Answer:
a^5.
Step-by-step explanation:
a^12 / a^7 = a^(12 - 7) = a^5.
Hope this helps!
The number of vertices a triangle has
3
6
4
5
The triangles are similar. Solve for the missing segment.
Answer:
56
Step-by-step explanation:
Since the triangles are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{35+20}{20}[/tex] = [tex]\frac{32+?}{32}[/tex] ( cross- multiply )
20(32 + ?) = 1760 ( divide both sides by 20 )
32 + ? = 88 ( subtract 32 from both sides )
? = 56
Answer:
[tex]\boxed{56}[/tex]
Step-by-step explanation:
We can use ratios to solve since the triangles are similar.
[tex]\frac{20}{32} =\frac{35}{x}[/tex]
Cross multiplication.
[tex]20x=35 \times 32[/tex]
Divide both sides by 20.
[tex]\frac{20x}{20} = \frac{35 \times 32}{20}[/tex]
[tex]x=56[/tex]
On a coordinate plane, a graph shows Street on the x-axis and Avenue on the y-axis. A line is drawn from Tia to Lei. Tia is at (4, 8) and Lei is at (12, 20). Tia lives at the corner of 4th Street and 8th Avenue. Lei lives at the corner of 12th Street and 20th Avenue. The fruit market is Three-fourths the distance from Tia’s home to Lei's home.
Answer:
(10, 17)
Step-by-step explanation:
It might be easier to explain with a picture or drawing, but I am new to this, so I would try using words.
Assuming the fruit market is on that straight line from Tia's home to Lei's, So we look at both address (coordinates)
From Tia to Lei, x coordinate is from 4 to 12, that's increased by 8, divide by 4, one step is 2.
y coordinate is from 8 to 20, an increase of 12, divide by 4 again, one step is 3.
The fruit market is at 3/4 distance, so 3 steps, on both x and y coordinates.
x: 4+6 = 10
y: 8+9=17
The fruit market is at point (10,17)
What is graph?
A graph can be defined as a pictorial representation or a diagram that represents data or values.
The point (x,y) which divides the segment AB with endpoints at A(x₁,y₁) and B(x₂,y₂) in ratio m:n has cordinates
[tex]x= \dfrac{nx_1+nx_2}{m+n}[/tex]
[tex]y= \dfrac{ny_1+ny_2}{m+n}[/tex]
Tia is at P(4, 8) and Lei is at Q(12, 20).
The fruit market (F) is three-fourths the distance from Tia’s home to Lei's home, then PM : PQ = 3:4 or PM : MQ = 3:1
So,
[tex]x= \dfrac{1.4+3.12}{3+1} = \dfrac{4+36}{4} = \dfrac{40}{4} = 10 \\y= \dfrac{1.8+3.20}{3+1} = \dfrac{8+60}{4} = \dfrac{68}{4} = 17[/tex]
Hence, the fruit market is at point (10,17) which means it is placed at the corner of 10th Street and 17th Avenue.
Learn more about graph here:
brainly.com/question/16608196
#SPJ5
PLEASE ANSWER SOON! I WILL MARK BRAINLIEST! THANK YOU!
The ratio of the measures of the acute angles of a right triangle is 8:1. In degrees, what is the measure of the largest angle of the triangle?
Answer:
80°
Step-by-step explanation:
The sum of the measures of the acute angles in a right triangle is 90°. The sum of ratio measures in the ratio 8 : 1 is (8+1) = 9. Thus, each of those measures stands for 90°/9 = 10°. Then the angle ratio is ...
80° : 10° = 8 : 1
The measure of the largest acute angle in the triangle is ...
10° × 8 = 80°
Someone please explain
Area of a triangle is 1/2 x base x height.
The graphed triangle has height of 2 and base of 2.
Area = /2 x 2 x 2 = 2 square units.
The triangle gets enlarged by a scale factor of 2, so the new height would be 2 x 2 = 4 and the new base would be 2 x 2 = 4
Area of enlarged triangle = 1/2 x 4 x 4 = 8 square units.
The answer is C) 8
Solve the equation using the zero-product property. (2x − 8)(7x + 5) = 0 x = –2 or x = 7 x = –4 or x = x = 4 or x = x = 4 or x =
Answer:
x = 4 or x = - [tex]\frac{5}{7}[/tex]
Step-by-step explanation:
Given
(2x - 8)(7x + 5) = 0
Equate each factor to zero and solve for x
2x - 8 = 0 ⇒ 2x = 8 ⇒ x = 4
7x + 5 = 0 ⇒ 7x = - 5 ⇒ x = - [tex]\frac{5}{7}[/tex]
PLEASE HELP MEEEE
I need help finding x a b and c
Answer:
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
Step-by-step explanation:
b=7x
sum of straight angle :=180
isoceles traingle = 2 sides are equal, and two angles are equal
b+a=180
7x+a=180
sum of traingle =180
2a+c=180
2a+2x=180 first equation
7x+a=180 second equation
solve by elimination ( multiply second equation by 2)
2a+2x=180
2a+14x=360 ( subtract)
2a+2x-2a-14x=180-360
-12x=-180
x=-180/12=
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
Bruhhh I need help dude !!!
Answer:
(B), in which the first two values are 2 and 10.
Step-by-step explanation:
We can tell that this is a proportional relationship because we can examine the numbers in there.
(2,10)
(4,20)
and (6,30).
If you notice, the x value times 5 gets us the y value for every single point there.
Therefore, B is proportional and it's equation is y = 5x.
Hope this helped!
Answer:
B.
Step-by-step explanation:
B. Is the only one that proportional because,
(2,10)
(4,20)
(6,30)
All these x values multiply by 5 to get the y value.
So the equation is y = 5x meaning it is linear and it goes through the origin which makes it proportional.
Thus,
answer choice B is correct.
Hope this helps :)
How would 7/2 be written as a complex number
Answer:
We could rewrite 7/2 as 7a + 2
Step-by-step explanation:
Complex numbers is when real numbers [i.e: 1, 1/2, 200, 5/7, etc..) and an imaginary numbers [numbers that give a negative result when squared] are combine together.
Solve the inequality for y.
y - 9x > 6
please help!!!!!!!
Answer:
y>9x+6
Step-by-step explanation:
y-9x+(9x)>6+(9x)
y>9x+6
identify the coefficient of x
1. 3xy³
2. xy
___
5
3. 3
___ x y
4
4. 3
___ x²y
4
Answer:
3
1/5
3/4
3/4
Step-by-step explanation:
Coefficient is a number that is always written in front of a term.
3xy^3=3
xy/5=1/5
3/4xy=3/4
3/4x^2y=3/4
Hope this helps ;) ❤❤❤
the length of a rectangular plot of land exceeds the width by 7 m if the area pf the plot is 198 m square what is the length
Answer:
28.142m
Step-by-step explanation:
area of rectangle=width x lenght
so; (rotating the formula with what is given)
area of rectangle/width=lenght
197/7=lenght
28.142m =lenght
Answer:
Length is 18 m and width is 11 m
Step-by-step explanation:
So based on the information given length is seven cm more than your width, and since we don’t know the values of these, we can plot this information into a formula that looks like this: (x+7)(x)=198, which is basically how you take the area of the plot of land.
If you multiply your values, you will get a quadratic equation that looks like this x²+7x-198. If you follow the quadratic formula to solve this equation, the positive result you will get for x is 11, this is your width. And since length exceeds by 7, you just add 7 to 11 to find the length, which ends up being 18.
to verify, you can simply multiply these two values
Which expression is equivalent to
-21/4over -2/3
Answer:
[tex]\frac{9}{4}/\frac{3}{2}[/tex]
Step-by-step explanation:
[tex]-2\frac{1}{4}[/tex] is equilavalent to [tex]-\frac{9}{4\\}[/tex].
[tex]-\frac{2}{3}[/tex] can stay put.
The equation is division so neither answers #2 and #3 are the correct ones because when dividing fractions the second fraction has to be flipped in order to continue multiplying instead.
In addition, when two negatives are put together the answer must always be positive.
Hence the answer is [tex]\frac{9}{4}/\frac{3}{2}[/tex].
4/5 (x − 20) = 8 solve it
Answer:
30
Step-by-step explanation:
4/5 (x-20)=8
4/5x-4/5*20=8
4/5x-16=8
4/5x=24
x=(24*5)/4
x=30
hope it helps..
1. The total area within any continuous probability distribution is equal to 1.00.
A. True
B. False
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
Answer:
1. True
2. False.
3. True.
Step-by-step explanation:
1. The total area within any continuous probability distribution is equal to 1.00: it is true because the maximum probability (value) is one (1), therefore, the total (maximum) area is also one (1).
Hence, for continuous probability distribution: probability = area.
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: False because it has an infinite number of possible values, which can not be counted or uncountable.
Hence, it cannot be computed.
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: True because it has a finite number of possible values, which are countable or can be counted.
Hence, it can be computed.
-4______1 what symbol makes this sentence true
Answer:
<
Step-by-step explanation:
If a line is perpendicular to each of two intersecting lines at their point of intersection, then the line:
A. not enough information
B. is parallel to the plane determined by the two lines
C. coincides with the plane determined by the two lines
D. is perpendicular to the plane determined by the two lines
D. The line is perpendicular to the plane determined by the two lines.
Remember how you get to 3D space?
You take one axis called x and perpendicularly intersect it with y axis and you get a 2D plane. Now take a 2D plane and perpendicularly intersect it with an axis z and you get 3D euclidean space.
Hope this helps.
n Fill in the blank. The _______ for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further. The (1) for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further.
Answer: sample space
Step-by-step explanation: In determining the probability of a certain event occurring or obtaining a particular outcome from a set of different possible outcomes, such as in the toss of coin(s), rolling of fair die(s), the sample space comes in very handy as it provides a simple breakdown and segmentation of all possible events or outcomes such that in Calculating the probability of occurrence of a certain event, the event(s) is/are located in the sample space and the ratio taken over the total number of events.
What the answer question
Answer:
[tex]\bold{A_{_{\Delta XYZ}}=927.5\ cm^2}[/tex]
Step-by-step explanation:
m∠Z = 180° - 118° - 28° = 34°
[tex]\sin(28^o)\approx0.4695\\\\\sin(118^o)=\sin(180^o-62^o)=\sin62^o\approx0.8829 \\\\\sin(34^o)\approx0.5592\\\\[/tex]
[tex]\dfrac{\overline{XY}}{\sin Z}=\dfrac{\overline{YZ}}{\sin X}\\\\\\\overline{XY}=\dfrac{\overline{YZ}}{\sin X}\cdot\sin Z\\\\\\\overline{XY}=\dfrac{42}{0.4695}\cdot0.5592\\\\\overline{XZ}=50.024281...\\\\\\A_{_{\Delta XYZ}}=\frac12\cdot\overline{XY}\cdot\overline{YZ}\cdot\sin(\angle Z)\\\\\\A_{_{\Delta XYZ}}\approx\frac12\cdot50.0243\cdot42\cdot0.8829=927.4955...\approx927.5[/tex]
Determine how many litres of water will fit inside the following container. Round answer and all calculations to the nearest whole number.
Answer:
[tex]\approx[/tex] 11 litres of water will fit inside the container.
Step-by-step explanation:
As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.
Given:
Height of cylinder, [tex]h_1[/tex] = 15 cm
Diameter of cylinder/ cone, D = 26 cm
Slant height of cone, l = 20 cm
Here, we need to find the volume of container.[tex]\\Volume_{Container} = Volume_{Cylinder}+Volume_{Cone}\\\Rightarrow Volume_{Container} = \pi r_1^2 h_1+\dfrac{1}{3}\pi r_2^2 h_2[/tex]
Here,
[tex]r_1=r_2 = \dfrac{Diameter}{2} = \dfrac{26}{2} =13\ cm[/tex]
To find the Height of Cylinder, we can use the following formula:
[tex]l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm[/tex]
Now, putting the values to find the volume of container:
[tex]Volume_{Container} = \pi \times 13^2 \times 15+\dfrac{1}{3}\pi \times 13^2 \times 15\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 15+\pi \times 13^2 \times 5\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 20\\\Rightarrow Volume_{Container} = 10613.2 \approx 10613\ cm^3[/tex]
Converting [tex]cm^{3 }[/tex] to litres:
[tex]10613 cm^3 = 10.613\ litres \approx 11\ litres[/tex]
[tex]\approx[/tex] 11 litres of water will fit inside the container.
What is 1x1+5 hehe lol
What is the slope of the line in the graph? A.2 B.1/2 C.-2 D.-1/2
Step-by-step explanation:
bhdjdjsjshhdfhfbtvyvyvjdjshdjfy
A cycling race is 17 miles long. The cyclists will begin at point S and ride a number of laps around a neighborhood block. After the last lap, the cyclists will sprint 2.0 miles to the finish line. A rectangle with a width of 0.75 miles and height of 0.5 miles. The 2 mile finish comes out of one corner. Using the equation w (1.5 + 1) + 2 = 17, the race's organizer determined the cyclists will need to ride 9 laps before the sprint to the finish. Which explains the error? The equation should be 0.75 w + 0.5 w + 2 = 17, and the cyclists will need to ride 12 laps before the sprint to the finish. The equation should be 2 (0.75 w + 0.5) + 2 = 17, and the cyclists will need to ride 21 laps before the sprint to the finish. The solution should be 6, and the cyclists will need to ride 6 laps before the sprint to the finish. The solution should be 8, and the cyclists will need to ride 8 laps before the sprint to the finish.
Answer:
it is c because i took test review
Step-by-step explanation:
Answer:
C The solution should be 6, and the cyclists will need to ride 6 laps before the sprint to the finish.
I need help with this question! solve “k” -19=b-6
k = b + 13
Step-by-step explanation:k - 19 = b - 6
k = b + 19 - 6
k = b + 13
Answer:
[tex]\boxed{k=b+13}[/tex]
Step-by-step explanation:
[tex]k-19=b-6[/tex]
Add 19 on both sides.
[tex]k-19+19=b-6+19[/tex]
[tex]k=b+13[/tex]
38. Convert 85 to a number in base eight.
O 95 (base eight)
O 105 (hase eight)
O 115 (base eight)
O 125 (base eight)
Answer:
divide the number by 8 and write the remainder like this 10 r 5.Then you get your answer by going through the remainders in an upward direction. So the answer is 125
If the blue radius below is perpendicular to the green chord and the segment
AB is 8.5 units long, what is the length of the chord?
A
A. 8.5 units
8.5
B
O B. 17 units
O C. 34 units
O D. 4.25 units
Answer:
O B. 17 units
Step-by-step explanation:
The chord is AC and the radius of the circle is perpendicular to the chord at B. AB = 8.5 units. According to the perpendicular bisector theorem, if the radius of a circle is perpendicular to a chord then the radius bisects the chord. This means that chord AC is bisected by the radius of the circle at point B. The length of the circle is calculated using:
[tex]AB=\frac{AC}{2}\\ AC=2*AB\\cross multiplying:\\AC = 2*8.5\ units\\AC = 17 \ units[/tex]
The length of the chord is 17 units.
Answer:
The answer is 17 units :D
Step-by-step explanation:
does the table represent a function why or why not?
Answer:
Yes, because each x-value corresponds to one y value.
Step-by-step explanation:
If you look at the table, you notice that there is one output (y) for every input (x). This means that it is a function. It would NOT be a function if you had two outputs for an input. For example, there are two x values that are 6. For one coordinate pair, the table says (6,9) and (6,8). Since there are two values for the same input- it wouldn't be a function. In this case, there is an input of 4 and 5 with the same output. That is okay! Even though they have the same y value, those inputs still only have ONE output.
25 POINTS AND BRAINLIEST FOR THESE!
Answer:
Step-by-step explanation:
Hello,
For any function f which has an inverse function we can write
[tex]x=(f^{-1}of)(x)=(fof^{-1})(x)=f(f^{-1}(x))[/tex]
This is why, in practice, to find the inverse of f we will consider f(x) = y and we will look for x as a function of y, so we switch x and y and solve for y. Let's do it.
Step 1 - The function f(x) can be written as a variable. [tex]\boxed{y}=f(x)[/tex]
f(x) = y = 5x + 2
Step 2 - switch the variables x <-> y
x = 5y + 2
subtract 2 to both parts of the equation
<=> x - 2 = 5y + 2 - 2 = 5y
divide by 5 both parts of the equation
[tex]<=> y=\dfrac{x-2}{5}[/tex]
It means that the inverse of f is as below.
[tex]\boxed{ \ f^{-1}(x)=\dfrac{x-2}{5}\ }[/tex]
Step 3 - Find the inverse of g(x)
We already found that the inverse of f is g, so the inverse of g is f.
Let's do it again.
[tex]g(x)=y=\dfrac{x-2}{5} \ \ \text{ switch x and y } \\ \\ x= \dfrac{y-2}{5} \ \ \text{ solve for y }\\ \\ y-2=5x \ \ \text{ mulitply by 5 both parts of the equation } \\ \\ y = 5x+2 \ \ \text{ add 2 to both parts of the equation }[/tex]
And we found what we already known, meaning f is the inverse of g.
[tex](gof)(x)=(fog)(x)=x[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answers and Step-by-step explanation:
Step 1:
We want to find the variable that ff(x) represents. Well, we know it can't be x because we already have x on the other side of the equation: ff(x) = 5x + 2.
So, ff(x) must equal y.
Since ff(x) = y, we know then that ff(x) = y = 5x + 2. And our equation is:
y = 5x + 2
Step 2:
Let's switch the variables now. This means that what used to be y will be x and what used to be x will be y:
y = 5x + 2 ⇒ x = 5y + 2
Subtract 2 from both sides:
5y = x - 2
Divide by 5 from both sides:
y = (x - 2)/5
Step 3:
Let's find the inverse of g(x) by doing the exact same thing as we did with ff(x):
g(x) = y = (x - 2)/5
Switch the variables:
y = (x - 2)/5 ⇒ x = (y - 2)/5
Multiply by 5 on both sides:
5x = y - 2
Add 2 to both sides:
y = 5x + 2
Notice that this is the exact same as ff(x)! This means that ff(x) and g(x) are inverses.
Are the terms CSC, SEC, and COT equivalent to the terms Sin^-1, Cos^-1, and Tan^-1? Are the three pairs of terms the same thing just written differently, or are they entirely different?
Answer:
Step-by-step explanation:
It depends on how it is written. By definition
[tex]\csc(x) = (\sin(x))^{-1} = \frac{1}{\sin(x)}[/tex]
[tex]\sec(x) = (\cos(x))^{-1} = \frac{1}{\cos(x)}[/tex]
[tex]\cot(x) = (\tan(x))^{-1} = \frac{1}{\tan(x)}[/tex]
however the functions
[tex]\sin^{-1}(x), \cos^{-1}(x), \tan^{-1}(x)[/tex] are the inverse functions of sine, cosine and tangent respectively. So, they are not equivalent functions
(OFFERING ALL THE POINTS I HAVE) Word Problem. Please help!! Part 1 of problem: The main tank has a radius of 70 feet. What is the volume of the quarter-sphere sized tank? Round your answer to the nearest whole number and use 3.14 for Pi. (Use sphere volume formula) Part 2: The theme park company is building a scale model of the killer whale stadium main show tank for an investor's presentation. Each dimension will be made 6 times smaller to accommodate the mock-up in the presentation room. How many times smaller than the actual volume is the volume of the mock-up? Part 3: Using the information from part 2, answer the following question by filling in the blank: The volume of the actual tank is __% of the mock-up of the tank.
Answer:
Part 1: 359,007 ft³
Part 2: 216 times smaller
Part 3: 21600%
Step-by-step explanation:
Part 1:
The parameters for the tank are;
The radius of the tank = 70 feet
The volume of a sphere = 4/3·π·r³
Therefore, the volume of a quarter sphere = 1/4×The volume of a sphere
The volume of a quarter sphere = 1/4×4/3·π·r³ = π·r³/3
Plugging in the value for the radius gives
Volume = π×70³/3 = 114,333.33×3.14 = 359,006.7≈ 359,007 ft³.
Part 2:
The dimension of the scale model = 1/6 × Actual dimension
Therefore, we have the radius of the sphere of the scale model = 1/6 × 70
Which gives;
The radius of the sphere of the scale model = 35/3 = 11.67 feet
The volume of the scale model = π·r³/3 = (3.14×11.67³)/3 = 1662.07 ≈ 1662 ft³
The number of times smaller the scale model is than the actual volume = (Actual volume)/(Scale model) = (359,007 ft³)/(1662 ft³) = 216 times
The number of times smaller the scale model is than the actual volume = 216 times = (1/Scale of model)³ = (1/(1/6))³ = 6³.
Part 3:
The percentage of the mock-up, x, to the volume of the actual tank is given as follows
x/100 × 1662 = 359,007
∴ x = 216 × 100 = 21600%
The percentage of the mock-up, to the volume of the actual tank is 21600%.
Answer:
Part 1: 359,007 ft³
Part 2: 216 times smaller
Part 3: 21600%
Step-by-step explanation:
Part 1:
The parameters for the tank are;
The radius of the tank = 70 feet
The volume of a sphere = 4/3·π·r³
Therefore, the volume of a quarter sphere = 1/4×The volume of a sphere
The volume of a quarter sphere = 1/4×4/3·π·r³ = π·r³/3
Plugging in the value for the radius gives
Volume = π×70³/3 = 114,333.33×3.14 = 359,006.7≈ 359,007 ft³.
Part 2:
The dimension of the scale model = 1/6 × Actual dimension
Therefore, we have the radius of the sphere of the scale model = 1/6 × 70
Which gives;
The radius of the sphere of the scale model = 35/3 = 11.67 feet
The volume of the scale model = π·r³/3 = (3.14×11.67³)/3 = 1662.07 ≈ 1662 ft³
The number of times smaller the scale model is than the actual volume = (Actual volume)/(Scale model) = (359,007 ft³)/(1662 ft³) = 216 times
The number of times smaller the scale model is than the actual volume = 216 times = (1/Scale of model)³ = (1/(1/6))³ = 6³.
Part 3:
The percentage of the mock-up, x, to the volume of the actual tank is given as follows
x/100 × 1662 = 359,007
∴ x = 216 × 100 = 21600%
The percentage of the mock-up, to the volume of the actual tank is 21600%.