Answer:
Longest wavelength, lowest intensity
Explanation:
Answer:
It has a long wavelength
Explanation:
GRADPOINT
Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?
Answer:
R = r_protón / 2
Explanation:
The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement
F = m a
Since the magnetic force is perpendicular, the acceleration is centripetal.
a = v² / R
the magnetic force is
F = q v x B = q v B sin θ
the field and the speed are perpendicular so the sin 90 = 1
we substitute
qv B = m v² / R
R = q v B / m v²
in the exercise they indicate
the charge q = 2 e
the mass m = 4 m_protón
R = 2e v B / 4m_protón v²
we refer the result to the movement of the proton
R = (e v B / m_proton) 1/2
the data in parentheses correspond to the radius of the proton's orbit
R = r_protón / 2
A 46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this causeway?
Answer:
2.9tons
Explanation:
Note that On an incline of angle a from horizontal, the parallel and perpendicular components of a downward force F are:
parallel ("tangential"): F_t = F sin a
perpendicular ("normal"): F_n = F cos a
At a=3.7 degrees, sin a is about 0.064 and with F = 46tons:
F sin a ~~ (46 tons)*0.064 ~~ 2.9tons
Also see attached file
The required force parallel to the incline to hold the monolith on this causeway will be "2.9 tons".
Angle and ForceAccording to the question,
Angle, a = 3.7 degrees or,
Sin a = 0.064
Force, F = 46 tons
We know the relation,
Parallel (tangential), [tex]F_t[/tex] = F Sin a
By substituting the values,
= 46 × 0.064
= 2.9 tons
Thus the response above is appropriate answer.
Find out more information about Force here:
https://brainly.com/question/25239010
The index of refraction of a certain material is 1.5. If I send red light (700 nm) through the material, what will the frequency of the light be in the material
Answer: [tex]4.29\times10^{14}\text{ Hz}[/tex]
Explanation:
Given: Speed of red light = 700 nm
= [tex]700\times10^{-9}[/tex] m
[tex]= 7\times10^{-7}[/tex] m
Frequency of red light = [tex]\dfrac{\text{Speed of light}}{\text{Speed of red light}}[/tex]
Speed of light = [tex]3\times10^8[/tex] m
Then, Frequency of red light = [tex]\dfrac{3\times10^8}{7\times10^{-7}}[/tex]
[tex]=0.429\times10^{8-(-7)}=0.429\times10^{15}\\\\=4.29\times10^{14}\ Hz[/tex]
Hence, Frequency of red light = [tex]4.29\times10^{14}\text{ Hz}[/tex]
The frequency of the light be in the material is [tex]4.29\times10^{14}\text{ Hz}[/tex].
A communications satellite orbiting the earth has solar panels that completely absorb all sunlight incident upon them. The total area A of the panels is 10m2.
1) The intensity of the sun's radiation incident upon the earth is about I=1.4kW/m2. Suppose this is the value for the intensity of sunlight incident upon the satellite's solar panels. What is the total solar power P absorbed by the panels?
Express your answer numerically in kilowatts to two significant figures.
2) What is the total force F on the panels exerted by radiation pressure from the sunlight?
Express the total force numerically, to two significant figures, in units of newtons.
Answer:
1) 14 kW
2) 4.67 x 10^-5 N
Explanation:
Area of solar panel = 10 m^2
Intensity of sun's radiation incident on earth = 1.4 kW/m^2
Solar power absorbed = ?
We know that the intensity of radiation on a given area is
[tex]I[/tex] = [tex]\frac{P}{A}[/tex]
where I is the intensity of the radiation
P is the power absorbed due to this intensity on a given area
A is the area on which this radiation is incident
From the equation, we have
P = IA
P = 1.4 kW/m^2 x 10 m^2 = 14 kW
b) For a perfect absorbing surface, the radiation pressure is given as
p = I/c
where p is the radiation pressure
I is the incident light intensity = 1.4 kW/m^2 = 1.4 x 10^3 kW/m^2
c is the speed of light = 3 x 10^8 m/s
substituting values, we have
p = (1.4 x 10^3)/(3 x 10^8) = 4.67 x 10^-6 Pa
we know that Force = pressure x area
therefore force on the solar panels is
F = 4.67 x 10^-6 x 10 = 4.67 x 10^-5 N
In the circuit shown, the galvanometer shows zero current. The value of resistance R is :
A) 1 W
B) 2 W
C) 4 W
D) 9 W
Answer:
its supposed to be (a) 1W
The angle between the axes of two polarizing filters is 41.0°. By how much does the second filter reduce the intensity of the light coming through the first?
Answer:
The amount by which the second filter reduces the intensity of light emerging from the first filter is
z = 0.60
Explanation:
From the question we are told that
The angle between the axes is [tex]\theta = 41^o[/tex]
The intensity of polarized light that emerges from the second filter is mathematically represented as
[tex]I= I_o cos^2 \theta[/tex]
Where [tex]I_o[/tex] is the intensity of light emerging from the first filter
[tex]I = I_o [cos(41.0)]^2[/tex]
[tex]I =0.60 I_o[/tex]
This means that the second filter reduced the intensity by z = 0.60
An astronomy student, for her PhD, really needs to estimate the age of a cluster of stars. Which of the following would be part of the process she would follow?
A. plot an H-R diagram for the stars in the cluster
B. count the number of M type stars in the cluster
C. measure the Doppler shift of a number of the stars in the cluster
D. search for planets like Jupiter around the stars in the center of the cluster
E. search for x-rays coming from the center of the cluster
Answer:
A. plot an H-R diagram for the stars in the cluster.
Explanation:
A star cluster can be defined as a constellation of stars, due to gravitational force, which has the same origin.
The astronomy student would have to plot an H-R diagram for the stars in the cluster and determine the age of the cluster by observing the turn-off point. The turn-off is majorly as a result of gradual depletion of the source of energy of the star. Thus, it projects off the constellation.
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1950 K. (kb is Boltzmann's constant, 1.38x10-23 J/K).
Answer:
The de Broglie wavelength of electron βe = 2.443422 × 10⁻⁹ m
The de Broglie wavelength of proton βp = 5.70 × 10⁻¹¹ m
Explanation:
Thermal kinetic energy of electron or proton = KE
∴ KE = 3kbT/2
given that; kb = 1.38 x 10⁻²³ J/K , T = 1950 K
so we substitute
KE = ( 3 × 1.38 x 10⁻²³ × 1950 ) / 2
kE = 4.0365 × 10⁻²⁰ ( is the kinetic energy for both electron and proton at temperature T )
Now we know that
mass of electron M'e = 9.109 × 10⁻³¹
mass of proton M'p = 1.6726 × 10⁻²⁷
We also know that
KE = p₂ / 2m
from the equation, p = √ (2mKE)
{ p is momentum, m is mass }
de Broglie wavelength = β
so β = h / p = h / √ (2mKE)
h = Planck's constant = 6.626 × 10⁻³⁴
∴ βe = h / √ (2m'e × KE)
βe = 6.626 × 10⁻³⁴ / √ (2 × 9.109 × 10⁻³¹ × 4.0365 × 10⁻²⁰ )
βe = 6.626 × 10⁻³⁴ / √ 7.3536957 × 10⁻⁵⁰
βe = 6.626 × 10⁻³⁴ / 2.71176984642871 × 10⁻²⁵
βe = 2.443422 × 10⁻⁹ m
βp = h / √ (2m'p ×KE)
βp = 6.626 × 10⁻³⁴ / √ (2 × 1.6726 × 10⁻²⁷ × 4.0365 × 10⁻²⁰ )
βp = 6.626 × 10⁻³⁴ / √ 1.35028998 × 10⁻⁴⁶
βp = 6.626 × 10⁻³⁴ / 1.16201978468527 × 10⁻²³
βp = 5.702140 × 10⁻¹¹ m
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 26 m/s when a 60 kg skydiver drops out by releasing his grip on the glider.
What is the glider's speed just after the skydiver lets go?
Answer:
The glider’s speed after the skydiver lets go is 26 m/s
Explanation:
To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum
Mathematically;
mv = mv + mv
so 680 * 26 = (680-60)v + 60 * 26
17680 = 620v + 1560
17680-1560 = 620v
16120 = 620v
v = 16120/620
v = 26 m/s
The moment of inertia for a rod that rotates about the axis perpendicular to the rod and passing through one end is: . If the axis of rotation passes through the center of the rod, then the moment of inertia is: . Give a physical explanation for this difference in terms of the way the mass of the rod is distributed with respect to the axis in the two cases.
Answer:
Explanation:
he moment of inertia for a rod that rotates about the axis perpendicular to the rod and passing through one end is: m L²/ 3 where m is mass and L is length of rod
If the axis of rotation passes through the center of the rod, then the moment of inertia is: m L² / 12
So for the former case , moment of inertia is higher that that in the later case .
In the former case , the axis is at one extreme end . Hence range of distance of any point on the rod from axis is from zero to L .
In the second case , as axis passes through middle point , this range of distance of any point on the rod from axis is from zero to L / 2 .
Since range of distance from axis is less , moment of inertia too will be less because
Moment of inertia = Σ m r² where r is distance of mass m from axis .
You are fixing a transformer for a toy truck that uses an 8.0-V emf to run it. The primary coil of the transformer is broken; the secondary coil has 40 turns. The primary coil is connected to a 120-V wall outlet.
(a) How many turns should you have in the primary coil?
(b) If you then connect this primary coil to a 240-V source, what emf would be across the secondary coil?
Comments: The relevant equation is N1/N2 = V1/V2 where N is the number of turns and V is the voltage. I'm just not sure how to get the voltage of the secondary coil using emf.
Answer:
a. The primary turns is 60 turns
b. The secondary voltage will be 360 volts.
Explanation:
Given data
secondary turns N2= 40 turns
primary turns N1= ?
primary voltage V1= 120 volts
secondary voltage V2= 8 volts
Applying the transformer formula which is
[tex]\frac{N1}{N2} =\frac{V1}{V2}[/tex]
we can solve for N1 by substituting into the equation above
[tex]\frac{N1}{40} =\frac{120}{8} \\\ N1= \frac{40*120}{8} \\\ N1= \frac{4800}{8} \\\ N1= 60[/tex]
the primary turns is 60 turns
If the primary voltage is V1 240 volts hence the secondary voltage V2 will be (to get the voltage of the secondary coil using emf substitute the values of the previously gotten N1 and N2 using V1 as 240 volts)
[tex]\frac{40}{60} =\frac{240}{V2}\\\\V2= \frac{60*240}{40} \\\\V2=\frac{ 14400}{40} \\\\V2= 360[/tex]
the secondary voltage will be 360 volts.
(a) In the primary coil, you have "60 turns".
(b) The emf across the secondary coil would be "360 volts".
Transformer and VoltageAccording to the question,
Primary voltage, V₁ = 120 volts
Secondary voltage, V₂ = 8 volts
Secondary turns, N₂ = 40 turns
(a) By applying transformer formula,
→ [tex]\frac{N_1}{N_2} = \frac{V_1}{V_2}[/tex]
or,
N₁ = [tex]\frac{N_2\times V_1}{V_2}[/tex]
By substituting the values,
= [tex]\frac{40\times 120}{8}[/tex]
= [tex]\frac{4800}{8}[/tex]
= 60
(2) Again by using the above formula,
→ V₂ = [tex]\frac{60\times 240}{40}[/tex]
= [tex]\frac{14400}{40}[/tex]
= 360 volts.
Thus the above approach is correct.
Find out more information about voltage here:
https://brainly.com/question/4389563
what is transmission of heat?
Answer:
Heat transfer is the transmission of heat energy from a body at higher temperature to lower temperature. The three mechanisms of heat transfer are
Conduction ConvectionRadiation.Example of Conduction:
Heating a metal
Example of Convection:
Sea Breeze
Example of Radiation:
Sun
Hope this helps ;) ❤❤❤
Answer:
Transmission of heat is the movement of thermal energy from one thing to another thing of different temperature.
There are three(3) different ways heat can transfer and they are:
a) Conduction (through direct contact).
b) Convection (through fluid movement).
c) Radiation (through electromagnetic waves).
Examples: 1.Heating a saucepan of water using a coalpot.(conduction&convection).
2. Baking a pie in an oven(radiation).
Hope it helps!!Please mark me as the brainliest!!!Thanks!!!!❤❤❤
You are pushing a 60 kg block of ice across the ground. You exert a constant force of 9 N on the block of ice. You let go after pushing it across some distance d, and the block leaves your hand with a velocity of 0.85 m/s. While you are pushing, the work done by friction between the ice and the ground is 3 Nm (3 J). Assuming that the ice block was stationary before you push it, find d.
Answer: d = 33 cm or 0.33 m
Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:
W = F.d.cosθ
F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.
For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:
W = F.d.cos(0)
W = F.d
To determine d:
d = [tex]\frac{W}{F}[/tex]
d = [tex]\frac{3}{9}[/tex]
d = 0.33 m
The distance d the block ice moved is 33 cm.
Suppose a child drives a bumper car head on into the side rail, which exerts a force of 3900 N on the car for 0.55 s. Use the initial direction of the cars motion as the positive direction.
What impulse, in kilogram meters per second, is imparted to the car by this force?
Find the horizontal components of the final velocity of the bumper car, in meters per second, if its initial velocity was 2.95 m/s and the car plus driver have a mass of 190 kg. You may neglect friction between the car and floor.
Find the horizontal components of the final velocity of the bumper car, in meters per second, if its initial velocity was 2.95 m/s and the car plus driver have a mass of 190 kg. You may neglect friction between the car and floor.
Answer:
The impulse is 2145 kg-m/s
The final velocity is -8.34 m/s or 8.34 m/s in he opposite direction.
Explanation:
Force on the rail = 3900 N
Elapsed time of impact = 0.55 s
Impulse is the product of force and the time elapsed on impact
I = Ft
I is the impulse
F is force
t is time
For this case,
Impulse = 3900 x 0.55 = 2145 kg-m/s
If the initial velocity was 2.95 m/s
and mass of car plus driver is 190 kg
neglecting friction, the initial momentum of the car is given as
P = mv1
where P is the momentum
m is the mass of the car and driver
v1 is the initial velocity of the car
initial momentum of the car P = 2.95 x 190 = 560.5 kg-m/s
We know that impulse is equal to the change of momentum, and
change of momentum is initial momentum minus final momentum.
The final momentum = mv2
where v2 is the final momentum of the car.
The problem translates into the equation below
I = mv1 - mv2
imputing values, we have
2145 = 560.5 - 190v2
solving, we have
2145 - 560.5 = -190v2
1584.5 = -190v2
v2 = -1584.5/190 = -8.34 m/s
A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and returns to Hither. The time for this round trip is 2 hours. The magnitude of the average velocity of the car for this round trip is:
A. 0
B. 50 km/hr
C. 100 km/hr
D. 200 km/hr
E. cannot be calculated without knowing the acceleration
Answer:
The average velocity for this trip is 0 km/hr
Explanation:
We know that average velocity = total displacement/total time.
Now, its displacement is d = final position - initial position.
Since the car starts and ends at its initial position at Hither, if we assume its initial position is 0 km, then its final position is also 0 km.
So, its displacement is d = 0 km - 0 km = 0 km.
Since the total time for the round trip is 2 hours, the average velocity is
total displacement/ total time = 0 km/2 hr = 0 km/hr.
So the average velocity for this trip is 0 km/hr
A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust reversers in a distance of 425 m along the runway with constant deceleration. The total mass of the aircraft is 140 Mg with mass center at G. Compute the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking. At lower speed, aerodynamic forces on the aircraft are small and may be neglected.
Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.
The reaction N under the nose wheel B towards the end of the braking interval = 257 kN
Given data :
Landing speed of Jet = 200 km/h
Distance = 425 m
Total mass of aircraft = 140 Mg with mass center at G
Determine the reaction N under the nose of wheel B First step : calculate the value of the Jet accelerationJet acceleration = 1 / (2 *425) * (200² - 60² ) * 1 / (3.6)²
= 3.3 m/s²
Next step : determine the reaction N under the nose of WheelReaction N = Total mass of aircraft * jet acceleration* 1.2 = 15N - (9.8*2.4* 140). ----- ( 1 )
∴ Reaction N = 140 * 3.3 * 1.2 = 15 N - ( 9.8*2.4* 140 )
Hence Reaction N = 257 KN
We can conclude that the The reaction N under the nose wheel B towards the end of the braking interval = 257 kN
Learn more about : https://brainly.com/question/15776281
Science activity
Imagine that some settlers have left Earth and gone to the Moon, taking
their recipe books with them. The first cake they baked was a disaster. It had
far too little moisture and was about six times the size they had expected.
the cake recipe was:
1.25 N butter
1.50 N sugar
4 eggs
1.50 N flour
20 ml milk
ANALYTICAL THINKING
Q. Why was the cake so big? Why was it se
dry?
Answer:
Answer in explanation
Explanation:
The reason for the big size and less moisture of the cake is due to difference in weight of the ingredients on the surface of moon. So, the same has the lesser weight on the surface of the moon than it has on the surface of earth. Or in other words, The same weight of the ingredients will have greater mass and thus the greater quantity on the surface of earth than the surface of earth. For example, on earth 1.25 N butter will have a mass:
m = W/g = 1.25 N/(9.8 m/s²) = 0.13 kg
But, on moon:
m = W/g = 1.25 N/(1.625 m/s²) = 0.77 kg
Hence, it is clear that the mass of the same weight of the substance becomes 6 times greater on the surface of moon. This explains why the cake was so big.
Now, coming to the second part about the dryness of the cake. The main and only source of moisture in recipe is the eggs bu the eggs are taken in a quantity of numbers. So they are exactly the same on moon as well. While all the other ingredients are increased, the same amount of eggs are not sufficient to provide them with enough moisture. Hence the cake was dry.
To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable. Gauss's law is usually written
ΦE=∫E.dA =qencl/ϵ0
, where ϵ0=8.85×10−12C2/(N⋅m2) is the permittivity of vacuum.
How should the integral in Gauss's law be evaluated?
a. around the perimeter of a closed loop
b. over the surface bounded by a closed loop
c. over a closed surface
Answer:
Explanation:
jjjjjjjjjjjjjjjj
A light wave with an electric field amplitude of E0 and a phase constant of zero is to be combined with one of the following waves. Which of these combinations produces the greatest intensity?
a. Wave A has an amplitude of E0 and a phase constant of zero.
b. Wave B has an amplitude of E0 and a phase constant of π.
c. Wave C has an amplitude of 2E0 and a phase constant of zero.
d. Wave D has an amplitude of 2E0 and a phase constant of π.
e. Wave E has an amplitude of 3E0 and a phase constant of π.
Answer:
the greatest intensity is obtained from c
Explanation:
An electromagnetic wave stagnant by the expression
E = E₀ sin (kx -wt)
when two waves meet their electric fields add up
E_total = E₁ + E₂
the intensity is
I = E_total . E_total
I = E₁² + E₂² + 2E₁ E₂ cos θ
where θ is the phase angle between the two rays
Let's examine the two waves
in this case E₁ = E₂ = E₀
I = Eo2 + Eo2 + 2 E₀ E₀ coasts
I = E₀² (2 + 2 cos θ )
I = 2 I₀ (1 + cos θ )
let's apply this expression to different cases
a) In this case the angle is zero therefore the cosine is worth 1 and the intensity is I_total = 4 I₀
b) cos π = -1 this implies that I_total = 0
c) the cosine is 1,
I = E₀² + 4E₀² + 2 E₀ (2E₀) cos θ
I = E₀² (5 +4 cos θ)
I = E₀² 9
I = 9 Io
d) in this case the cos pi = -1
I = E₀² (5 -4)
I = I₀
e) we rewrite the equation
I = E₀² + 9 E₀² + 2 E₀ (3E₀) cos θ
I = Eo2 (10 + 6 cos θ)
cos π = -1
I = E₀² (10-6)
I = 4 I₀
the greatest intensity is obtained from c
The combination that has the greatest intensity is C. Wave C has an amplitude of 2E0 and a phase constant of zero.
What is an amplitude?An amplitude simply means the variable that meaures the change that occur in a single variable. It's the maximum diatance moved.
In this case, the combination that has the greatest intensity is Wave C since it has an amplitude of 2E0 and a phase constant of zero.
Learn more about amplitude on:
https://brainly.com/question/3613222
Determine the two coefficients of static friction at B and at C so that when the magnitude of the applied force is increased to 360 N , the post slips at both B and C simultaneously.
Now, there is some information missing to this problem, since generally you will be given a figure to analyze like the one on the attached picture. The whole problem should look something like this:
"Beam AB has a negligible mass and thickness, and supports the 200kg uniform block. It is pinned at A and rests on the top of a post, having a mass of 20 kg and negligible thickness. Determine the two coefficients of static friction at B and at C so that when the magnitude of the applied force is increased to 360 N , the post slips at both B and C simultaneously."
Answer:
[tex]\mu_{sB}=0.126[/tex]
[tex]\mu_{sC}=0.168[/tex]
Explanation:
In order to solve this problem we will need to draw a free body diagram of each of the components of the system (see attached pictures) and analyze each of them. Let's take the free body diagram of the beam, so when analyzing it we get:
Sum of torques:
[tex]\sum \tau_{A}=0[/tex]
[tex]N(3m)-W(1.5m)=0[/tex]
When solving for N we get:
[tex]N=\frac{W(1.5m)}{3m}[/tex]
[tex]N=\frac{(1962N)(1.5m)}{3m}[/tex]
[tex]N=981N[/tex]
Now we can analyze the column. In this case we need to take into account that there will be no P-ycomponent affecting the beam since it's a slider and we'll assume there is no friction between the slider and the column. So when analyzing the column we get the following:
First, the forces in y.
[tex]\sum F_{y}=0[/tex]
[tex]-F_{By}+N_{c}=0[/tex]
[tex]F_{By}=N_{c}[/tex]
Next, the forces in x.
[tex]\sum F_{x}=0[/tex]
[tex]-f_{sB}-f_{sC}+P_{x}=0[/tex]
We can find the x-component of force P like this:
[tex]P_{x}=360N(\frac{4}{5})=288N[/tex]
and finally the torques about C.
[tex]\sum \tau_{C}=0[/tex]
[tex]f_{sB}(1.75m)-P_{x}(0.75m)=0[/tex]
[tex]f_{sB}=\frac{288N(0.75m)}{1.75m}[/tex]
[tex]f_{sB}=123.43N[/tex]
With the static friction force in point B we can find the coefficient of static friction in B:
[tex]\mu_{sB}=\frac{f_{sB}}{N}[/tex]
[tex]\mu_{sB}=\frac{123.43N}{981N}[/tex]
[tex]\mu_{sB}=0.126[/tex]
And now we can find the friction force in C.
[tex]f_{sC}=P_{x}-f_{xB}[/tex]
[tex]f_{sC}=288N-123.43N=164.57N[/tex]
[tex]f_{sC}=N_{c}\mu_{sC}[/tex]
and now we can use this to find static friction coefficient in point C.
[tex]\mu_{sC}=\frac{f_{sC}}{N}[/tex]
[tex]\mu_{sC}=\frac{164.57N}{981N}[/tex]
[tex]\mu_{sB}=0.168[/tex]
A wave travels at a consent speed. how does the frequency change if the wavelength is reduced by a factor of 4?
Answer:
The frequency increases by 4 because it is inversely proportional to the wavelength.
Two stars of masses M and 6M are separated by a distance D. Determine the distance (measured from M) to a point at which the net gravitational force on a third mass would be zero.
Answer:
0.29D
Explanation:
Given that
F = G M m / r2
F = GM(6m) / (D-r)2
G Mm/r2 = GM(6m) / (D-r)2
1/r2 = 6 / (D-r)2
r = D / (Ö6 + 1)
r = 0.29 D
See diagram in attached file
A converging lens of focal length 7.40 cm is 18.0 cm to the left of a diverging lens of focal length -7.00 cm . A coin is placed 12.0 cm to the left of the converging lens.
A) Find the location of the coin's final image relative to the diverging lens.
B) Find the magnification of the coin's final image.
Answer:
Explanation:
The set up is a compound microscope. The converging lens is the objective lens while the diverging lens is the eyepiece lens.
In compound microscopes, the distance between the two lenses is expressed as L = v0+ue
v0 is the image distance of the objective lens and ue is the object distance of the eye piece lens.
Befre we can get the location of the coin's final image relative to the diverging lens (ve), we need to get ue first.
Given L = 18.0cm
Using the lens formula to get v0 where u0 = 12.0cm and f0 = 7.40cm
1/f0 = 1/u0+1/v0
f0 and u0 are the focal length and object distance of the converging lens (objective lens)respectively.
1/v0 = 1/7.4-1/12
1/v0 = 0.1351-0.0833
1/v0 = 0.0518
v0 = 1/0.2184
v0 = 19.31cm
Note that v0 = ue = 19.31cm
To get ve, we will use the lens formula 1/fe = 1/ue+1/ve
1/ve = 1/fe-1/ue
Given ue = 19.31cm and fe = -7.00cm
1/ve = -1/7.0-1/19.31
1/ve = -0.1429-0.0518
1/ve = -0.1947
ve = 1/-0.1947
ve = -5.14cm
Hence, the location of the coin's final image relative to the diverging lens is 5.14cm to the lens
b) Magnification of the final image M = ve/ue
M = 5.14/19.31
M = 0.27
Magnification of the final image is 0.27
Two long parallel wires are separated by 11 cm. One of the wires carries a current of 54 A and the other carries a current of 45 A. Determine the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current.
Explanation:
It is given that,
The separation between two parallel wires, r = 11 cm = 0.11 m
Current in wire 1, [tex]q_1=54\ A[/tex]
Current in wire 2, [tex]q_2=45\ A[/tex]
Length of wires, l = 4.3 m
We need to find the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current. The magnetic force per unit length is given by :
[tex]\dfrac{F}{l}=\dfrac{\mu_o I_1I_2}{2\pi r}\\\\F=\dfrac{\mu_o I_1I_2l}{2\pi r}\\\\F=\dfrac{4\pi \times 10^{-7}\times 54\times 45\times 4.3}{2\pi \times 0.11}\\\\F=0.0189\ N[/tex]
So, the magnetic force on a 4.3 m length of the wire on both of currents is F=0.0189 N.
change in entropy of universe during 900g of ice at 0 degree celcus to water at 10 degree celcius at room temp=30 degree celcius
Answer:
4519.60 J/KExplanation:
Change in entropy is expressed as ΔS = ΔQ/T where;
ΔQ is the total heat change during conversion of ice to water.
T is the room temperature
First we need to calculate the total change in heat using the conversion formulae;
ΔQ = mL + mcΔθ (total heat energy absorbed during phase change)
m is the mass of ice/water = 900g = 0.9kg
L is the latent heat of fusion of ice = 3.33 x 10⁵J/kg
c is the specific heat capacity of water = 4200J/kgK
Δθ is the change in temperature of water = 10°C - 0C = 10°C = 283K
Substituting the given values into ΔQ;
ΔQ = 0.9(333000)+0.9(4200)(283)
ΔQ = 299700 + 1069740
ΔQ = 1,369,440 Joules
Since Change in entropy ΔS = ΔQ/T
ΔS = 1,369,440/30+273
ΔS = 1,369,440/303
ΔS = 4519.60 J/K
Hence, the change in entropy of the universe is 4519.60 J/K
What is the minimum magnitude of an electric field that balances the weight of a plasticsphere of mass 5.4 g that has been charged to -3.0 nC
Answer:
E = 17.64 x 10⁶ N/C = 17.64 MN/C
Explanation:
The electric field is given by the following formula:
E = F/q
E= W/q
E = mg/q
where,
E = magnitude of electric field = ?
m = mass of plastic sphere = 5.4 g = 5.4 x 10⁻³ kg
g = acceleration due to gravity = 9.8 m/s²
= charge = 3 nC = 3 x 10⁻⁹ C
Therefore,
E = (5.4 x 10⁻³ kg)(9.8 m/s²)/(3 x 10⁻⁹ C)
E = 17.64 x 10⁶ N/C = 17.64 MN/C
A car is moving along a road at 28.0 m/s with an engine that exerts a force of
2,300.0 N on the car to balance the drag and friction so that the car maintains a
constant speed. What is the power output of the engine?
Answer:
Power = Force × Distance/time
Power = Force × Velocity
Power = 2,300.0 N × 28.0 m/s²
Power = 64400 Nm/s
Explanation:
First show the formula of Power
Re-arrange formula and used to work out Power
Pretty simple stuff!
Hope this Helps!!
A force acting on an object moving along the x axis is given by Fx = (14x - 3.0x2) N where x is in m. How much work is done by this force as the object moves from x = -1 m to x = +2 m?
Answer:
72J
Explanation:
distance moved is equal to 3m.then just substitute x with 3m.
Fx = (14(3) - 3.0(3)2)) N
Fx =(42-18)N
Fx =24N
W=Fx *S
W=24N*3m
W=72J
The answer is 72J.
Distance moved is equal to 3m.
Then just substitute x with 3m.
Fx = (14(3) - 3.0(3)2)) N
Fx =(42-18)N
Fx =24N
W=Fx *S
W=24N*3m
W=72J
Is there any definition of force?A force is a push or pulls upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.
Learn more about force here https://brainly.com/question/25239010
#SPJ2
You indicate that a symbol
is a vector by drawing
A. through the symbol.
B. over the symbol.
c. under the symbol.
D. before the symbol.
Answer:
B. over the symbol.
Explanation:
vectors are represented with a symbol carrying an arrow head with also indicates direction
The copper wire to the motor is 6.0 mm in diameter and 1.1 m long. How far doesan individual electron travel along the wire while the starter motor is on for asingle start of the internal combustion engine
Answer:
0.306mm
Explanation:
The radius of the conductor is 3mm, or 0.003m
The area of the conductor is:
A = π*r^2 = π*(.003)^2 = 2.8*10^-5 m^2
The current density is:
J = 130/2.8*10^-5 = 4.64*10^6 A/m
According to the listed reference:
Vd = J/(n*e) = 4.64*10^6 / ( 8.46*10^28 * 1.6*10^-19 ) = 0.34*10^-6 m/s = 0.34mm/s
The distance traveled is:
x = v*t = 0.34 * .90 = 0.306 mm