Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
Part A Each time you press F9 on your keyboard, you see an alternate life for Jacob, with his status for each age range shown as either alive or dead. If the dead were first to appear for the age range of 75 to 76, for example, this would mean that Jacob died between the ages of 75 and 76, or that he lived to be 75 years old. Press F9 on your keyboard five times and see how long Jacob lives in each of his alternate lives. How long did Jacob live each time? Part B The rest of the potential clients are similar to Jacob, but since they’ve already lived parts of their lives, their status will always be alive for the age ranges that they’ve already lived. For example, Carol is 44 years old, so no matter how many times you press F9 on your keyboard, Carol’s status will always be alive for all the age ranges up to 43–44. Starting with the age range of 44–45, however, there is the possibility that Carol’s status will be dead. Press F9 on your keyboard five more times and see how long Carol lives in each of her alternate lives. Remember that she will always live to be at least 44 years old, since she is already 44 years old. How long did Carol live each time? Part C Now you will find the percent survival of each of your eight clients to the end of his or her policy using the simulation in the spreadsheet. For each potential client, you will see whether he or she would be alive at the end of his or her policy. The cells in the spreadsheet that you should look at to determine this are highlighted in yellow. Next, go to the worksheet labeled Task 2b and record either alive or dead for the first trial. Once you do this, the All column will say yes if all the clients were alive at the end of their policies or no if all the clients were not alive at the end of their policies. Were all the clients alive at the end of their policies in the first trial? Part D Next, go back to the Task 2a worksheet, press F9, and repeat this process until you have recorded 20 trials in the Task 2b worksheet. In the Percent Survived row at the bottom of the table on the Task 2b worksheet, it will show the percentage of times each client survived to the end of his or her policy, and it will also show the percentage of times that all of the clients survived to the end of their respective policies. Check to see whether these percentages are in line with the probabilities that you calculated in questions 1 through 9 in Task 1. Now save your spreadsheet and submit it to your teacher using the drop box. Are your probabilities from the simulation close to the probabilities you originally calculated?
Step-by-step explanation:
brain list me please......
Answer:
Jacob:
Alive 69-70
alive 79-80
alive 62-63
alive 73-74
alive 78-Died 79
Carol:
alive 88-89
alive 67-68
alive 99-100
alive 73-74
alive 94- Died 95
Step-by-step explanation:
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
A bag of marbles contains 4 green marbles, 3 blue marbles, 2 red marbles, and 5 yellow marbles. How many total possible outcomes are there when choosing a marble from the bag?
Answer:
its 14/C
Step-by-step explanation:
i got i right on edg U^U
Answer:
16
Step-by-step explanation:
i did edge test yea dont be imma fake :***
Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The negative root of ex = 4 − x2
Answer:
x = -1.964636
Step-by-step explanation:
Given equation;
eˣ = 4 - x²
This can be re-written as;
eˣ - 4 + x² = 0
Let
f(x) = eˣ - 4 + x² -----------(i)
To use Newton's method, we need to get the first derivative of the above equation as follows;
f¹(x) = eˣ - 0 + 2x
f¹(x) = eˣ + 2x -----------(ii)
The graph of f(x) has been attached to this response.
As shown in the graph, the curve intersects the x-axis twice - around x = -2 and x = 1. These are the approximate roots of the equation.
Since the question requires that we use the negative root, then we start using the Newton's law with a guess of x₀ = -2 at n=0
From Newton's method,
[tex]x_{n+1} = x_n + \frac{f(x_{n})}{f^1(x_{n})}[/tex]
=> When n=0, the equation becomes;
[tex]x_{1} = x_0 - \frac{f(x_{0})}{f^1(x_{0})}[/tex]
[tex]x_{1} = -2 - \frac{f(-2)}{f^1(-2)}[/tex]
Where f(-2) and f¹(-2) are found by plugging x = -2 into equations (i) and (ii) as follows;
f(-2) = e⁻² - 4 + (-2)²
f(-2) = e⁻² = 0.13533528323
And;
f¹(2) = e⁻² + 2(-2)
f¹(2) = e⁻² - 4 = -3.8646647167
Therefore
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - -0.03501863503[/tex]
[tex]x_{1} = -2 + 0.03501863503[/tex]
[tex]x_{1} = -1.9649813649[/tex]
[tex]x_{1} = -1.96498136[/tex] [to 8 decimal places]
=> When n=1, the equation becomes;
[tex]x_{2} = x_1 - \frac{f(x_{1})}{f^1(x_{1})}[/tex]
[tex]x_{2} = -1.96498136 - \frac{f(-1.9649813)}{f^1(-1.9649813)}[/tex]
Following the same procedure as above we have
[tex]x_{2} = -1.96463563[/tex]
=> When n=2, the equation becomes;
[tex]x_{3} = x_2 - \frac{f(x_{2})}{f^1(x_{2})}[/tex]
[tex]x_{3} = -1.96463563- \frac{f( -1.96463563)}{f^1( -1.96463563)}[/tex]
Following the same procedure as above we have
[tex]x_{3} = -1.96463560[/tex]
From the values of [tex]x_2[/tex] and [tex]x_3[/tex], it can be seen that there is no change in the first 6 decimal places, therefore, it is safe to say that the value of the negative root of the equation is approximately -1.964636 to 6 decimal places.
Newton's method of approximation is one of the several ways of estimating values.
The approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
The equation is given as:
[tex]\mathbf{e^x = 4 - x^2}[/tex]
Equate to 0
[tex]\mathbf{4 - x^2 = 0}[/tex]
So, we have:
[tex]\mathbf{x^2 = 4}[/tex]
Take square roots of both sides
[tex]\mathbf{ x= \pm 2}[/tex]
So, the negative root is:
[tex]\mathbf{x = -2}[/tex]
[tex]\mathbf{e^x = 4 - x^2}[/tex] becomes [tex]\mathbf{f(x) = e^x - 4 + x^2 }[/tex]
Differentiate
[tex]\mathbf{f'(x) = e^x +2x }[/tex]
Using Newton's method of approximation, we have:
[tex]\mathbf{x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}}[/tex]
When x = -2, we have:
[tex]\mathbf{f'(-2) = e^{(-2)} +2(-2) = -3.86466471676}[/tex]
[tex]\mathbf{f(-2) = e^{-2} - 4 + (-2)^2 = 0.13533528323}[/tex]
So, we have:
[tex]\mathbf{x_{1} = -2 - \frac{0.13533528323}{-3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -2 + \frac{0.13533528323}{3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -1.96498136}[/tex]
Repeat the above process for repeated x values.
We have:
[tex]\mathbf{x_{2} = -1.96463563}[/tex]
[tex]\mathbf{x_{3} = -1.96463560}[/tex]
Up till the 6th decimal places,
[tex]\mathbf{x_2 = x_3}[/tex]
Hence, the approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
Read more about Newton approximation at:
https://brainly.com/question/14279052
What is (6b +4) when b is 2?
Answer:
16
Step-by-step explanation:
6*2 = 12
12 + 4 = 16
What is the next term of the geometric sequence? 1, 2, 4, 8, 16,
Answer: 32
Step-by-step explanation:
Connor has a collection of dimes and quarters with a total value of $6.30. The number of dimes is 14 more than the number of quarters. How many of each coin does he have?
Answer:
14 Quarters and 28 dimes
Step-by-step explanation: 14 quarters $3.50
28 dimes is $2.80 total is $6.30
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8
Please help. I’ll mark you as brainliest if correct!
Answer:
CDs: $30,000bonds: $90,000stocks: $50,000Step-by-step explanation:
You can let c, b, s represent the investments in CDs, bonds, and stocks, respectively.
c + b + s = 170000 . . . . . . total invested
0.0325c +0.038b +0.067s = 7745 . . . . . . . annual income
-c + b = 60000
You can solve this set of equations using any of a number of methods, including on-line calculators, graphing calculators, scientific calculators, Cramer's Rule, substitution, elimination, and more. The solution is ...
c = 30,000
b = 90,000
s = 50,000
Maricopa's Success invested $30,000 in CDs, $90,000 in bonds, and $50,000 in stocks.
Explain how the interquartile range of a data set can be used to identify outliers. The interquartile range (IQR) of a data set can be used to identify outliers because data values that are ▼ less than equal to greater than ▼ IQR Upper Q 3 minus 1.5 (IQR )Upper Q 3 plus IQR Upper Q 3 plus 1.5 (IQR )or ▼ less than equal to greater than ▼ IQR Upper Q 1 plus 1.5 (IQR )Upper Q 1 minus IQR Upper Q 1 minus 1.5 (IQR )are considered outliers.
Answer:
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Step-by-step explanation:
To identify outliers the interquartile range of the dataset can be used
Outliers can be identified as data values that are
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Using the interquartile range concept, it is found that:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
----------------------------
The interquartile range of a data-set is composed by values between the 25th percentile(Q1) and the 75th percentile(Q3).It's length is: [tex]IQR = Q3 - Q1[/tex]Values that are more than 1.5IQR from the quartiles are considered outliers, that is:[tex]v < Q1 - 1.5IQR[/tex] or [tex]v > Q3 + 1.5IQR[/tex]
Thus:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
A similar problem is given at https://brainly.com/question/14683936
What is the range of the function f(x)=3/4|x|-3
Range is [tex]y\in[-3,+\infty)[/tex].
Hope this helps.
Find the volume of the figure below. Round to the nearest tenth.
7 cm
7 cm
9 cm
20 cm
11 cm
Answer:
3057.6 cm³
Step-by-step explanation:
You have a cylinder and a rectangular prism. Solve for the area of each separately.
Cylinder
The formula for volume of a cylinder is V = πr²h. The radius is 7, and the height is 7.
V = πr²h
V = π(7)²(7)
V = π(49)(7)
V = 343π
V = 1077.57 cm³
Rectangular Prism
The formula for volume of a rectangular prism is V = lwh. The length is 20, the width is 11, and the height is 9.
V = lwh
V = (20)(11)(9)
V = (220)(9)
V = 1980 cm³
Add the areas of the two shapes.
1077.57 cm³ + 1980 cm³ = 3057.57 cm³
Round to the nearest tenth.
3057.57 cm³ ≈ 3057.6 cm³
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. (What is the product) How does the elevation of the airplane change in that hour? The elevation of the airplane _________ by ______ km. increases 60 decreases 9 0.15
WILL GIVE BRAINLIEST, THANKS AND FIVE STARS
Answer:
The elevation of the airplane decreases by 9 km.
Step-by-step explanation:
We use the distance-rate-time formula: d = rt.
Here, the rate is r = 0.15 km/min and the time is t = 60 min. Simply plug these into the formula:
d = rt
d = 0.15 * 60 = 9 km
So, the change in elevation in the last 60 minutes is 9 km. However, note that the rate is negative (-0.15 km/min), which means that the elevation actually is decreasing.
Thus, the answer is: the elevation of the airplane decreases by 9 km.
~ an aesthetics lover
Answer:
The elevation of the airplane _decrease_ by __9____ km
Step-by-step explanation:
Take the rate and multiply by the time to get the distance traveled
-.15 km per minute * 60 minutes
- 9 km
The plane will go down 9 km in that 60 minutes
What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?
The lowest common denominator is lcm(5, 3), which is 15.
The sum of 2/5 + 5/3 + 9/3 is 6/15 + 25/15 + 45/15, which is 76/15 or [tex]5\frac{1}{15}[/tex].
Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?
Answer:
0.0668 or 6.68%
Step-by-step explanation:
Variance (V) = 10,000
Standard deviation (σ) = √V= 100
Mean score (μ) = 500
The z-score for any test score X is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
For X = 650:
[tex]z=\frac{650-500}{100}\\z=1.5[/tex]
A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]
The probability is 0.0668 or 6.68%
The probability that he or she will make a score of 650 or more is 0.0668.
Let X = Scores made on a certain aptitude test by nursing students
X follows normal distribution with mean = 500 and variance of 10,000.
So, standard deviation = [tex]\sqrt{10000}=100[/tex].
z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].
The probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]
Learn more: https://brainly.com/question/14109853
Need Help finding the process for both of these ( due today)
Similar triangles have side lengths that are proportional to each other. To find each of the missing lengths, we need to set up proportions.
The proportions will look as follows:
(length or unknown of triangle 1) / (length or unknown of triangle 2) = (length of triangle 1) / (length of triangle 2)
-On both sides, remember to be consistent with which length/unknown you put on top! If a triangle 1 length is the numerator on the left, then it also needs to be the numerator on the right! And this also works vice versa with triangle 2.
In each proportion equation, we can only have one unknown. On the left side of the equation, we choose one length or unknown of triangle 1, and the corresponding side length of unknown of triangle 2 (whichever you did not choose from triangle 1). On the right side of the equation, we use a completed proportion. This is because all of the sides of one triangle are proportional to the other triangle, but we need to know that proportion/ratio in order to find other side lengths.
Let's start with problem a, to show how this works:
Triangle 1 side lengths - 16, a, 11
Triangle 2 side lengths - 8, 3, b
As you can tell, the side lengths match up (corresponding!) on each triangle, as in they are in the same position on each triangle. Now, we will set up a proportion to find the length of side a on triangle 1.
a / 3 = 16 / 8
48 = 8a
a = 6
Next, let's find the length of side b on triangle 2.
11 / b = 16 / 8
16b = 88
b = 5.5
Moving on to problem b, we'll apply the same concept and steps from problem a in order to find the missing side lengths.
Triangle 1 side lengths: 5, 5.5, d
Triangle 2 side lengths: 15, c, 18
5 / 15 = 5.5 / c
5c = 82.5
c = 16.5
5 / 15 = d / 18
15d = 90
d = 6
Hope this helps!! :)
Answer:
On a) you can see the shapes are simular. The blue line signatures that they are equal just reduced. You can see that 8 goes into 16 two times so for the orange line 3 must times 2. Which would mean a is 6. Now on the red line all you see is 11. So divide 11 by 2 and your answer should be 5.5 for b.
On b) it is the same thing but you have to find how the blue line is divisible. 5 divided by 15 is 3. So 3 is the number you will be using to divide or multiply. For the orange line you divide 18 by 3. The answer is 6 for d. For the red line 5.5 times 3 and you should get 11 for c.
Step-by-step explanation:
Hope this helped
A company is evaluating which of two alternatives should be used to produce a product that will sell for $35 per unit. The following cost information describes the two alternatives.
Process A Process B
Fixed Cost $500,000 $750,000
Variable Cost per Unit $25 $23
Requirement:;
i) Calculate the breakeven volume for Process A. (show calculation to receive credit)
ii) Calculate the breakeven volume for Process B. (show calculation to receive credit)
III) Directions: Show calculation below and Circle the letter of the correct answer.
If total demand (volume) is 120,000 units, then the company should
select Process A with a profit of $940,000 to maximize profit
select Process B with a profit of $450,000 to maximize profit
select Process A with a profit of $700,000 to maximize profit
select Process B with a profit of $690,000 to maximize profit
Answer:
A.50,000 units
B.62,500 units
C.Process A with a profit of $700,000 to maximize profit
Step-by-step explanation:
A.Calculation for the breakeven volume for Process A
Using this formula
Breakeven volume for Process A= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process A=500,000/(35-25)
Breakeven volume for Process A=500,000/10
Breakeven volume for Process A=50,000 units
B.Calculation for the breakeven volume for Process B
Using this formula
Breakeven volume for Process B= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process B=750,000/(35-23)
Breakeven volume for Process B=750,000/12
Breakeven volume for Process B=62,500 units
C. Calculation for what the company should do if the total demand (volume) is 120,000 units
Using this formula
Profit=(Total demand*(Sales per units-Variable cost per units for Process A)- Process A fixed cost
Let plug in the formula
Profit =120,000*($35-$25)-$500,000
Profit=120,000*10-$500,000
Profit=1,200,000-$500,000
Profit= $700,000
Therefore If total demand (volume) is 120,000 units, then the company should select Process A with a profit of $700,000 to maximize profit.
Construct a polynomial function with the stated properties. Reduce all fractions to lowest terms. Second-degree, with zeros of −7 and 6, and goes to −∞ as x→−∞.
Answer:
Step-by-step explanation:
Hello, because of the end behaviour it means that the leading coefficient is negative so we can construct such polynomial function as below.
[tex]\large \boxed{\sf \bf \ \ -(x+7)(x-6) \ \ }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The polynomial function will be f ( x ) = - x² - x + 42
What is Quadratic Equation?
A quadratic equation is a second-order polynomial equation in a single variable x , ax²+ bx + c = 0. with a ≠ 0. Because it is a second-order polynomial equation, the fundamental theorem of algebra guarantees that it has at least one solution. The solution may be real or complex.
Given data ,
The polynomial function is of second degree with zeros of -7 and 6
So , x = -7 and x = 6
Let the function be f ( x ) where f ( x ) = ( x + 7 ) ( x - 6 )
Now , as x tends to infinity , the negative makes no such difference on the zeros of the function f ( x ) ,
And , f ( x ) = - ( x + 7 ) ( x - 6 )
Therefore , to find the polynomial function , f ( x ) = - ( x + 7 ) ( x - 6 )
f ( x ) = - [ x² - 6 x + 7 x - 42 ]
= - [ x² + x - 42 ]
= - x ² - x + 42
Hence , the polynomial function f ( x ) = - x ² - x + 42
To learn more about polynomial function click :
https://brainly.com/question/25097844
#SPJ2
which of the following descriptions represent the transformation shown in the image? Part 1d
Answer:
(C) Translation of 2 units right, 1 up, and a reflection over the y-axis.
Step-by-step explanation:
Ideally, we are looking for a reflection of the red image over the y-axis, and to do that, we can see how we need to move the black image.
In order for points Q and Q' to be a reflection of each other, they need to have the same y value, and be the exact same distance from the y axis, so the point that Q has to be at is (-1,-3).
Q is right now at (-3,-4) so we can translate this.
To get from -3 to -1 in the x-axis, we go right by 2 units.
To get from -4 to -3 in the y-axis, we go up one unit.
Now, if we reflect it, the triangles will be the same.
Hope this helped!
Answer:
C.
Step-by-step explanation:
When you study the images, it is clear that the black triangle has to be reflected over the y-axis to face the same direction as the red triangle. So, choice A is eliminated.
Once you reflect the black triangle across the y-axis, you have points at (-1, -1), (3, -4), and (3, -2). Meanwhile, the red triangle's coordinates are at (-3, 0), (1, -3), and (1, -1). From these points, you can tell that the x-values differ by 2 units and the y-values differ by 1 unit.
All of these conditions match the ones put forth in option C, so that is your answer.
Hope this helps!
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
15x - 30 x 0 + 40 = 89
Answer:
x = 49/15
Step-by-step explanation:
15x - 30 x 0 + 40 = 89 PEMDAS
15x + 40 = 89 Isolate the variable
15x = 49
x = 49/15
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 49/15 or 3 4/15 or 3.26
▹ Step-by-Step Explanation
15x - 30 * 0 + 40 = 89
15x - 0 + 40 = 89
15x + 40 = 89
15x = 89 - 40
15x = 49
x = 49/15 or 3 4/15 or 3.26
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Please answer this correctly without making mistakes
Simplify the correct answer
Answer:
7/44
Step-by-step explanation:
First find the total number of presidents.
2 + 7 + 13 + 12 + 7 + 3 = 44
There were 7 presidents that were 45-49 when elected. Divide this number by the total number of presidents to find the fraction.
7/44 ≈ 0.159
Question 10 of 10
Which set of polar coordinates are plotted in the graph below?
Answer:
(-2, -(2pi)/3)
Step-by-step explanation:
a p ex
In da pic :)))))))))
PLEASE HELP QUICK! Determine x value of: sqrt x + 8 - sqrt x - 4 = 2
Answer:
x=8
Step-by-step explanation:
[tex]\sqrt{x+8}-\sqrt{x-4}=2\\\sqrt{x+8}=2+\sqrt{x-4}\\\left(\sqrt{x+8}\right)^2=\left(2+\sqrt{x-4}\right)^2\\x+8=x+4\sqrt{x-4}\\8=4\sqrt{x-4}\\8^2=\left(4\sqrt{x-4}\right)^2\\64=16x-64\\x=8[/tex]
At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 8 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude. At what rate is the height of the pile changing when the pile is 22 feet high
Answer:
(11π/9 )ft/s
Step by step Explanation
Let us denote the height as h ft
But we were told that The diameter of the base of the cone is approximately three times the altitude, then
Let us denote the diameter = 3h ft, and the radius is 3h/2
The volume of the cone is
V = (1/3)π r^2 h
Then if we substitute the values we have
= (1/3)π (9h^2/4)(h) = (3/4)π h^3
dV/dt = (9/4)π h^2 dh/dt
We were given as 22feet and rate of 8 cubic feet per minute
h = 22
dV/dt = 8
8= (9/4)π (22) dh/dt
= 11π/9ft/s
Therefore, the rate is the height of the pile changing when the pile is 22 feet is
11π/9ft/s
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
How many solutions does the following equation have? 14(z+3)=14z+21
Answer:
No solutions
Step-by-step explanation:
14(z + 3) = 14z + 21
Expand brackets.
14z + 42 = 14z + 21
Subtract 14z on both sides.
42 = 21
There are no solutions.
Answer:
No solution
Step-by-step explanation:
First, We have to simplify the right side.
Distribute 14, 14z+42.
Now the equation stands as 14z+42=14z+21
Subtract 14z from both sides,
this makes it 42=21.
We know when the solution is #=#, our answer is no solution.
help plsssssssssssss
Answer:
[tex]z = \frac{x}{y} [/tex]
Step-by-step explanation:
Let x be the price of carton of ice cream
Let y be the number of grams in carton
Let z be price per gram.
[tex]z = \frac{x}{y} [/tex]
Which means price of carton of ice cream divided by the number of grams in carton equals price per gram.
Hope this helps ;) ❤❤❤
For each of the following, state the equation of a perpendicular line that passes through (0, 0). Then using the slope of the new equation, find x if the point P(x, 4) lies on the new line. y=3x-1 y=1/4 x+2
Answer:
The answer is below
Step-by-step explanation:
a) y=3x-1
The standard equation of a line is given by:
y = mx + c
Where m is the slope of the line and c is the intercept on the y axis.
Given that y=3x-1, comparing with the standard equation of a line, the slope (m) = 3, Two lines with slope a and b are perpendicular if the product of their slope is -1 i.e. ab = -1. Let the line perpendicular to y=3x-1 be d, to get the slope of the perpendicular line, we use:
3 × d = -1
d = -1/3
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=d(x-x_1)\\d\ is\ the \ slope:\\y-0=-\frac{1}{3} (x-0)\\y=-\frac{1}{3}x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-\frac{1}{3}x\\ 4=-\frac{1}{3}x\\-x=12\\x=-12[/tex]
b) y=1/4 x+2
Given that y=1/4 x+2, comparing with the standard equation of a line, the slope (m) = 1/4. Let the line perpendicular to y=1/4 x+2 be f, to get the slope of the perpendicular line, we use:
1/4 × f = -1
f = -4
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=f(x-x_1)\\f\ is\ the \ slope:\\y-0=-4 (x-0)\\y=-4x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-4}x\\ 4=-4x\\x=-1[/tex]