eliminate the fractions before solving.
12
To eliminate the fractions, multiply the equation by the 12
Equation
A equation is an expression that shows the relationship between two or more variables and numbers.
Given the equation:
[tex]x-\frac{5}{4}+2x=\frac{5}{6}+x[/tex]
To eliminate the fractions, multiply by the L.C.M of the denominator of the fraction i.e. 12 to get:
12x - 15 + 24x = 10 + 12x
Find out more on Equation at: https://brainly.com/question/2972832
Please help I will give out brainliest
Answer:
All the points change, there are no invariant points
Step-by-step explanation:
The given parameters are
To translate the square OABC by the vector [tex]\dbinom{1}{3}[/tex], we have;
The coordinates of the point O is (0, 0)
The coordinates of the point A is (3, 0)
The coordinates of the point B is (3, 3)
The coordinates of the point C is (0. 3)
The translation is by moving 1 step right and three steps up to give;
O' is (0+1, 0+3) which is (1, 3)
A' is (3+1, 0+3) which is (4, 3)
B' is (3+1, 3+3) which gives (4, 6)
C' is (0+1, 3+3) which gives (1, 6)
As all the points change, there are no invariant points and the number of invariant points is zero.