Answer:
7 1/4
Step-by-step explanation:
4 3/4 + 2 1/2 =
4 3/4 +2 2/4 =7 1/4
Answer:
7 1/4 hours
Step-by-step explanation:
4 3/4 + 2 1/2
Get a common denominator
4 3/4 + 2 2/4
6 5/4
Rewriting as
6 + 4/4 + 1/4
6 + 1 + 1/4
7 1/4 hours
Clarise evaluated this expression.
(66.3 – 14.62) ÷ 0.6 – 0.22
(51.68) ÷ 0.6 – 0.22
(51.68) ÷ 0.42
51.68 ÷ 0.16
32.3
Which errors did Clarise make?
Answer:
(66.3-14.62)/0.6-0.22
(51.68)/0.6-0.22
(51.68/0.6)-0.22
(86.14667)-0.22
85.92667
linear system please help 60 points * please please please help will give brainlist
Answer:
1. a. b = - 8
b. x = 8
c. x = 11
d. x = 5
2. 12 soccer balls and 8 basketballs can be purchased.
Step by step explanation
a. [tex] - 14 + 6b + 7 - 2b = 1 + 5b[/tex]
Calculate the sum
[tex] - 7 + 6b - 2b = 1 + 5b[/tex]
Collect like terms
[tex] 7 + 4b = 1 + 5b[/tex]
Move variable to L.H.S and change it's sign
Similarly, Move constant to R.H.S and change its sign
[tex]4b - 5b = 1 + 7[/tex]
Collect like terms
[tex] - b = 8[/tex]
Change the signs on both sides of the equation
[tex]b = - 8[/tex]
-----------------------------------------------------------------
b. [tex] \frac{5x + 10}{ - 6} = - 5[/tex]
Apply cross product property
[tex]5x + 10 = - 5 \times ( - 6)[/tex]
Multiply the numbers
[tex]5x + 10 = 30[/tex]
Move constant to R.H.S and change its sign
[tex]5x = 30 - 10[/tex]
Calculate the difference
[tex]5x = 20[/tex]
Divide both sides of the equation by 5
[tex] \frac{5x}{5} = \frac{20}{5} [/tex]
Calculate
[tex]x = 4[/tex]
----------------------------------------------------------------
c. [tex] - 15 = \frac{ - 8x - 17}{7} [/tex]
Apply cross product property
[tex] - 15 \times 7 = - 8x - 17[/tex]
Multiply the numbers
[tex] - 105 = - 8x - 17[/tex]
Swap the sides of the equation
[tex] - 8x - 17 = - 105[/tex]
Move constant to R.H.S and change its sign
[tex] - 8x = - 105 + 17[/tex]
Calculate
[tex] - 8x = - 88[/tex]
Change the signs on both sides of the equation
[tex]8x = 88[/tex]
Divide both sides of the equation by 8
[tex] \frac{8x}{8} = \frac{88}{8} [/tex]
Calculate
[tex]x = 11[/tex]
------------------------------------------------------------------
D. [tex]5 = 6x + 5(x - 10)[/tex]
Distribute 5 through the parentheses
[tex]5 = 6x + 5x - 50[/tex]
Collect like terms
[tex]5 = 11x - 50[/tex]
Swap both sides of the equation
[tex]11x - 50 = 5[/tex]
Move constant to R.H.S and change its sign
[tex]11x = 5 + 50[/tex]
Calculate the sum
[tex]11x = 55[/tex]
Divide both sides of the equation by 11
[tex] \frac{11x}{11} = \frac{55}{11} [/tex]
Calculate
[tex]x = 5[/tex]
------------------------------------------------------------------
2.
Solution,
No.of students in soccer = x
No.of students in basketball = y
Total no.of students = 20
i.e x + y = 20 → equation ( i )
Cost of soccer ball = $ 7
Cost of basketball = $ 10
Total budget = $ 164
i.e 7x + 10 y = 165 → equation ( ii )
In equation ( i ),
x + y = 20
Move 'y' to R.H.S and change its sign
x = 20 - y
Put the value of x in equation ( i )
[tex]7(20 - y) + 10y = 164[/tex]
[tex]140 - 7y + 10y = 164[/tex]
[tex]3y = 164 - 140[/tex]
[tex]3y = 24[/tex]
[tex]y = \frac{24}{3} [/tex]
[tex]y = 8[/tex]
Now, put the value of y in equation ( i ) ,
x + y = 20
[tex]x + 8 = 20[/tex]
[tex]x = 20 - 8[/tex]
[tex]x = 12[/tex]
Hence, 12 soccer balls and 8 basketballs can be purchased.
Hope this helps...
Best regards!!
Answer:
1. b = -8
2. x = 8
3. x = 11
4. x = 5
hope that helpwd
Please help urgently ❤️❤️❤️
Greetings from Brasil...
Here we have application of Trigonometry
COS β = adjacent side ÷ hypotenuse (H)
bringing to our problem....
COS A = AC ÷ H
But we dont have AC.... We have to use Pitagoras:
AB² = AC² + BC²
AC² = AB² - BC²
AC = √(AB² - BC²)
AC = √(10² - 8²)
AC = √(100 - 64)
AC = √36
AC = 6So
COS A = AC ÷ H ⇔ COS A = AC ÷ AB
COS A = 6/10
COS A = 3/5Answer: B) 3/5
Step-by-step explanation:
Cos = adjacent/hypotenuse
Thus, the cos is AC/AB.
Because of Pythagorean Theorem, AC^2=AB^2-BC^2. Let AC be x.
[tex]x^2=10^2-8^2\\x^2=100-64\\x^2=36\\x=6[/tex]
Thus, the cos is 6/10, or 3/5
The electromotive force V of an alternating current circuit at time t can be describe by the
following function, where V is volts and t is in seconds. V(t) = 220sin(180πt). How many cycles
will the circuit run through in 1 minute?
Answer:
5400 cycles
Step-by-step explanation:
You have the following function:
[tex]V(t)=220sin(180\pi t)[/tex]
where t is in seconds.
In order to find the number of cycles in 1 minute, you first calculate the frequency of the function, which is given by:
[tex]f=\frac{180\pi}{2\pi}=90s^{-1}[/tex]
The number of cycles is then given by:
[tex]n=ft=(90s^{-1})(60s)=5400\ cycles[/tex]
There are 5400 cycles in 1 minute
here are members on the board of directors for a certain non-profit institution. a. If they must elect a chairperson, first vice chairperson, second vice chairperson, and secretary, how many different slates of candidates are possible? b. If they must form an ethics subcommittee of four members, how many different subcommittees are possible?
Answer: 1320; 495
Step-by-step explanation:
Explanation is in the attachment file
A random sample is drawn from a normally distributed population with mean μ = 31 and standard deviation σ = 1.9. Calculate the probabilities that the sample mean is less than 31.6 for both sample sizes
Answer:
For sample size n = 39 ; P(X < 31.6) = 0.9756
For sample size n = 76 ; P(X < 31.6) = 0.9970
Step-by-step explanation:
Given that:
population mean μ = 31
standard deviation σ = 1.9
sample mean [tex]\overline X[/tex] = 31.6
Sample size n Probability
39
76
The probabilities that the sample mean is less than 31.6 for both sample size can be computed as follows:
For sample size n = 39
[tex]P(X < 31.6) = P(\dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}})[/tex]
[tex]P(X < 31.6) = P(\dfrac{31.6 - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{39}}})[/tex]
[tex]P(X < 31.6) = P(Z< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{39}}})[/tex]
[tex]P(X < 31.6) = P(Z< \dfrac{0.6}{\dfrac{1.9 }{6.245}})[/tex]
[tex]P(X < 31.6) = P(Z< 1.972)[/tex]
From standard normal tables
P(X < 31.6) = 0.9756
For sample size n = 76
[tex]P(X < 31.6) = P(\dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}})[/tex]
[tex]P(X < 31.6) = P(\dfrac{31.6 - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{76}}})[/tex]
[tex]P(X < 31.6) = P(Z< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{76}}})[/tex]
[tex]P(X < 31.6) = P(Z< \dfrac{0.6}{\dfrac{1.9 }{8.718}})[/tex]
[tex]P(X < 31.6) = P(Z< 2.75)[/tex]
From standard normal tables
P(X < 31.6) = 0.9970
Simplifying Rational Expressions: I need answers for both 7 and 8 below. Answers for just one or the other is also fine.
Answer:
1. Option A 2. Option DStep by step explanation
1. [tex] \frac{1}{1 - x} + \frac{x}{ {x}^{2} - 1} [/tex]
Use [tex] \frac{ - a}{b} = \frac{a}{ - b} = - \frac{a}{b} [/tex] to rewrite the fractions
[tex] - \frac{1}{x - 1} + \frac{x}{(x - 1)(x + 1)} [/tex]
Write all numerators above the Least Common Denominator ( X - 1 ) ( X + 1 )
[tex] \frac{ - (x + 1) + x}{(x - 1)(x + 1)} [/tex]
When there is a ( - ) in front of an expression in parentheses , change the sign of each term in the expression
[tex] \frac{ - x - 1 + x}{(x - 1)(x + 1)} [/tex]
Using [tex](a - b)(a + b) = {a}^{2} - {b}^{2} [/tex] , simplify the product
[tex] \frac{ - x - 1 + x}{ {x}^{2} - 1 } [/tex]
Since two opposites add up to zero, remove them from the expression
[tex] \frac{ - 1}{ {x}^{2} - 1} [/tex]
So, Option A is the right option.
___________________________________
2.
[tex] \frac{ {x}^{2} - x - 12}{ {x}^{2} - 16} - \frac{1 - 2x}{x + 4} [/tex]
Write - X as a difference
[tex] \frac{ {x}^{2} + 3x - 4x - 12 }{ {x}^{2} - 16 } - \frac{1 - 2x}{x + 4} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] , factor the expression
[tex] \frac{ {x}^{2} + 3x - 4x - 12 }{(x - 4)(x + 4)} - \frac{1 - 2x}{x + 4} [/tex]
Factor the expression
[tex] \frac{x(x + 3) - 4(x + 3)}{(x - 4)(x + 4)} - \frac{1 - 2x}{x + 4} [/tex]
Factor out X+3 from the expression
[tex] \frac{(x + 3)(x - 4)}{(x - 4)(x + 4)} - \frac{1 - 2x}{x + 4} [/tex]
Reduce the fraction with x-4
[tex] \frac{x + 3}{x + 4} - \frac{1 - 2x}{x + 4} [/tex]
Write all the numerators above the common denominator
[tex] \frac{x + 3 - ( 1- 2x)}{x + 4} [/tex]
When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression
[tex] \frac{x + 3 - 1 + 2x}{x + 4} [/tex]
Collect like terms
[tex] \frac{3x + 3 - 1}{x + 4} [/tex]
Subtract the numbers
[tex] \frac{3x + 2}{x + 4} [/tex]
Undefined at,
X + 4 = 0
Move constant to R.H.S and change its sign
[tex]x = 0 - 4[/tex]
Calculate
[tex]x = - 4[/tex]
So, the answer is :
[tex] \frac{3x + 2}{x + 4} [/tex] , undefined at X = -4 and 4
Hope this helps..
Best regards!!
√ (952.695) + √0.00195 – 5.382 please help Thank you to whoever helps
Answer:
25.52791653032955454422437424679625318128649677442393276098...
Step-by-step explanation:
You can just paste this into wolframalpha.
Answer: 970.72312
Step-by-step explanation:
Straightforward operation.
Help please you need to find the rise in the blue triangle. Thank you!!
Answer:
12.65
Step-by-step explanation:
In the case of the blue triangle, to calculate the rise, which would be the increase, therefore it would be the hypotenuse formed by the arrow.
We have to Pythagoras is:
h ^ 2 = a ^ 2 + b ^ 2
In this case:
a (x-axis) = 4
b (y-axis) = 12
replacing:
h ^ 2 = 4 ^ 2 + 12 ^ 2
h ^ 2 = 160
h = 12.65
Which means that the rise in the blue triangle is 12.65 units
Evaluate the following: 3 to the power 2 ÷ (2 + 1). 2 3 4 5
Answer:
3
Step-by-step explanation:
Please help this is a new topic for me.
Answer:
last answer
Step-by-step explanation:
P' (2, -4)
Q' (-2, -5)
R' (1, -8)
Answer:
C. P'(2, -4) Q'(-2, -5) R'(1, -8)
Step-by-step explanation:
When you reflect something across the y-axis you change (x,y) to (-x,y).
For each point, change the x to a negative x.
P(-2, -4) --> P'(2, -4)
Q(2, -5) --> Q'(-2, -5)
R(-1, -8) --> R'(1, -8)
Hope this helps. If you have any follow-up questions, feel free to ask.
Have a great day! :)
If $a$ and $b$ are integers, such that $a\not= 0$ and $b\not= 0$ and $a^2$ and $b^2$ have at most two digits, what is the greatest possible difference between the squares of $a$ and $b?$
Answer:
80
Step-by-step explanation:
t is important to note that a square of any non-zero integer is positive, and therefore there is no advantage in using negative integers instead of positive integers to attain the greatest difference of squares. So we will not consider negative integers.
The greatest value of a^2 - b^2 occurs when a^2 is at its largest and b^2 is at its smallest.
The larger a, the larger a^2:
8 ^ 2 = 64
9 ^ 2 = 81
10 ^ 2= 100
Since a^2 can have at most two digits, a=10 is too large, and so a=9 is the largest integral value of a we can use.
Now, b^2 is at its smallest when b is closest to zero on the number line (the further b gets from zero, the larger its square becomes):
2 ^ 2 = 4
1 ^ 2 =1
0 ^ 2 = 0
Remember to go back to the original problem sometimes, to make sure you are taking everything into account. It states b doesn't =0, and therefore the b=1 is the closest b can get to zero as an integer. So, the greatest difference between b^2 and a^2 is when b=1 and a=9, giving the result:
a^2-b^2 =9^2-1^2 =81-1= 80.
So, 80 is your answer.
Help please!! Thanks!!!
Answer:
your answer is k
Step-by-step explanation:
not all the isosceles triangles are similar
YoIn a sale, the normal price of a book is reduced by 30%. The sale price of the book is £2.80 Work out the normal price of the book.
Answer: £4
Step-by-step explanation:
From the question, we are informed that when the normal price of a book is reduced by 30%, then the sale price of the book is £2.80.
Since the normal price of a book is reduced by 30%, that means the book is sold at (100% - 30%) = 70% of its normal price.
Let the normal price of the book be y.
70% of y = £2.80
70/100 × y = £2.80
0.7 × y = £2.80
0.7y = £2.80
y = £2.80/0.7
y = £4
The normal price of the book is £4.
area of parallelogramis 30 cm^2. if the length of two adjacent sides are 6 cm and 10 cm respectively. find its diagonal
Answer:
the long diagonal d=15.49 ( rounded to the nearest hundredth)
the shortest d=√136-120(cos 30)=5.663 ( rounded to the nearest hundredth)
Step-by-step explanation:
Area=height * base
30=h*6
h=30/6=5 cm
height=asinФ
sinФ=5/10=1/2 (Ф=30)
alternate angle=180
180-30=150 degrees
diagonal²=a^2+b^2-2abcos150
d²=10²+6²-2(10)(6)(-√3/2)
d=√136+60(√3)
the long diagonal d=15.49 ( rounded to the nearest hundredth)
the shortest d=√136-120(cos30)=5.663
Jim's living room is 23 feet wide and 25 feet long. He wants to put a border around the top of the room. The cost of the border is $1.00 per foot. How much will it cost to buy enough of the border to go around the room?
Answer:
$96.00
Step-by-step explanation:
Perimeter formula, 2w+2l
2(23)+2(25)=96 feet
1$ per foot
96 feet,
so $96
Answer:
I think it 96.00
Step-by-step explanation:
Please help with 4.)
WILL MARK BRAINLIEST X
Answer:
a) More.
b) Less.
c) More.
Step-by-step explanation:
a) If you invest $10 with an interest rate of 50% (that's very high I know XD), you would earn 10 / 2 = $5 in interest. If you invest $100 with an interest rate of 50%, you would earn 100 / 2 = $50 in interest. So, the more principal invested, the more interest earned.
b) Let's say you are investing $100. If there is an interest rate of 50%, as stated before, you would earn $50 in interest. If the interest rate were lowered to 25%, you would earn 100 / 4 = $25 in interest. So, the lower the interest rate, the less the interest.
c) The same exact thing as part a.
Hope this helps!
Lines AB and CD are parallel. If ∠3 measures (3x + 20)°, and ∠4 measures 70°, which equation could be used to solve for x
Answer:
(3x + 20)° + 70° = 180°
Step-by-step explanation:
What is 7/35 converted into a decimal??
Answer:
0.2
Step-by-step explanation:
it works out to be 0.2 as a decimal and 20% as a percentage.
Answer:
.2
Step-by-step explanation:
I need help with solving this problem 4x-c=k
Answer:
x=1/4c+1/4k
Step-by-step explanation:
4x-c=k
move c over
4x=c+k
then divide by 4
x=1/4c+1/4k
hope this helps
$70 discounted to $63
Answer:
10% off
Step-by-step explanation:
When $70 is discounted to $63, you can multiply 70 times 0.1 to get 7 which 70-63=7. To make 0.1 to a percentage, multiply by 100 to get 10%.
Hope this helps!!! PLZ MARK BRAINLIEST!!!
please answer this A bicycle store costs $2400 per month to operate. The store pays an average of $60 per bicycle that is sold in the shop. This is called a company’s overhead. The average selling price of each bicycle is $120. How many bicycles must the store sell each month to break even? A bicycle store costs $2400 per month to operate. The store pays an average of $60 per bicycle that is sold in the shop. This is called a company’s overhead. The average selling price of each bicycle is $120. How many bicycles must the store sell each month to break even?
Answer: The store must sell 40 bikes.
Step-by-step explanation:
y=60x+2400
y=120x
120x=60x+2400
-60x on both sides
60x=2400
divide 60 on both sides
2400/60=40
x=40
Suppose $600 is compounded yearly for 20 years. If no other deposits are made, what rate is needed for the balance to triple in that time? Round your answer to the nearest hundredth of a percent.
Answer:
5.65%
Step-by-step explanation:
Principal=$600
Time=20 years
FV=600*3=$1800
n=1
r=?
r= n[(A/P)^1/nt - 1]
=1{(1800/600)^ 1/1*20 - 1}
={(3)^1/20-1}
=3^0.05-1
=1.0565-1
=0.0565
rate=0.0565*100
=5.65% to the nearest hundredth percent
Please help, thanks :) (Question is attached below)
Answer:
Step-by-step explanation:
the upper left graph is the correct answer
because "... or equal to" always represents a filled dot, while just "greater/less than" represents blank dot
work out the shaded area.
plzzzz
Answer:
Shaded area: 70cm^2
Step-by-step explanation:
Whole=120cm^2
White Square=
10-2.5-2.5=5
12-1-1=10
5✖️10=50cm^2
Whole-white=70cm^2
The arm and blade of a windshield wiper have a total length of 30 inches. The blade is 24 inches long and the wiper sweeps out an angle of 125 degrees.
Answer:
942.5 in²
Step-by-step explanation:
The formula for the area (A) of a sector of a circle is
A = ½r²θ
where θ is the angle in radians.
1. Convert the angle to radians
θ = 125°
[tex]\theta = 125^{\circ} \times \dfrac{\pi \text{ rad }}{180^{\circ}} =\frac{25}{36} \pi\text{ rad}[/tex]
2. Area swept out by wiper arm
A = ½r²θ = ½ × (30 in)² × θ = ½ × 900 in²× θ = 450 θ in²
3. Area missed by wiper
A = ½r²θ = ½ × (6 in)² × θ = ½ × 36 in²× θ = 18 θ in ²
4. Area covered by wiper
A = 450 θ in² - 18 θ in² = 432 θ in²
5. Insert the value of θ
A = 432 × 25/36 π in² = 300π in² ≈ 942.5 in²
The area swept out by the wiper blade is 942.5 in².
Hi May I know how to solve this step by step please
Answer:
2, 3 , 5, 7
Step-by-step explanation:
2(x - 2)/3 < (x + 1)/2 < 3(5x + 6)/4
Considering:
2(x - 2)/3 < (x + 1)/2
<=>(2x - 4)/3 < (x + 1)/2
<=> (2x - 4)*2 < (x + 1)*3
<=> 4x - 8 < 3x + 3
<=> 4x - 3x < 8 + 3
<=> x < 11
Considering:
(x + 1)/2 < 3(5x + 6)/4
<=>(x + 1)/2 < (15x + 18)/4
<=>(x + 1)*4 < (15x + 18)*2
<=> 4x + 4 < 30x + 36
<=> 4x - 30x < 36 - 4
<=> -26x < 32
<=> 26x > -32
<=> x > -32/26
=> -32/26 < x < 11
The prime numbers satisfy the above inequalities: 2, 3 , 5, 7
The hypotnuse of a right triangle is three times the length of its first leg. Theblength of the other leg is four feet. Find the lengths of the first leg and the hypotnduse and enter them in the below squares in this order. For non-integer answer(s), round your answer(s) to the nearest tenth.
Answer:
Length of first leg = 1.4feet
Hypotenuse = 4.2feet
Explanation:
Since we are dealing with a right angled triangle, we will apply the Pythagoras theorem to solve the question. According to Pythagoras theorem, the square of the hypotenuse is equal to the sum if the square of the other two legs.
Mathematically, a² = b²+c² where a is the hypotenuse and b, c are the other two legs.
From the question, since hypotenuse of a right triangle is three times the length of its first leg, then a = 3b.
Also the other leg is four feet i.e c= 4
Substituting this values into the Pythagoras formula;
a²=b²+c²
(3b)² = b²+4²
9b² = b²+16
9b²-b² = 16
8b² = 16
b² = 16/8
b² = 2
b = √2
b = 1.4
Since a = 3b
a = 3(1.4)
a = 4.2
Hence, the length of the first leg is 1.4feet and that of the hypotenuse is 4.2feet both to the nearest tenth.
A collection of 108 coins containing only quarters and nickels is worth $21. A table titled Coin Collection showing Number of Coins, Value, and Total. The first row shows Nickels, and has n, 0.05, and 0.05 n. The second row shows, Quarters, and has q, 0.25, and 0.25 q. The third row shows total, and has not entries. Which value could replace q on the chart? 21 108 21 – n 108 – n
Answer:
q = 108-n
Step-by-step explanation:
Given: 108 coins containing only quarters and nickels
q = 108-n
since total number of coins is 108, and n= number of nickels
If you want to know how many of each kind of coin, read on:
First solve the number of quarters and nickels.
If all 108 coins are quarters, the value is 108*0.25 = $27
Since this value exceed the actual by 27-21 = $6,
we replace a number of quarters by nickels.
Each replacement will reduce the value by 25 - 5 = 20 cents = 0.2 dollars.
So it will take 6/0.2 = 30 replacements.
Therefore there are 108-35 = 78 quarters and 30 nickels.
The solution is : q = 108-n, is the value could replace q on the chart.
What is multiplication?In mathematics, multiplication is a method of finding the product of two or more numbers. It is one of the basic arithmetic operations, that we use in everyday life.
here, we have,
Given:
108 coins containing only quarters and nickels
q = 108-n
since total number of coins is 108, and n= number of nickels
If you want to know how many of each kind of coin, read on:
First solve the number of quarters and nickels.
If all 108 coins are quarters, the value is 108*0.25 = $27
Since this value exceed the actual by 27-21 = $6,
we replace a number of quarters by nickels.
Each replacement will reduce the value by 25 - 5 = 20 cents = 0.2 dollars.
So it will take 6/0.2 = 30 replacements.
Therefore there are 108-35 = 78 quarters and 30 nickels.
The solution is : q = 108-n, is the value could replace q on the chart.
To learn more on multiplication click:
brainly.com/question/5992872
#SPJ7
A plumber wishes to cut a piece of pipe
32 inches long into two parts so that the
larger part is 4 inches less than three
times the smaller part. What are the
lengths of the two parts of the pipe?
Answer:
9 and 23
Step-by-step explanation:
Let x be smaller length in inches.
x+3x-4=32
4x=36
x=9
9*3-4=23
So they're 9 and 23 inches long.
The lengths of the two parts of the pipe are 9 and 23 inches long.
What is the unitary method?The unitary method is a method for solving a problem by the first value of a single unit and then finding the value by multiplying the single value.
Let x be the smaller length in inches.
x + 3x - 4 = 32
4x = 36
x =9
Now substitute;
9*3 - 4 = 23
Hence, the lengths of the two parts of the pipe are 9 and 23 inches long.
Learn more about the unitary method;
https://brainly.com/question/23423168
#SPJ2