Hypothesis: If the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will ________ because the toy car ____
Answer:
If the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration.
Explanation:
I hope this helped
Hypothesis: If the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car gains more potential energy at the higher starting point.
When a toy car moves along a sloped racetrack, it converts its potential energy (due to its height above the ground) into kinetic energy (energy of motion). The higher the starting height of the racetrack, the more potential energy the toy car possesses initially.
As the toy car moves down the sloped track, it will accelerate due to the force of gravity. The potential energy is converted into kinetic energy, and the car's speed increases. According to the law of conservation of energy, the total mechanical energy (sum of potential and kinetic energy) remains constant as long as no external forces, such as friction, act on the car.
Therefore, if the starting height of the racetrack is increased, the toy car will have more potential energy to start with. As it moves down the track, it will convert this increased potential energy into kinetic energy, resulting in a higher speed compared to when it starts from a lower height.
To know more about speed here
https://brainly.com/question/17661499
#SPJ2
A purse at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns. They are on the same radial line. At one instant, the acceleration of the purse is (2.00 m/s2 ) (4.00 m/s2 ) .At that instant and in unit-vector notation, what is the acceleration of the wallet
Complete Question:
A purse at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns.
They are on the same radial line. At one instant, the acceleration of the purse is (2.00 m/s2 ) i + (4.00 m/s2 ) j .At that instant and in unit-vector notation, what is the acceleration of the wallet
Answer:
aw = 3 i + 6 j m/s2
Explanation:
Since both objects travel in uniform circular motion, the only acceleration that they suffer is the centripetal one, that keeps them rotating.It can be showed that the centripetal acceleration is directly proportional to the square of the angular velocity, as follows:[tex]a_{c} = \omega^{2} * r (1)[/tex]
Since both objects are located on the same radial line, and they travel in uniform circular motion, by definition of angular velocity, both have the same angular velocity ω.∴ ωp = ωw (2)
⇒ [tex]a_{p} = \omega_{p} ^{2} * r_{p} (3)[/tex]
[tex]a_{w} = \omega_{w}^{2} * r_{w} (4)[/tex]
Dividing (4) by (3), from (2), we have:[tex]\frac{a_{w} }{a_{p}} = \frac{r_{w} }{r_{p}}[/tex]
Solving for aw, we get:[tex]a_{w} = a_{p} *\frac{r_{w} }{r_{p} } = (2.0 i + 4.0 j) m/s2 * 1.5 = 3 i +6j m/s2[/tex]
a car accelerates at a constant rate from 15 m/s to 25 m/s while it travels a distance of 125 m. How long does it take to achieve this speed?
The time taken by the car to achieve the final speed is 6.25 seconds.
What is the equation of motion?The equations of motion can be defined as the equation that represents the relationship between the time, velocity, acceleration, and displacement of a moving object.
The mathematical expressions for the equations of motions can be written as:
[tex]v= u+at\\S=ut+(1/2)at^2\\v^2-u^2=2aS[/tex]
Given, the initial speed of the car, u = 15 m/s
The final speed of the given car, v = 25m/s
The distance covered by car, S = 125 m
From the third equation of motion: v² = u²+ 2aS
(25)² = (15)² + 2×a× 125
a = 1.6 m/s²
From the first equation of motion we can find the time to achieve the final speed:
v = u+ at
25 = 15 + (1.6) × t
t = 6.25 sec
Therefore, 6.25 seconds will be taken by the car to catch the final speed.
Learn more about the equation of motion, here:
brainly.com/question/16982759
#SPJ5
I WILL GIVE BRAILYEST!!! What is the mass of an object moving at a velocity of 5 m/s if the momentum of the object is 50 kg•m/s?
a. 250 kg
c. 10 Kg
b. .002 Kg
d. 45 Kg
Answer:
a. 250kg I think it's the right answer. hope it helps:)
Answer:
C.10
Explanation:
because when you divide 50 divided by 5 = 10
A long wire carries a current 5 A from west to east. A magnetic compass pointing North is placed underneath the wire at a distance of 2 mm. What is the deflection of the compass when it is placed under the wire?
Answer:
no deflection
Explanation:
current is flowing from west to east. As the magnetic field of a long wire carrying current is circular, its direction will be north below the wire and south above the wire (according to the right hand rule). So, when the compass is placed underneath the wire, it will still point towards the north direction.
that delivers oxygen to your body and In the video your blood is compared to a picks up CO2 to be released out when you breath. PLEASE I NEED A ANSWER
A seated musician plays a C4 note at 262 Hz . How much time Δ does it take for 346 air pressure maxima to pass a stationary listener?
Answer:
t = 1.32 s
Explanation:
We are given;. Frequency of C4 note; F_c = 262 Hz
In conversions, we know that 1 Hz = 1 cycle/s
Thus, F_c = 262 cycles/s
Now, we want to find out how much time it takes for 346 air pressure maxima to pass a stationary listener.
346 air pressure maxima denotes that the air pressure maxima is 346 cycles.
Thus, time will be;
t = 346 cycles/262 cycles/s
t = 1.32 s
The time taken for the musical note to pass the stationary listener is 1.32 s.
The given parameters:
frequency of the C4 note, f = 262 Hzair pressure maximum, n = 346The frequency of a sound wave is defined as the number of cycles completed per second by the wave.
[tex]F = \frac{n}{t}[/tex]
where;
t is the time to compete the maximum cycleThe time taken for the musical note to pass the stationary listener is calculated as follows;
[tex]262 = \frac{n}{t} \\\\t = \frac{n}{262} \\\\t = \frac{346}{262} \\\\t = 1.32 \ s[/tex]
Thus, the time taken for the musical note to pass the stationary listener is 1.32 s.
Learn more here:https://brainly.com/question/15613196
what are the laws of newton
Answer:
Explanation:
These are the laws of Newton
Answer:
the first law, an object will not change its motion unless a force acts upon it. the 2nd one, the force of an object is equal to its mass times it acceleration. the 3rd one is when 2 objects interact, they apply forces to each other of equal magnitude and opposite direction.
Use the drop-down menus to complete each sentence.
A plant grows toward a sunny window. This response is an example of
✔ phototropism
.
Sometimes a plant grows around a tree for support. This response is an example of
✔ thigmotropism
.
The roots of a plant grow toward a water source. This response is an example of
✔ hydrotropism
.
The roots of a plant grow down into the soil. This response is an example of
✔ gravitropism
.
the answers are already there
Answer:
The correct answer is - phototropism, thigmotropism, hydrotropism, and gravitropism in order ( already match correctly).
Explanation:
phototropism is a phenomenon in which plants grow towards the light or sun which is accomplished by the hormone auxin in the cells far from the light.
Thigotropism is a type of plant growth that occurs around the tree to support itself which is a touch stimuli response.
The movement of the plant in the direction of the source of the water is known as hydrotropism. In which stimuli is humidity or the water concentration.
The movement of the plant or roots of the plants towards the soil or earth is known as gravitropism here gravity is the stimuli.
Answer:
Use the drop-down menus to complete each sentence.
A plant grows toward a sunny window. This response is an example of
phototropism
.
Sometimes a plant grows around a tree for support. This response is an example of
thigmotropism
.
The roots of a plant grow toward a water source. This response is an example of
hydrotropism
.
The roots of a plant grow down into the soil. This response is an example of
gravitropism
.
Explanation:
2
10 points
Find the total displacement of each of the motions.
a) You walk 45 m W, then 34 mW
b) You drive 5 km N, then 7 km S
c) You cycle 350 m E, then 800 m W, then 200 m E
d) You fly 850 km N then 850 km S
Answer:
a) s = 79 m W
b) s = 2 km S
c) s = 250 m W
d) s = 0 km
Explanation:
We take the following sign convention for the directions:
North (N) ---> positive
South (S) ---> negative
East (E) ---> negative
West (W) ---> positive
a)
45 m W, 34 m W
s = 45 m + 34 m
s = 79 m W
b)
5 km N, 7 km S
s = 5 km - 7 km
s = - 2 km
s = 2 km S
c)
350 m E , 800 m W, 200 m E
s = -350 m + 800 m - 200 m
s = 250 m
s = 250 m W
d)
850 km N, 850 km S
s = 850 km - 850 km
s = 0 km
What specific changes in two climate variables are expected to lead to major decreases in soil moisture southern Africa and the Mediterranean region?
Answer:
Less precipitation, droughts9: How might agriculture in southern Europe change by the end of the century if conditions follow the RCP8.
Explanation:
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture.
What is drought?
Drought is defined as a period of protracted water scarcity, whether it is due to atmospheric surface water, or groundwater constraints.
Droughts can last months or years, although they can be proclaimed in as little as 15 days.
It has the potential to have a significant influence on the afflicted region's ecology and agriculture as well as harm the local economy.
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture in southern Africa and the Mediterranean region.
Hence Precipitation and droughts are the specific changes in two climate variables.
To learn more about the drought refer to the link;
https://brainly.com/question/26693108
If 500 cal of heat are added to a gas, and the gas expands doing 500 J of work on its surroundings, what is the change in the internal energy of the gas?
Answer:
The change in the internal energy of the gas 1,595 J
Explanation:
The first law of thermodynamics establishes that in an isolated system energy is neither created nor destroyed, but undergoes transformations; If mechanical work is applied to a system, its internal energy varies; If the system is not isolated, part of the energy is transformed into heat that can leave or enter the system; and finally an isolated system is an adiabatic system (heat can neither enter nor exit, so no heat transfer takes place.)
This is summarized in the expression:
ΔU= Q - W
where the heat absorbed and the work done by the system on the environment are considered positive.
Taking these considerations into account, in this case:
Q= 500 cal= 2,092 J (being 1 cal=4.184 J) W=500 JReplacing:
ΔU= 2,092 J - 500 J
ΔU= 1,592 J whose closest answer is 1,595 J
The change in the internal energy of the gas 1,595 J
A radio signal has a frequency of 1.023 x 108 HZ. If the speed of the signal in air is 2.997 x 108m/s, what is the wavelength of the signals? а 7.15 m b 5.23 m C 2.93 m d 0.93 m
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
15 points.
An object of mass 100 kg is observed to accelerate at a rate of 15
m/s/s. Calculate the force required to produce this acceleration.
Answer:
its 0.5 for all i beleive
Explanation: