Answer:
19/3Step-by-step explanation:
Given the expression [tex]3\left(q+\dfrac43\right) = 23[/tex], we are to find the value of q;
[tex]3\left(q+\dfrac43\right) = 23\\on\ expansion\\\\3q + 4/3(3) = 23\\\\3q+4 = 23\\\\subtract \ 4\ from \ both\ sides \ of \ the \ equation\\\\3q+4-4 = 23-4\\\\3q = 19\\\\Diviide \both\ sides \ by \ 3\\\\3q/3 = 19/3\\\\q = 19/3[/tex]
Hence the value of q is 19/3
Answer:
-2/3
Step-by-step explanation:
Don't worry about it, i got connections.
Wholemark is an internet order business that sells one popular New Year greeting card once a year. The cost of the paper on the which the card is printed is $0.05 per card, and the cost of printing is $0.15 per card. The company receives $2.15 per card sold. Since the cards have the current year printed on them, unsold cards have no salvage value. Their customers are from the four areas: Los Angeles, Santa Monica, Hollywood, and Pasadena. Based on past data, the number of customers from the each of the four regions is normally distributed with mean 2,000 and standard deviation of 500. (Assume these four are independent.)
What is the optimal production quality for the card? (Use Excel's NORMSINV{} function to find the Z-score. Round intermediate calculations to four decimal places. Submit your answer to the nearest whole number.)
Answer:
The optimal production quantity is 9,322 cards.
Step-by-step explanation:
The information provided is:
Cost of the paper = $0.05 per card
Cost of printing = $0.15 per card
Selling price = $2.15 per card
Number of region (n) = 4
Mean demand = 2000
Standard deviation = 500
Compute the total cost per card as follows:
Total cost per card = Cost of the paper + Cost of printing
= $0.05 + $0.15
= $0.20
Compute the total demand as follows:
Total demand = Mean × n
= 2000 × 4
= 8000
Compute the standard deviation of total demand as follows:
[tex]SD_{\text{total demand}}=\sqrt{500^{2}\times 4}=1000[/tex]
Compute the profit earned per card as follows:
Profit = Selling Price - Total Cost Price
= $2.15 - $0.20
= $1.95
The loss incurred per card is:
Loss = Total Cost Price = $0.20
Compute the optimal probability as follows:
[tex]\text{Optimal probability}=\frac{\text{Profit}}{\text{Profit+Loss}}[/tex]
[tex]=\frac{1.95}{1.95+0.20}\\\\=\frac{1.95}{2.15}\\\\=0.9069767\\\\\approx 0.907[/tex]
Use Excel's NORMSINV{0.907} function to find the Z-score.
z = 1.322
Compute the optimal production quantity for the card as follows:
[tex]\text{Optimal Production Quantity}=\text{Total Demand}+(z\times SD_{\text{total demand}}) \\[/tex]
[tex]=8000+(1.322\times 1000)\\=8000+1322\\=9322[/tex]
Thus, the optimal production quantity is 9,322 cards.
expand(x+y2)2 plzzzzzzzzzzzzzzzz
Answer:
[tex](x + {y}^{2}) = {x}^{2} + 2x {y}^{2} + {y}^{4} [/tex]
Hope it helps!!❤❤Please mark me as the brainliest!!!Thanks!!!!
Find the valuds to complete the table
Answer:
Where is the table
Step-by-step explanation:
I cant answer without it
What is the square root of -16?
Answer:-8
Step-by-step explanation:
Solve the following system of equations. Express your answer as an ordered pair in the format (a,b). 3x+4y=17 -4x-7y=-18
Answer:
Step-by-step explanation:
3x+4y = 17 _______ equation 1
-4x -7y= -18 _______ equation 2
muliply by 4 in equation 1
12x + 16y = 68 ______ equation 3
multiply by 3 in equation 2
-12x - 21y = -54 ________ equation 4
add equation 3 & 4
- 5y = 14
y = - 14/5
substitute y in equation 1
3x + 4 (-14/5) =17
3x = 17+ (56/5)
3x =( 85 + 56) / 5
3x = 141/5
x = 47/5
hence (a,b) = (47/5, -14/5)
The half-life of iron-52 is approximately 8.3 hours. Step 1 of 3: Determine a so that A(t)=A0at describes the amount of iron-52 left after t hours, where A0 is the amount at time t=0. Round to six decimal places.
Answer:
Step-by-step explanation:
Given the half like of a material to be 8.3 hours and the amount of iron-52 left after t hours is modeled by the equation [tex]A(t) = A_0 a^{t}[/tex], we can get A(t) as shown;
At t = 8.3 hours, A(8.3) = 1/2
Initially at t = 0; A(0) = 1
Substituting this values into the function we will have;
[tex]\frac{1}{2} = 1 * a^{8.3}\\\\Taking \ the \ log \ of\ both \ sides;\\\\log(\frac{1}{2} ) = log(a^{8.3} )\\\\log(\frac{1}{2} ) = 8.3 log(a)\\\\\fr-0.30103 = 8.3 log(a)\\\Dividing\ both\ sides\ by \ 8.3\\\\\frac{-0.30103}{8.3} = log(a)\\\\log(a) = - 0.03627\\\\a =10^{-0.03627} \\\\a = 0.919878 (to\ 6dp)[/tex]
If I set my alarm to read 8:10 when it is really 8:00 (i.e., it is 10 minutes fast) and the alarm goes off each day when it reads 8:10, it will be ___________ but not ___________.
Answer:
If I set my alarm to read 8:10 when it is really 8:00 (i.e., it is 10 minutes fast) and the alarm goes off each day when it reads 8:10, it will be reliable but not valid.
Step-by-step explanation:
If I set my alarm to wake me earlier than I need to be woken, it might be in order to give me enough time to adjust to the alarm, and be awake enough to get out of bed before the normal time I need to be out of bed. This method is very reliable, as there is a very little probability of me waking up late, since I have a 10 minutes head start everyday to get out of bed. The problem is that this method is not valid, since I now actually wake earlier than I am supposed to. The extra 10 minutes can actually lead to a disorientation with time.
A national survey of 1000 adult citizens of a nation found that 25% dreaded Valentine's Day. The margin of error for the survey was 3.6 percentage points with 90% confidence. Explain what this means.
Answer:
There is 90% confidence that the proportion of the adult citizens of the nation that dreaded Valentine’s Day is between 0.214 and 0.286.
Step-by-step explanation:
The summary of the statistics from the information given is ;
At 90% confidence interval, 25% dreaded Valentine's Day and the margin of error for the survey was 3.6 percentage points
SO;
[tex]C.I = \hat p \pm M.O.E[/tex]
[tex]C.I = 0.25 \pm 0.036[/tex]
C.I = (0.25-0.036 , 0.25+0.036)
C.I = (0.214, 0.286)
The 90% confidence interval for the proportion of the adult citizens of the nation that dreaded Valentine’s day is 0.214 and 0.286.
There is 90% confidence that the proportion of the adult citizens of the nation that dreaded Valentine’s Day is between 0.214 and 0.286.
Brainliest for the correct awnser!!! The function is not an example of a rational function. True or false?
Answer:
true
Step-by-step explanation:
Two passenger trains traveling in opposite directions meet and pass each other. Each train is 1 12 mi long and is traveling 50 mph. How many seconds after the front cars of the trains meet will their rear cars pass each other?
Answer:
Time taken = 6 sec (Approx)
Step-by-step explanation:
Given:
Total distance = 1/12 mi = 0.083333
Speed of train = 50 mph = 50 / 3600 = 0.01388889 mps
Find:
Time taken
Computation:
Time taken = Total distance / Speed
Time taken = Total distance / Speed of train
Time taken = 0.0833333 / 0.01388889
Time taken = 6 sec (Approx)
When randomly selecting an adult, let B represent the event of randomly selecting someone with type B blood. Write a sentence describing what the rule of complements below is telling us. P B or B = 1 Choose the correct answer below. A. It is impossible that the selected adult has type B blood or does not have type B blood. B. It is certain that the selected adult has type B blood. C. It is certain that the selected adult has type B blood or does not have type B blood. D. It is certain that the selected adult does not have type B blood.
Answer: The rule of complements is apprising us that, the person selected will.eithwr have a type B blood or will not have a type B blood
Step-by-step explanations:
Find explanations in the attachment
Complete the table.PLSSS HELP ILL GIVE BRAINLIEST.PLS PLS PLS PLS
Answer:
0, 22, 44, 66
Step-by-step explanation:
Given the equation for the model, [tex] d = 11t [/tex] , you can complete the table above by simply plugging in each value of "t" has given in the table to solve for "d".
*When t (seconds) = 0, distance (feet) would be:
[tex] d = 11(0) [/tex]
[tex] d = 0 [/tex]
*When t (seconds) = 2, distance (feet) would be:
[tex] d = 11(2) [/tex]
[tex] d = 22 [/tex]
*When t (seconds) = 4, distance (feet) would be:
[tex] d = 11(4) [/tex]
[tex] d = 44 [/tex]
*When t (seconds) = 6, distance (feet) would be:
[tex] d = 11(6) [/tex]
[tex] d = 66 [/tex]
What is the slope of the line passing through the points (6,7) and (1,5)
Answer:
2/5
Step-by-step explanation:
(7-5)/(6-1)
A man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph . The man can run at a constant rate in either direction to get off the bridge just in time before the train hits him. How fast can the man run?
Answer:
The Man needs to run at 9 mph
Step-by-step explanation:
Let M stand for the man's speed in mph. When the man
runs toward point A, the relative speed of the train with respect
to the man is the train's speed plus the man's speed (45 + M).
When he runs toward point B, the relative speed of the train is the
train's speed minus the man's speed (45 - M).
When he runs toward the train the distance he covers is 2 units.
When he runs in the direction of the train the distance he covers
is 3 units. We can now write that the ratio of the relative speed
of the train when he is running toward point A to the relative speed
of the train when he is running toward point B, is equal to the
inverse ratio of the two distance units or
(45 + M) 3
----------- = ---
(45 - M) 2
90+2 M=135-3 M
⇒5 M = 45
⇒ M = 9 mph
The Man needs to run at 9 mph
Answer: 9 mph
Step-by-step explanation:
Given that a man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph .
If the man tend to run in the forward direction, he will cover another 2/5 before the train reaches his initial position. The distance covered by the man will be 2/5 + 2/5 = 4/5
The remaining distance = 1 - 4/5 = 1/5
If the man can run at a constant rate in either direction to get off the bridge just in time before the train hits him, the time it will take the man will be
Speed = distance/time
Time = 1/5d ÷ speed
The time it will take the train to cover the entire distance d will be
Time = d ÷ 45
Equate the two time
1/5d ÷ speed = d ÷ 45
Speed = d/5 × 45/d
Speed = 9 mph
Out of 600 people sampled, 66 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A.
Required:
Use a 90% confidence level, and give your answers as decimals, to three places.
Answer:
11% of the Total the entire voting population
Step-by-step explanation:
Let's bear in mind that the total number of sample candidates is equal to 600.
But out of 600 only 66 preffered candidate A.
The proportion of sampled people to that prefer candidate A to the total number of people is 66/600
= 11/100
In percentage
=11/100 *100/1 =1100/100
=11% of the entire voting population
Four friends are on a basketball team. During a game, each friend kept track of how many shots they attempted and how many of those attempts they made. Henry made 0.45 of his shots. Allison made Arthur made of her shots. of his shots. Trevor missed 58% of his shots. Which friend had the best record for the number of shots made?
Answer:
Henry had the best record for the number of shots made
Step-by-step explanation:
From the given information.
Four friends are on a basketball team.
Henry
Allison
Arthur
Trevor
We are being told that Henry made 0.45 of his shots out of all his attempts
Allison made Arthur made of her shots of his shots.
i,e Arthur did the work for Allison , so out of Arthur's shot , we have to figured out Allison shots,
Trevor missed 58% of his shots.
i.e Trevor failed 0.58 of his shot, If he failed 0.58 shot
Then the attempts Trevor made is :
= 1 - 0.58
= 0.42
SO , Trevor made 0.42 shots out of all his attempt
N:B We are not given any information about Arthur's shots , so we can't determine Allison shot as well.
Therefore; we will focus on only Henry and Trevor shots
So ;
Henry made 0.45 of his shots
Trevor made 0.42 out of his shots
We can thereby conclude that :
Henry had the best record for the number of shots made
What are the trigonometric ratios? Write all six.
Step-by-step explanation:
Check that attachment
Hope it helps :)
Hey! :)
________ ☆ ☆_________________________________________
Answer:
There are six trigonometric ratios, which will be under “Explanation”
Step-by-step explanation:
Trigonometric ratios are a measurements of a right triangle.
Here are the all the six trigonometric ratios.
1. cotangent (cot)
2. cosecant (csc)
3. cosine (cos)
4. secant (sec)
5. sine (sin)
6. tangent (tan)
Hope this helps! :)
_________ ☆ ☆________________________________________
By, BrainlyMember ^-^
Good luck!
What is the inverse of the logarithmic function
f(x) = log2x?
f –1(x) = x2
f –1(x) = 2x
f –1(x) = logx2
f –1(x) = StartFraction 1 Over log Subscript 2 Baseline x EndFraction
Answer:
B. edge 2021
B. is correct for the next one too.
Step-by-step explanation:
B. is the correct answer for the first one
B. is also the correct answer for the second one
Which is the equation of the line for the points in the given table
Answer:
A...............................
Actividad 1.1<br />Investigue sobre el tema de diferenciabilidad en un punto para encontrar los valores de "a" y "b" tales que<br />la función<br />definida a continuación sea diferenciable en t = 2, luego construya su gráfica.<br />at +b, sit < 2<br />f(t) = {2t2 – 1, si 2 st<br />1
Answer:
a = 8
b = -8
Step-by-step explanation:
You have the following function:
[tex]f(x)\\\\=at+b;\ \ t<2\\\\2t^2-1;\ \ 2\leq t[/tex]
A function is differentiable at a point c, if the derivative of the function in such a point exists. That is, f'(c) exists.
In this case, you need that the function is differentiable for t=2, then, you have:
[tex]f'(t)=a;\ \ \ \ t<2 \\\\f'(t)=4t;\ \ \ 2\leq t[/tex]
If the derivative exists for t=2, it is necessary that the previous derivatives are equal:
[tex]f'(2)=a=4(2)\\\\a=8[/tex]
Furthermore it is necessary that for t=2, both parts of the function are equal:
[tex]8(2)+b=2(2)^2-1\\\\16+b=8-1\\\\b=-8[/tex]
Then, a = 8, b = -8
consider the distribution of monthly social security (OASDI) payments. Assume a normal distribution with a standard deviation of $116. if one-fourth of payments are above $1214,87 what is the mean monthly payment?
Answer:
$1137
Step-by-step explanation:
Solution:-
We will define the random variable as follows:
X: Monthly social security (OASDI) payments
The random variable ( X ) is assumed to be normally distributed. This implies that most monthly payments are clustered around the mean value ( μ ) and the spread of payments value is defined by standard deviation ( σ ).
The normal distribution is defined by two parameters mean ( μ ) and standard deviation ( σ ) as follows:
X ~ Norm ( μ , σ^2 )
We will define the normal distribution for (OASDI) payments as follows:
X ~ Norm ( μ , 116^2 )
We are to determine the mean value of the distribution by considering the area under neat the normal distribution curve as the probability of occurrence. We are given that 1/4 th of payments lie above the value of $1214.87. We can express this as:
P ( X > 1214.87 ) = 0.25
We need to standardize the limiting value of x = $1214.87 by determining the Z-score corresponding to ( greater than ) probability of 0.25.
Using standard normal tables, determine the Z-score value corresponding to:
P ( Z > z-score ) = 0.25 OR P ( Z < z-score ) = 0.75
z-score = 0.675
- Now use the standardizing formula as follows:
[tex]z-score = \frac{x - u}{sigma} \\\\1214.87 - u = 0.675*116\\\\u = 1214.87 - 78.3\\\\u = 1136.57[/tex]
Answer: The mean value is $1137
A firm has 18 senior and 22 junior partners. A committee of three partners is selected at random to represent the firm at a conference. In how many ways can at least one of the junior partners be chosen to be on the committee?
Answer:
Answer is 24288.
Step-by-step explanation:
Given that there are 18 senior and 22 junior partners.
To find:
Number of ways of selecting at least one junior partner to form a committee of 3 partners.
Solution:
At least junior 1 member means 3 case:
1. Exactly 1 junior member
2. Exactly 2 junior member
3. Exactly 3 junior member
Let us find number of ways for each case and then add them.
Case 1:
Exactly 1 junior member:
Number of ways to select 1 junior member out of 22: 22
Number of ways to select 2 senior members out of 18: 18 [tex]\times[/tex] 17
Total number of ways to select exactly 1 junior member in 3 member committee: 22 [tex]\times[/tex] 18 [tex]\times[/tex] 17 = 6732
Case 2:
Exactly 2 junior member:
Number of ways to select 2 junior members out of 22: 22 [tex]\times[/tex] 21
Number of ways to select 1 senior member out of 18: 18
Total number of ways to select exactly 2 junior members in 3 member committee: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 18 = 8316
Case 3:
Exactly 3 junior member:
Number of ways to select 3 junior members out of 22: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 20 = 9240
So, Total number of ways = 24288
Use the given categorical data to construct the relative frequency distribution. Natural births randomly selected from four hospitals in a highly populated region occurred on the days of the week (in the order of Monday through Sunday) with the frequencies 53, 63, 68, 58, 61, 43, 54. Does it appear that such births occur on the days of the week with equal frequency?
Answer: Yes
Step-by-step explanation:
See explanations in the attached document
Use the Ratio Test to determine the convergence or divergence of the series. If the Ratio Test is inconclusive, determine the convergence or divergence of the series using other methods.
[infinity] n = 1 n2/5n n = 1
lim n→[infinity] an + 1/an =
a. converges
b. diverges
Answer:
A. The series CONVERGESStep-by-step explanation:
If [tex]\sum a_n[/tex] is a series, for the series to converge/diverge according to ratio test, the following conditions must be met.
[tex]\lim_{n \to \infty} |\frac{a_n_+_1}{a_n}| = \rho[/tex]
If [tex]\rho[/tex] < 1, the series converges absolutely
If [tex]\rho > 1[/tex], the series diverges
If [tex]\rho = 1[/tex], the test fails.
Given the series [tex]\sum\left\ {\infty} \atop {1} \right \frac{n^2}{5^n}[/tex]
To test for convergence or divergence using ratio test, we will use the condition above.
[tex]a_n = \frac{n^2}{5^n} \\a_n_+_1 = \frac{(n+1)^2}{5^{n+1}}[/tex]
[tex]\frac{a_n_+_1}{a_n} = \frac{{\frac{(n+1)^2}{5^{n+1}}}}{\frac{n^2}{5^n} }\\\\ \frac{a_n_+_1}{a_n} = {{\frac{(n+1)^2}{5^{n+1}} * \frac{5^n}{n^2}\[/tex]
[tex]\frac{a_n_+_1}{a_n} = {{\frac{(n^2+2n+1)}{5^n*5^1}} * \frac{5^n}{n^2}\\[/tex]
aₙ₊₁/aₙ =
[tex]\lim_{n \to \infty} |\frac{ n^2+2n+1}{5n^2}| \\\\Dividing\ through\ by \ n^2\\\\\lim_{n \to \infty} |\frac{ n^2/n^2+2n/n^2+1/n^2}{5n^2/n^2}|\\\\\lim_{n \to \infty} |\frac{1+2/n+1/n^2}{5}|\\\\[/tex]
note that any constant dividing infinity is equal to zero
[tex]|\frac{1+2/\infty+1/\infty^2}{5}|\\\\[/tex]
[tex]\frac{1+0+0}{5}\\ = 1/5[/tex]
[tex]\rho = 1/5[/tex]
Since The limit of the sequence given is less than 1, hence the series converges.
I toss an unfair coin 12 times. This coin is 65% likely to show up heads. Calculate the probability of the following.
a. 11 heads:
b. 2 or more heads:
c. 7 heads:
d. 9 tails:
e. 8 or less heads:
Answer:
a. 0.0368
b. 0.99992131
c. 0.2039
d. 0.0048
e. 0.6533
Step-by-step explanation:
Let the probability of obtaining a head be p = 65% = 13/20 = 0.65. The probability of not obtaining a head is q = 1 - p = 1 -13/20 = 7/20 = 0.35
Since this is a binomial probability, we use a binomial probability.
a. The probability of obtaining 11 heads is ¹²C₁₁p¹¹q¹ = 12 × (0.65)¹¹(0.35) = 0.0368
b. Probability of 2 or more heads P(x ≥ 2) is
P(x ≥ 2) = 1 - P(x ≤ 1)
Now P(x ≤ 1) = P(0) + P(1)
= ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹
= (0.65)⁰(0.35)¹² + 12(0.65)¹(0.35)¹¹
= 0.000003379 + 0.00007531
= 0.0007869
P(x ≥ 2) = 1 - P(x ≤ 1)
= 1 - 0.00007869
= 0.99992131
c. The probability of obtaining 7 heads is ¹²C₇p⁷q⁵ = 792(0.65)⁷(0.35)⁵ = 0.2039
d. The probability of obtaining 7 heads is ¹²C₉q⁹p³ = 220(0.65)³(0.35)⁹ = 0.0048
e. Probability of 8 heads or less P(x ≤ 8) = ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹ + ¹²C₂p²q¹⁰ + ¹²C₃p³q⁹ + ¹²C₄p⁴q⁸ + ¹²C₅p⁵q⁷ + ¹²C₆p⁶q⁶ + ¹²C₇p⁷q⁵ + ¹²C₈p⁸q⁴
= = ¹²C₀(0.65)⁰(0.35)¹² + ¹²C₁(0.65)¹(0.35)¹¹ + ¹²C₂(0.65)²(0.35)¹⁰ + ¹²C₃(0.65)³(0.35)⁹ + ¹²C₄(0.65)⁴(0.35)⁸ + ¹²C₅(0.65)⁵(0.35)⁷ + ¹²C₆(0.65)⁶(0.35)⁶ + ¹²C₇(0.65)⁷(0.35)⁵ + ¹²C₈(0.65)⁸(0.35)⁴
= 0.000003379 + 0.00007531 + 0.0007692 + 0.004762 + 0.01990 + 0.05912 + 0.1281 + 0.2039 + 0.2367
= 0.6533
What point lies on the line described by the equation below? Y+3=2 (x-1
Answer:
[tex]\boxed{(1, -3)}[/tex]
Step-by-step explanation:
[tex]y+3=2 (x-1)[/tex]
Put equation in slope-intercept form.
[tex]y=mx+b[/tex]
[tex]y=2(x-1)-3[/tex]
[tex]y=2x-2-3[/tex]
[tex]y=2x-5[/tex]
Let x = 1
[tex]y=2(1)-5[/tex]
[tex]y=2-5[/tex]
[tex]y=-3[/tex]
The point (1, -3) lies on the line.
Question
Given that cot(0)= -1/2
and O is in Quadrant II, what is sin(0)? Write your answer in exact form. Do not round.
Provide your answer below:
Answer:
sin(O) = 2/sqrt(5) or 2sqrt(1/5)
Step-by-step explanation:
using 1+cot^2(x) = csc^2(x)
we have, taking reciprocal on both sides,
sin(x) = 1/sqrt(1+cot^2(x)
= 1/sqrt(1+(-1/2)^2)
= 1/sqrt(5/4)
= 2/sqrt(5) or 2sqrt(1/5)
Since angle x is in the second quadrant, sin(x) is positive.
How do you write in decimals eight and three tenths
Answer:
8.3
Step-by-step explanation:
A baseball is hit into the air, and its height h in feet after t seconds is given by h(t)= -16t^2+128t+2. The height of the baseball when it is hit is ? The baseball reaches its maximum height after ? The maximum height of the baseball is ?
Answer:
[tex]\large \boxed{\sf \ \text{2 feet, 4 seconds, 258 feet } \ }[/tex]
Step-by-step explanation:
Hello,
To know the height of the baseball when it is hit we have to compute h(0), as t = 0 is when the baseball is hit into the air.
[tex]h(0)=-16\cdot 0^2+128 \cdot 0+2=2[/tex]
So, the answer is 2 feet.
h(x) is a parabola which can be written as [tex]ax^2+bx+c[/tex], it means that the vertex is the point (-b/2a,h(-b/2a)).
The baseball reached its maximum height after
[tex]\dfrac{-b}{2a}=\dfrac{-128}{-2*16}=\boxed{4 \text{ seconds}}[/tex]
And the maximum height of the baseball is h(4).
[tex]h(0)=-16\cdot 4^2+128 \cdot 4+2=-256+512+2=\boxed{258 \ \text{feet}}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Twice a number plus three times a second number is twenty two. Three times the first number plus four times the second is thirty one. Find the numbers
Answer:
The numbers are 5 and 4Step-by-step explanation:
Let the first number be x
Let the second number be y
For the first equation
2x + 3y = 22
For the second equation
3x + 4y = 31
Multiply the first one by 3 and the second one by 2
That's
First equation
6x + 9y = 66
Second equation
6x + 8y = 62
Subtract the second equation from the first one
That's
6x - 6x + 9y - 8y = 66 - 62
y = 4Substitute y = 4 into 2x + 3y = 22
That's
2x + 3(4) = 22
2x = 22 - 12
2x = 10
Divide both sides by 2
x = 5Hope this helps you