QI Answer: Consider an analog signal x(t) = 10cos(5at) which is then sampled using Ts=0.01 sec and 0.1 sec. Obtain the equivalent discrete signal for both Ts. Is the discrete signal periodic or not? If yes, calculate the fundamental period.

Answers

Answer 1

The equivalent discrete signals for Ts = 0.01 sec and Ts = 0.1 sec are xs(n) = 10cos(0.5anπ) and xs(n) = 10cos(anπ) respectively.

Both discrete signals are periodic, and their fundamental periods are 0.4 sec.

The given analog signal is x(t) = 10cos(5at).

Using the sampling period, Ts = 0.01 sec, the sampled signal is xs(t) = x(t) * δ(t), which simplifies to xs(t) = 10cos(5at) * δ(t).

The sampling frequency is fs = 1/Ts = 100 Hz.

Let the sampled signal be xs(n). At nTs, the sampled signal is xs(n) = 10cos(5anTs). Plugging in the values, we get xs(n) = 10cos(5an0.01) = 10cos(0.5anπ).

At Ts = 0.01 sec, the equivalent discrete signal for xs(n) is xs(n) = 10cos(0.5anπ).

Using the sampling period, Ts = 0.1 sec, the sampling frequency is fs = 1/Ts = 10 Hz.

Let the sampled signal be xs(n). At nTs, the sampled signal is xs(n) = 10cos(5anTs). Plugging in the values, we get xs(n) = 10cos(5an0.1) = 10cos(anπ).

At Ts = 0.1 sec, the equivalent discrete signal for xs(n) is xs(n) = 10cos(anπ).

The discrete signal is periodic because it is a discrete-time signal, and its amplitude is a periodic function of time. The fundamental period of a periodic function is the smallest T such that f(nT) = f((n+1)T) = f(nT + T), for all integers n.

Using this equation for the given discrete signal xs(n) = 10cos(anπ), we find that the smallest value of k for which this equation holds true for all values of n is k = 1.

So, the fundamental period is T = 2π/a = 2π/5a = 0.4 sec.

Learn more about discrete signals

https://brainly.com/question/33315708

#SPJ11


Related Questions

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

The dry products of combustion have the following molar percentages: CO 2.7% 025.3% H20.9% CO2 16.3% N2 74.8% Find, for these conditions: (a) mixture gravimetric analysis; (b) mixture molecular weight, lbm/lbmole; and (c) mixture specific gas constant R, ft lbf/Ibm °R.

Answers

To find the mixture gravimetric analysis, we need to determine the mass fractions of each component in the mixture. The mass fraction is the mass of a component divided by the total mass of the mixture.

Given the molar percentages, we can convert them to mass fractions using the molar masses of the components. The molar masses are as follows:

CO: 28.01 g/mol

O2: 32.00 g/mol

H2O: 18.02 g/mol

CO2: 44.01 g/mol

N2: 28.01 g/mol

(a) Mixture Gravimetric Analysis:

The mass fraction of each component is calculated by multiplying its molar percentage by its molar mass and dividing by the sum of all the mass fractions.

Mass fraction of CO: (0.027 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of O2: (0.253 * 32.00) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of H2O: (0.009 * 18.02) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of CO2: (0.163 * 44.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of N2: (0.748 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

(b) Mixture Molecular Weight:

The mixture molecular weight is the sum of the mass fractions multiplied by the molar masses of each component.

Mixture molecular weight = (Mass fraction of CO * Molar mass of CO) + (Mass fraction of O2 * Molar mass of O2) + (Mass fraction of H2O * Molar mass of H2O) + (Mass fraction of CO2 * Molar mass of CO2) + (Mass fraction of N2 * Molar mass of N2)

(c) Mixture Specific Gas Constant:

The mixture specific gas constant can be calculated using the ideal gas law equation:

R = R_universal / Mixture molecular weight

where R_universal is the universal gas constant.

Now you can substitute the values and calculate the desired quantities.

To know more about  mixture gravimetric analysis, click here:

https://brainly.com/question/30864235

#SPJ11

Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).

Answers

Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.

The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.

Again, we have `y[0] = 0` and `y[-1] = 0`,

so this simplifies to `y[1] = 2/5`.For `n = 2`,

we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.

Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,

we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.

Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.

For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.

`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.

To know more about  LTI system visit:

https://brainly.com/question/32504054

#SPJ11

IF an 85% efficient alternator operating at 1800RPM were putting
out 100kW of power how much torque would need tro be delivered by
the prime mover?

Answers

To determine the amount of torque that the prime mover would need to deliver to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power, the following equation is used:Power = (2π × RPM × Torque) / 60 × 1000 kW = (2π × 1800 RPM × Torque) / 60 × 1000

Rearranging the equation to solve for torque:Torque = (Power × 60 × 1000) / (2π × RPM)Plugging in the given values:Torque = (100 kW × 60 × 1000) / (2π × 1800 RPM)≈ 318.3 Nm

Therefore, the prime mover would need to deliver about 318.3 Nm of torque to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power. This can also be written as 235.2 lb-ft.

To know more about torque visiṭ:

https://brainly.com/question/30338175

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

Describe different kinds of flow metres in detail.

Answers

Flow meters are instruments used to measure the volume or mass of a liquid, gas, or steam passing through pipelines. Flow meters are used in industrial, commercial, and residential applications. Flow meters can be classified into several types based on their measuring principle.



Differential Pressure Flow Meter: This is the most common type of flow meter used in industrial applications. It works by creating a pressure difference between two points in a pipe. The pressure difference is then used to calculate the flow rate. Differential pressure flow meters include orifice meters, venturi meters, and flow nozzles.

Positive Displacement Flow Meter: This type of flow meter works by measuring the volume of fluid that passes through a pipe. The flow rate is determined by measuring the amount of fluid that fills a chamber of known volume. Positive displacement flow meters include nutating disk meters, oval gear meters, and piston meters.

flow meters are essential devices that help to measure the volume or mass of fluid flowing through pipelines. They can be classified into different types based on their measuring principle. Each type of flow meter has its advantages and limitations.

To know more about residential applications visit:-

https://brainly.com/question/31607700

#SPJ11

A 6 liter gasoline engine is being evaluated in a laboratory to determine the exhaust gas ratio at a location where the air density is 1.181 kg/m³. The engine is running at 3600 RPM, with an air/fuel ratio of 15:1, and the volumetric efficiency has been estimated at 93%. Calculate the exhaust gas rate in kg/s.

Answers

The exhaust gas rate is approximately 1.56 kg/s.

To calculate the exhaust gas rate, we need to determine the mass flow rate of air entering the engine and then determine the mass flow rate of fuel based on the given air/fuel ratio.

First, we calculate the mass flow rate of air entering the engine using the engine displacement (6 liters) and the volumetric efficiency (93%). By multiplying these values with the air density at the location (1.181 kg/m³), we obtain the mass flow rate of air.

Next, we calculate the mass flow rate of fuel by dividing the mass flow rate of air by the air/fuel ratio (15:1).

Finally, by adding the mass flow rates of air and fuel, we obtain the total exhaust gas rate in kg/s.

Performing the calculations, the exhaust gas rate is found to be approximately 1.56 kg/s.

To  learn more about exhaust click here

brainly.com/question/28525976

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

Kilograms of Saturated water liquid at 200kPa is in a constant pressure piston cylinder. At this state the piston is 0.1 m from the cylinder bottom. The water is heated to occupy 200 times the original volume:
a) initial volume in m3
b) initial temperature in C
c) final volume in m3
d) final quality X2

Answers

To solve the given problem, we can use the properties of saturated water in a constant pressure piston-cylinder system. Here's how we can approach each part of the problem:

a) To find the initial volume, we need to determine the specific volume (v) of saturated water at 200 kPa. The specific volume can be obtained from the saturated water table. Let's assume the initial specific volume is v1.

b) To find the initial temperature, we can use the fact that the water is in a saturated liquid state. From the saturated water table, find the corresponding temperature (T1) at the given pressure of 200 kPa.

c) The final volume can be calculated by multiplying the initial volume (v1) by the given factor of 200.

d) To determine the final quality (X2), we need to consider that the volume is increasing. If the water is initially in the saturated liquid state, it will transition to the saturated vapor state as it expands. Thus, the final quality (X2) will be 1.0, indicating that the water has completely vaporized.

Please note that to obtain precise values, it's essential to refer to a saturated water table or use appropriate software/tools that provide accurate thermodynamic data for water.

To know more about thermodynamic, visit

https://brainly.com/question/1368306

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

Ideal Otto air begins a compression stroke at P 90kpa and T 35 degrees Celcius. Peak T, is 1720 degrees Celcius. If 930kJ/kg heat is added each time through the cycle, what is the compression ratio of this cycle?

Answers

Formula for the compression ratio of an Otto cycle:

r = (V1 / V2)

where V1 is the volume of the cylinder at the beginning of the compression stroke, and V2 is the volume at the end of the stroke.

We can calculate the values of V1 and V2 using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

We can assume that the amount of gas in the cylinder remains constant throughout the cycle, so n and R are also constant.

At the beginning of the compression stroke, P1 = 90 kPa and T1 = 35°C. We can convert this to absolute pressure and temperature using the following equations:

P1 = 90 + 101.3 = 191.3 kPa

T1 = 35 + 273 = 308 K

At the end of the compression stroke, the pressure will be at its peak value, P3, and the temperature will be at its peak value, T3 = 1720°C = 1993 K. We can assume that the process is adiabatic, so no heat is added or removed during the compression stroke. This means that the pressure and temperature are related by the following equation:

P3 / P1 = (T3 / T1)^(γ-1)

where γ is the ratio of specific heats for air, which is approximately 1.4.

Solving for P3, we get:

P3 = P1 * (T3 / T1)^(γ-1) = 191.3 * (1993 / 308)^(1.4-1) = 1562.9 kPa

Now we can use the ideal gas law to calculate the volumes:

V1 = nRT1 / P1 = (1 mol) * (8.314 J/mol-K) * (308 K) / (191.3 kPa * 1000 Pa/kPa) = 0.043 m^3

V2 = nRT3 / P3 = (1 mol) * (8.314 J/mol-K) * (1993 K) / (1562.9 kPa * 1000 Pa/kPa) = 0.018 m^3

Finally, we can calculate the compression ratio:

r = V1 / V2 = 0.043 / 0.018 = 2.39

Therefore, the compression ratio of this cycle is 2.39.

Explore a different heat cycle: https://brainly.com/question/14894227

#SPJ11

The work function of a metal surface is 4.5 eV. If the frequency of the light incident upon it is 1.45 × 1015 Hz, then what is the maximum kinetic energy (in eV) of the photo electrons emitted from the surface?

Answers

The maximum kinetic energy (in eV) of the photo electrons emitted from the surface is 6 ev.

To calculate the maximum kinetic energy of photoelectrons emitted from a metal surface, we can use the equation:

E max​=hν−φ

Where: E max ​ is the maximum kinetic energy of photoelectrons,

h is the Planck's constant (4.135667696 × 10⁻¹⁵ eV s),

ν is the frequency of the incident light (1.45 × 10¹⁵ Hz),

φ is the work function of the metal surface (4.5 eV).

Plugging in the values:

E max ​ =(4.135667696×10⁻¹⁵  eV s)×(1.45×10¹⁵  Hz)−4.5eV

Calculating the expression:

E max ​ =5.999eV

To learn more on Work click:

https://brainly.com/question/18094932

#SPJ4

Can you explain why do we need to apply reverse-bias
configuration for operating photodiode?

Answers

Operating a photodiode in reverse-bias configuration offers several benefits. Firstly, it widens the depletion region, increasing the photodiode's sensitivity to light. Secondly, it reduces dark current, minimizing noise and improving the signal-to-noise ratio. Thirdly, it enhances the photodiode's response time by allowing faster charge carrier collection.

Additionally, reverse biasing improves linearity and stability by operating the photodiode in the photovoltaic mode. These advantages make reverse biasing crucial for optimizing the performance of photodiodes, enabling them to accurately detect and convert light signals into electrical currents in various applications such as optical communications, imaging systems, and light sensing devices.

Learn more about photodiode

https://brainly.com/question/30772928

#SPJ11

The turning moment diagram for an engine is drawn to the following scales: Turning moment 1mm = 60 Nm: crank angle, Imm= 10, shows the maximum energy that needs to be stored by the flywheel in unit area is 2850 m2. The flywheel rotates at an average speed of 220 rpm with a total speed change of 2.5%. If the mass of the flywheel is 500 kg, find the appropriate dimensions (inner diameter, outer diameter and thickness) of the flywheel. Given the inner diameter of the flywheel is 0.9 outer diameter and the density is 7.2 Mg/m3

Answers

We can calculate the dimensions of the flywheel using the given information and the above formulas. m = Volume * ρ

To determine the dimensions of the flywheel, we need to calculate the energy stored and use it to find the required mass and dimensions.

Calculate the energy stored in the flywheel:

The maximum energy stored per unit area (U) is given as 2850 m². Since the total energy stored (E) is directly proportional to the volume of the flywheel, we can calculate it as follows:

E = U * Volume

Calculate the total energy stored in the flywheel:

The total energy stored is given by:

E = (1/2) * I * ω²

Where I is the moment of inertia and ω is the angular velocity.

Calculate the moment of inertia (I) of the flywheel:

The moment of inertia can be calculated using the formula:

I = m * r²

Where m is the mass of the flywheel and r is the radius of gyration.

Calculate the radius of gyration (r):

The radius of gyration can be calculated using the formula:

r = √(I / m)

Calculate the inner diameter (D_inner) and outer diameter (D_outer) of the flywheel:

Given that the inner diameter is 0.9 times the outer diameter, we can express the relationship as:

D_inner = 0.9 * D_outer

Calculate the thickness (t) of the flywheel:

The thickness can be calculated as:

t = (D_outer - D_inner) / 2

Given the density (ρ) of the flywheel material, we can calculate the mass (m) as:

m = Volume * ρ

Know more about angular velocity here:

https://brainly.com/question/30237820

#SPJ11

Determine the downstream depth in a horizontal rectangular channel in which the bottom rises 0.75 ft, if the steady flow discharge is 550 cfs, the channel width is 5 ft, and the upstream depth is 6 ft. Also draw the specific energy diagram for this problem.

Answers

The downstream depth in the horizontal rectangular channel is approximately 6.74 ft.

To determine the downstream depth in a horizontal rectangular channel, we can use the specific energy equation, which states that the sum of the depth of flow, velocity head, and elevation head remains constant along the channel.

Given:

Steady flow discharge (Q) = 550 cfs

Channel width (B) = 5 ft

Upstream depth (y1) = 6 ft

Bottom rise (z) = 0.75 ft

The specific energy equation can be expressed as:

E1 = E2

E = [tex]y + (V^2 / (2g)) + (z)[/tex]

Where:

E is the specific energy

y is the depth of flow

V is the velocity of flow

g is the acceleration due to gravity

z is the elevation head

Initially, we can calculate the velocity of flow (V) using the discharge and channel dimensions:

Q = B * y * V

V = Q / (B * y)

Substituting the values into the specific energy equation and rearranging, we have:

[tex](y1 + (V^2 / (2g)) + z1) = (y2 + (V^2 / (2g)) + z2)[/tex]

Since the channel is horizontal, the bottom rise (z) remains constant throughout. Rearranging further, we get:

[tex](y2 - y1) = (V^2 / (2g))[/tex]

Solving for the downstream depth (y2), we find:

[tex]y2 = y1 + (V^2 / (2g))[/tex]

Now we can substitute the known values into the equation:

[tex]y2 = 6 + ((550 / (5 * 6))^2 / (2 * 32.2))[/tex]

y2 ≈ 6.74 ft

Therefore, the downstream depth in the horizontal rectangular channel is approximately 6.74 ft.

Learn more about rectangular channel

brainly.com/question/32596158

#SPJ11

Q4. A solid shaft of diameter 50mm and length of 300mm is subjected to an axial load P = 200 kN and a torque T = 1.5 kN-m. (a) Determine the maximum normal stress and the maximum shear stress. (b) Repeat part (a) but for a hollow shaft with a wall thickness of 5 mm.

Answers

Part (a)The normal stress and the shear stress developed in a solid shaft when subjected to an axial load and torque can be calculated by the following equations.

Normal Stress,[tex]σ =(P/A)+((Mz×r)/Iz)[/tex]Where,[tex]P = 200kNA

= πd²/4 = π×(50)²/4

= 1963.4954 mm²Mz[/tex]

= T = 1.5 kN-mr = d/2 = 50/2 = 25 m mIz = πd⁴/64 = π×(50)⁴/64[/tex]

[tex]= 24414.2656 mm⁴σ[/tex]

[tex]= (200 × 10³ N) / (1963.4954 mm²) + ((1.5 × 10³ N-mm) × (25 mm))/(24414.2656 mm⁴)σ[/tex]Shear Stress.

[tex][tex]J = πd⁴/32 = π×50⁴/32[/tex]

[tex]= 122071.6404 mm⁴τ[/tex]

[tex]= (1.5 × 10³ N-mm) × (25 mm)/(122071.6404 mm⁴)τ[/tex]

[tex]= 0.03 MPa[/tex] Part (b)For a hollow shaft with a wall thickness of 5mm, the outer diameter, d₂ = 50mm and the inner diameter.

To know more about developed visit:

https://brainly.com/question/31944410

#SPJ11

A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V. Solve for: a. ID = ________ MA b. VGS = ________ V
c. VDS = ________ V

Answers

In the Given question , A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V.

Given :
VDD = 14V
RD = 1.6k
VGG = -1.5V
RG = 1M
IDSS = 8mA
VP = -4V

The expression for ID is given by:
ID = (IDSS) / 2 * [(VP / VGG) + 1]²

Substituting the given values,
ID = (8mA) / 2 * [( -4V / -1.5V) + 1]²
ID = (8mA) / 2 * (2.67)²
ID = 8.96mA

Substituting the given values,
VGS = -1.5V - 8.96mA * 1M
VGS = -10.46V

b. VGS = -10.46V

The expression for VDS is given by:
VDS = VDD – ID * RD

Substituting the given values,
VDS = 14V - 8.96mA * 1.6k
VDS = 0.85V

c. VDS = 0.85V

the values are as follows:
a. ID = 8.96mA
b. VGS = -10.46V
c. VDS = 0.85V

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11

I. For October 9 and in Tehran (35.7° N, 51.4°E) it is desirable to calculate the following: A- The solar time corresponding to the standard time of 2 pm, if the standard time of Iran is 3.5 hours ahead of the Greenwich Mean Time. (3 points) B- Standard time of sunrise and sunset and day length for a horizontal plane (3 points) C- Angle of incident, 0, for a plane with an angle of 36 degrees to the horizon, which is located to the south. (For solar time obtained from section (a)) (3 points)

Answers

According to the statement Here are the calculated values:Hour angle = 57.5°Solar altitude angle = 36°Solar azimuth angle = 167°

I. For October 9, and in Tehran (35.7° N, 51.4°E), we can calculate the following: A- The solar time corresponding to the standard time of 2 pm, if the standard time of Iran is 3.5 hours ahead of the Greenwich Mean Time.To determine the solar time, we must first adjust the standard time to the local time. As a result, the time difference between Tehran and Greenwich is 3.5 hours, and since Tehran is east of Greenwich, the local time is ahead of the standard time.

As a result, the local time in Tehran is 3.5 hours ahead of the standard time. As a result, the local time is calculated as follows:2:00 PM + 3.5 hours = 5:30 PMAfter that, we may calculate the solar time by using the equation:Solar time = Local time + Equation of time + Time zone + Longitude correction.

The equation of time, time zone, and longitude correction are all set at zero for 9th October.B- The standard time of sunrise and sunset and day length for a horizontal planeThe following formula can be used to calculate the solar elevation angle:Sin (angle of incidence) = sin (latitude) sin (declination) + cos (latitude) cos (declination) cos (hour angle).We can find the declination using the equation:Declination = - 23.45 sin (360/365) (day number - 81)

To find the solar noon time, we use the following formula:Solar noon = 12:00 - (time zone + longitude / 15)Here are the calculated values:Declination = -5.2056°Solar noon time = 12:00 - (3.5 + 51.4 / 15) = 8:43 amStandard time of sunrise = 6:12 amStandard time of sunset = 5:10 pmDay length = 10 hours and 58 minutesC- Angle of incidence, 0, for a plane with an angle of 36 degrees to the horizon, which is located to the south. (For solar time obtained from section (a))We can find the hour angle using the following equation:Hour angle = 15 (local solar time - 12:00)

To know more about Standard time visit :

https://brainly.com/question/15117126

#SPJ11

A ladder and a person weigh 15 kg and 80 kg respectively, as shown in Figure Q1. The centre of mass of the 36 m ladder is at its midpoint. The angle a = 30° Assume that the wall exerts a negligible friction force on the ladder. Take gravitational acceleration as 9.81m/s? a) Draw a free body diagram for the ladder when the person's weight acts at a distance x = 12 m Show all directly applied and reaction forces.

Answers

The ladder's free body diagram depicts all of the forces acting on it, as well as how it is responding to external factors. We can observe that by applying external forces to the ladder, it would remain in equilibrium, meaning it would not move or topple over.

Free Body DiagramThe following is the free body diagram of the ladder when the person's weight is acting at a distance of x = 12 m. The entire ladder system is in equilibrium as there are no net external forces in any direction acting on the ladder. Consequently, the system's center of gravity remains at rest.Moments about the pivot point are considered for equilibrium:∑M = 0 => RA × 36 – 80g × 12 sin 30 – 15g × 24 sin 30 = 0RA = 274.16 NAll other forces can be calculated using RA.

To know more about forces visit:

brainly.com/question/13191643

#SPJ11

How would you link the capacity decision being made by Fitness Plus to other types of operating decisions?

Answers

Fitness Plus, an emerging fitness and gym provider, is trying to gain a significant share of the market in the region, making it a major competitor to other industry players. Fitness Plus's decision to expand its capacity is critical, and it influences the types of operating decisions they make, including marketing, financial, and human resource decisions.


Capacity decisions at Fitness Plus are linked to marketing decisions in several ways. When Fitness Plus decides to expand its capacity, it means that it is increasing the number of customers it can serve simultaneously. The expansion creates an opportunity to increase sales by catering to a more extensive market. Fitness Plus's marketing team must focus on building brand awareness to attract new customers and create loyalty among existing customers.The expansion also influences financial decisions. Fitness Plus must secure funding to finance the expansion project.

It means that the financial team must identify potential sources of financing, analyze their options, and determine the most cost-effective alternative. Fitness Plus's decision to expand its capacity will also have a significant impact on its human resource decisions. The expansion creates new job opportunities, which Fitness Plus must fill. Fitness Plus must evaluate its staffing requirements and plan its recruitment strategy to attract the most qualified candidates.

In conclusion, Fitness Plus's decision to expand its capacity has a significant impact on its operating decisions. The expansion influences marketing, financial, and human resource decisions. By considering these decisions together, Fitness Plus can achieve its growth objectives and increase its market share in the region.

To know more about fitness visit :

https://brainly.com/question/31252433

#SPJ11

a. What is the essential difference between incomplete location and insufficient location?
b. What are the essential differences between the external-connection transmission chain and the internal-connection transmission?
c. What aspects do the geometric errors of machine tool include?

Answers

Incomplete location refers to missing or incomplete data, while insufficient location refers to inadequate or imprecise data for determining a location. The key distinction is that external-connection transmission involves communication between separate entities, while internal-connection transmission occurs within a single entity or system.  Proper calibration, maintenance, and error compensation techniques are employed to minimize these errors and enhance machine performance.

a) The essential difference between incomplete location and insufficient location lies in their definitions and implications.

Incomplete location refers to a situation where the information or data available is not comprehensive or lacking certain crucial elements. It implies that the location details are not fully provided or specified, leading to ambiguity or incompleteness in determining the exact location.

Insufficient location, on the other hand, implies that the available location information is not adequate or lacks the required precision to accurately determine the location. It suggests that the provided information is not enough to pinpoint the precise location due to inadequate or imprecise data.

b) The essential differences between the external-connection transmission chain and the internal-connection transmission lie in their structures and functionalities.

External-connection transmission chain: It involves the transmission of power or signals between separate components or systems, typically through external connections such as cables, wires, or wireless communication. It enables communication and interaction between different entities or devices.

Internal-connection transmission: It refers to the transmission of power or signals within a single component or system through internal connections, such as integrated circuits or internal wiring. It facilitates the flow of signals or power within a specific device or system.

c) The geometric errors of a machine tool include various aspects:

Straightness error: This refers to deviations from a perfectly straight line along a linear axis.Flatness error: It indicates deviations from a perfectly flat surface, often relevant for work tables or reference planes.Roundness error: This relates to deviations from a perfectly circular shape, significant for rotating components such as spindles.Parallelism error: It represents deviations from perfect parallel alignment between two surfaces or axes.Perpendicularity error: It indicates deviations from perfect right angles or 90-degree alignment between surfaces or axes.Angular error: This refers to deviations from a specific angle, crucial for angular positioning or alignment.Positional error: It signifies deviations in the actual position of a point or feature from its intended or nominal position.Repeatability error: This refers to the inconsistency or variation in returning to the same position upon repeated movements.

LEARN MORE ABOUT calibration here: brainly.com/question/31324195

#SPJ11

1. Explain any one type of DC motor with a neat
diagram.
2. Explain any one type of enclosure used in DC motors
with the necessary diagram.

Answers

1. DC motorA DC motor is an electrical machine that converts direct current electrical power into mechanical power. These types of motors function on the basis of magnetic forces. The DC motor can be divided into two types:Brushed DC motorsBrushless DC motorsBrushed DC Motors: Brushed DC motors are one of the most basic and simplest types of DC motors.

They are commonly used in low-power applications. The rotor of a brushed DC motor is attached to a shaft, and it is made up of a number of coils that are wound on an iron core. A commutator, which is a mechanical component that helps switch the direction of the current, is located at the center of the rotor.

Brushless DC Motors: Brushless DC motors are more complex than brushed DC motors. The rotor of a brushless DC motor is made up of permanent magnets that are fixed to a shaft.

To know more about electrical visit:

https://brainly.com/question/31173598

#SPJ11

Q1) Search about Design and Fabrication for compressor in Ac of car supported with photographs

Answers

The compressor is a vital component of the car's air conditioning system. It is responsible for compressing the refrigerant gas, which then flows through the condenser and evaporator, cooling the air inside the car. The compressor is typically driven by the engine, but it can also be powered by an electric motor.

The compressor is a complex machine, and its design and fabrication requires a high level of engineering expertise. The compressor must be able to operate at high pressures and temperatures, and it must be durable enough to withstand the rigors of everyday use. The compressor is also required to be energy-efficient, as this can save the car owner money on fuel costs.

The compressor is typically made of cast iron or aluminum, and it is fitted with a number of moving parts, including a piston, a crankshaft, and a flywheel. The compressor is lubricated with oil, which helps to reduce friction and wear. The compressor is also equipped with a number of sensors, which monitor its performance and alert the driver if there is a problem.

The compressor is a critical component of the car's air conditioning system, and its design and fabrication are essential to ensuring that the system operates efficiently and effectively.

To learn more about compressor click here : brainly.com/question/30079848

#SPJ11

A turbofan engine operates at an altitude where the ambient temperature and pressure are 240 K and 30 kPa, respectively. The flight Nach number is 0.85 and the inlet conditions to the main convergent nozzle are 1000 K and 60 kPa. If the nozzle efficiency is 0.95, the ratio of specific heats is 1.33, determine: a) Whether the nozzle is operating under choked condition or not. b) Determine the nozzle exit pressure.

Answers

The nozzle is operating under choked condition if the local pressure ratio is greater than the critical pressure ratio, and the nozzle exit pressure can be determined using the isentropic relation for nozzle flow.

Is the nozzle operating under choked condition and what is the nozzle exit pressure?

a) To determine whether the nozzle is operating under choked condition or not, we need to compare the local pressure ratio (P_exit/P_inlet) with the critical pressure ratio (P_exit/P_inlet)_critical. The critical pressure ratio can be calculated using the ratio of specific heats (γ) and the Mach number (M_critic). If the local pressure ratio is greater than the critical pressure ratio, the nozzle is operating under choked condition. Otherwise, it is not.

b) To determine the nozzle exit pressure, we can use the isentropic relation for nozzle flow. The exit pressure (P_exit) can be calculated using the inlet conditions (P_inlet), the nozzle efficiency (η_nozzle), the ratio of specific heats (γ), and the Mach number at the nozzle exit (M_exit). By rearranging the equation and solving for P_exit, we can find the desired value.

Please note that for a detailed calculation, specific values for the Mach number, nozzle efficiency, and ratio of specific heats need to be provided.

Learn more about nozzle

brainly.com/question/32333301

#SPJ11

(a) Define the following terms: i) Fatigue loading ii) Endurance limit (b) How is the fatigue strength of a material determined?

Answers

a) i) Fatigue loading Fatigue loading refers to the type of loading that develops due to cyclic stress conditions. Fatigue loading, unlike static loading, can occur when the same loading is repeatedly applied on a material that is already under stress.

This fatigue loading effect can result in a material experiencing different amounts of stress at different times during its lifespan, ultimately leading to failure if the stress levels exceed the endurance limit of the material. ii) Endurance limit. The endurance limit is defined as the maximum amount of stress that a material can endure before it starts to experience fatigue failure.

This means that if the material is subjected to stresses below its endurance limit, it can withstand an infinite number of stress cycles without undergoing fatigue failure. The fatigue strength of a material is typically determined by subjecting the material to a series of cyclic loading conditions at different stress levels.

To know more about develops visit:

https://brainly.com/question/29659448

#SPJ11

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

Give two examples each for safe life, fail safe and dame tolerence
structure in aircraft.

Answers

Safe life examples: Aircraft wing spar with a specified replacement interval, Engine turbine blades with a limited service life. Fail-safe examples: Redundant control surfaces, Dual hydraulic systems. Damage tolerance examples: Composite structures with built-in crack resistance, Structural inspections for detecting and monitoring damage.

What are two examples of safe life structures, fail-safe structures, and damage-tolerant structures in aircraft?

Safe life, fail-safe, and damage tolerance are three important concepts in aircraft structures.

Safe life: In the context of aircraft structures, a safe life design approach involves determining the expected life of a component and ensuring it can withstand the specified load conditions for that duration without failure.

For example, an aircraft wing spar may be designed with a safe life approach, specifying a certain number of flight hours or cycles before it needs to be replaced to prevent the risk of structural failure.

Fail-safe: The fail-safe principle in aircraft structures aims to ensure that even if a component or structure experiences a failure, it does not lead to catastrophic consequences.

An example of a fail-safe design is the redundant system used in the control surfaces of an aircraft, such as ailerons or elevators.

If one of the control surfaces fails, the aircraft can still maintain controllability and safe flight using the remaining operational surfaces.

Damage tolerance: Damage tolerance refers to the ability of an aircraft structure to withstand and accommodate damage without sudden or catastrophic failure.

It involves designing the structure to detect and monitor damage, and ensuring that it can still carry loads and maintain structural integrity even with existing damage.

An example is the use of composite materials in aircraft structures. Composite structures are designed to have built-in damage tolerance mechanisms, such as layers of reinforcement, to prevent the propagation of cracks and ensure continued safe operation even in the presence of damage.

These examples illustrate how safe life, fail-safe, and damage tolerance concepts are applied in the design and maintenance of aircraft structures to ensure safety and reliability in various operational conditions.

Learn more about Composite structures

brainly.com/question/10411044

#SPJ11

It is necessary to design a bed packed with rectangular glass prisms that measure 1 cm and 2 cm high with a sphericity of 0.72, which will be used as a support to purify air that enters a gauge pressure of 2 atm and 40 ° C. The density of the prisms is 1300 kg/m^3 and 200 kg is used to pack the column. The column is a polycarbonate tube with a diameter of 0.3 and a height of 3.5 m. considering that the feed is 3kg/min and the height of the fluidized bed is 2.5 m. Determine the gauge pressure at which the air leaves, in atm.

Answers

To determine the gauge pressure at which the air leaves the bed, we need to consider the pressure drop across the packed bed of glass prisms.

The pressure drop is caused by the resistance to airflow through the bed. First, let's calculate the pressure drop due to the weight of the glass prisms in the bed:

1. Determine the volume of the glass prisms:

  - Volume = (area of prism base) x (height of prism) x (number of prisms)

  - Area of prism base = (length of prism) x (width of prism)

  - Number of prisms = mass of prisms / (density of prisms x volume of one prism)

2. Calculate the weight of the glass prisms:

  - Weight = mass of prisms x g

3. Calculate the pressure drop due to the weight of the prisms:

  - Pressure drop = (Weight / area of column cross-section) / (height of fluidized bed)

Next, we need to consider the pressure drop due to the resistance to airflow through the bed. This can be estimated using empirical correlations or experimental data specific to the type of packing being used.

Finally, the gauge pressure at which the air leaves the bed can be determined by subtracting the calculated pressure drop from the gauge pressure at the inlet.

Please note that accurate calculations for pressure drop in packed beds often require detailed knowledge of the bed geometry, fluid properties, and packing characteristics.

To learn more about gauge pressure, click here:

https://brainly.com/question/30698101

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

Other Questions
if you encounter a grizzly bear while hiking, and you suddenly remember that you should first wave your arms and shout, this would be an example of information being brought into: When you divide x^9 - 2 by the quantity of x minus the cube root3, the remainder is?a. 27b. 23c. 29d. 25 In the SIM media, which ingredients could be eliminated if the medium were used strictly for testing for motility and indole production? What if I were testing only for motility and sulfur reduction? 1) Two men are trying to pull a tree stump from the ground. The first man pulls with a force of 360N in a northward direction while the other man pulls eastward with a force of 480N. What is the resultant force on the tree stump? a) Determine the magnitude of the resultant force exerted on the stump; your answer must include a graph of the problem and show all work. (2 points). b) What is the angle of the resultant force on the x-axis? Show all work. (1 point) Describe how the parity operator (P) affects each of the following: i) vector quantities (e.g momentum) ii) scalar quantities (e.g. mass, energy), iii) and pseudo-vector quantities (e.g. left- or righ Gabriel opened an RRSP deposit account on December 1, 2008, with a deposit of $1300. He added $1300 on February 1, 2010, and $1300 on August 1, 2012. How much is in his account on October 1, 2016, if the deposit earns 7.8% p.a. compounded monthly? Which rsum form would you use if you were an entry-level job seeker? Ochronological combination functional or skills O summary knowing that each of the shaft AB, BC, and CD consistof a solid circular rod, determine the shearing stress in shaft AB,BD and CD. (final answer in mpa, 3 decimal places) Question 34 (2 points) Which of the following is NOT an appropriate pair of a cranial nerve and its associated brain part? (2 points) Glossopharyngeal nerve - medulla Olfactory nerve- - midbrain Vagus Question 3 20 Points (20) After inspection, it is found that there is an internal crack inside of an alloy with a full width of 0.4 mm and a curvature radius of 5x10-3 mm, and there is also a surface crack on this alloy with a full width of 0.1 mm and a curvature radius of 1x10-3 mm. Under an applied tensile stress of 50 MPa, (a) What is the maximum stress around the internal crack and the surface crack? (8 points) (b) For the surface crack, if the critical stress for its propagation is 900 MPa, will this surface crack propagate? (6 points) (c) Through a different processing technique, the width of both the internal and surface cracks is decreased. With decreased crack width, how will the fracture toughness and critical stress for crack growth change? (6 points) Use the editor to format your answer Consider the two point charges shown in the figure below. Letq1=(-1)106 C andq2=5106 C.A) Find the x-component of the total electric field due toq1 and q2 at the pointP.B) Find the y-c Solve the given differential equation. (2x+y+1)y =1 1A) Convert the denary number 47.40625 10to a binary number. 1B) Convert the denary number 3714 10to a binary number, via octal. 1C) Convert 1110011011010.0011 2to a denary number via octal. During a long-distance kayak race series, a competitor traveled for a total of 30 kilometers over the course of 6 hours on two rivers. 24 kilometers were traveled on the first river, and 6 kilometers were traveled on the second river. On the first river, the competitor traveled at an average speed 3 kilometers per hour greater than he traveled on the second river. What was the average speed of the competitor on the first river? (Do not include the units in your response.) Provide your answer below: Use Flexner's & Shein's list of attribute of a profession in Management as a profession and suggst principles that could be used within each attribute to improve management professionalism? For example who i the client in the management profession and how does your definition suggests goals for management decision making Breeze Toothpaste Company has been having a problem with some of the tubes of toothpaste leaking. The tubes are produced in lots of 100 and are subject to 100% visual inspection. The latest 25 lots produced yielded 112 rejected toothpastes. 1) Calculate the central line and control limits to monitor this process? 2) What is the approximate probability of Type 2 error if the mean shifts to 5.2? 3) Use the Poisson Table to find the approximate probability of Type 1 error. Which is not a layer of the skin? O dermal O hypodermis O epidermis O loose areolar Too big to fail" was a common buzz phrase during the GreatRecession. The idea behind it is that certain businesses are soimportant to an economy that disastrous consequences would resultif they w What is the area and d. is 10.07 Cystic fibrosis (CF) is a recessive disease. Joe, who is not diseased, has a sister with CF. Neither of his parents have CF. What is the probability that Joe is heterozygous for the CF gene? What is the probability that Joe does not have the CF allele?