Answer:
(a) The probability that a randomly selected time interval between eruptions is longer than 82 minutes is 0.3336.
(b) The probability that a random sample of 13-time intervals between eruptions has a mean longer than 82 minutes is 0.0582.
(c) The probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 minutes is 0.0055.
(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.
(e) The population mean must be more than 72, since the probability is so low.
Step-by-step explanation:
We are given that a geyser has a mean time between eruptions of 72 minutes.
Also, the interval of time between the eruptions be normally distributed with a standard deviation of 23 minutes.
(a) Let X = the interval of time between the eruptions
So, X ~ N([tex]\mu=72, \sigma^{2} =23^{2}[/tex])
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean time = 72 minutes
[tex]\sigma[/tex] = standard deviation = 23 minutes
Now, the probability that a randomly selected time interval between eruptions is longer than 82 minutes is given by = P(X > 82 min)
P(X > 82 min) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{82-72}{23}[/tex] ) = P(Z > 0.43) = 1 - P(Z [tex]\leq[/tex] 0.43)
= 1 - 0.6664 = 0.3336
The above probability is calculated by looking at the value of x = 0.43 in the z table which has an area of 0.6664.
(b) Let [tex]\bar X[/tex] = sample mean time between the eruptions
The z-score probability distribution for the sample mean is given by;
Z = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean time = 72 minutes
[tex]\sigma[/tex] = standard deviation = 23 minutes
n = sample of time intervals = 13
Now, the probability that a random sample of 13 time intervals between eruptions has a mean longer than 82 minutes is given by = P([tex]\bar X[/tex] > 82 min)
P([tex]\bar X[/tex] > 82 min) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{82-72}{\frac{23}{\sqrt{13} } }[/tex] ) = P(Z > 1.57) = 1 - P(Z [tex]\leq[/tex] 1.57)
= 1 - 0.9418 = 0.0582
The above probability is calculated by looking at the value of x = 1.57 in the z table which has an area of 0.9418.
(c) Let [tex]\bar X[/tex] = sample mean time between the eruptions
The z-score probability distribution for the sample mean is given by;
Z = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean time = 72 minutes
[tex]\sigma[/tex] = standard deviation = 23 minutes
n = sample of time intervals = 34
Now, the probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 minutes is given by = P([tex]\bar X[/tex] > 82 min)
P([tex]\bar X[/tex] > 82 min) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{82-72}{\frac{23}{\sqrt{34} } }[/tex] ) = P(Z > 2.54) = 1 - P(Z [tex]\leq[/tex] 2.54)
= 1 - 0.9945 = 0.0055
The above probability is calculated by looking at the value of x = 2.54 in the z table which has an area of 0.9945.
(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.
(e) If a random sample of 34-time intervals between eruptions has a mean longer than 82 minutes, then we conclude that the population mean must be more than 72, since the probability is so low.
Answer:
The probability that a randomly selected time interval between eruptions is longer than 82minutes = [tex]0.3336[/tex]The probability that a random sample of 13 time intervals between eruptions has a mean longer than 82 minutes = [tex]0.0594[/tex]The probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 minutes = [tex]0.0057[/tex]Step-by-step explanation:
From the given data
mean, u = 72
Standard deviation [tex]\rho[/tex] = 23
A) Probability that a randomly selected time interval between eruptions is longer than 82minutes
[tex]P (x > 82) = P[\frac{x-u}{\rho} > \frac{82-72}{23}]\\\\P (x > 82) = P[z > 0.43]\\\\P (x > 82) = 0.3336[/tex]
B)
[tex]P (x > 82) = P[\frac{x-u}{\frac{\rho}{\sqrtn}} > \frac{82-72}{\frac{23}{\sqrt{13}}}]\\\\P (x > 82) = P[z > 1.5676]\\\\P (x > 82) = 0.0594[/tex]
C)
[tex]P (x > 82) = P[\frac{x-u}{\frac{\rho}{\sqrtn}} > \frac{82-72}{\frac{23}{\sqrt{34}}}]\\\\P (x > 82) = P[z > 2.5351]\\\\P (x > 82) = 0.0057\\\\[/tex]
D) If the mean is less than 82minutes, then the probability that the sample mean of the time between eruptions is greater than 83 minutes decrease because the variability in the sample mean decrease as the sample size increases
For more information on this visit
https://brainly.com/question/17756498
The Big Telescope Company sells circular mirrors. Their largest mirrors have radii of 5 meters and their smallest mirrors have radii of 1 meter. The cost of every mirror is proportional to the cube of the mirror's radius. What is the ratio of the total cost of 25 of the company's smallest mirrors to the cost of one of the company's largest mirrors? Express your answer as a common fraction.
Answer:
The answer is 1/5
Step-by-step explanation:
PLEASE PLEASE HELP IM BEING TIMED The two-way table represents data from a survey asking students whether they plan to attend college, travel, or both after high school. A 4-column table with 3 rows. The first column has no label with entries travel, not travel, total. The second column is labeled college with entries 43, 24, 67. The third column is labeled not college with entries 10, 5, 15. The fourth column is labeled total with entries 53, 29, 82. Which is the marginal relative frequency for students who plan to attend college? Round the answer to the nearest percent. 18% 22% 35% 82%
Answer: 82%
Step-by-step explanation:
- - - - - - - - college - - not college - - - - total
Travel - - - - 43 - - - - - - - 10 - - - - - - - - 53
Not travel - 24 - - - - - - - 5 - - - - - - - - - 29
Total - - - - 67 - - - - - - - 15 - - - - - - - - - 82
Marginal relative frequency of students who plan to attend college:
(Number of students who plan to attend the college / Total number of the students)
Number of students who plan to attend college = 67
total number of students = 82
Marginal relative frequency = 67/82
= 0.8170731
= (0.8170731) * 100%
= 81.7% = 82%
Answer:
a: 14/50
b: 15/50
c: 21/50
Step-by-step explanation:
on edge
To prove that the triangles are similar by the SAS similarity theorem, it needs to be shown that
is the folllowing shape a square? how do you know
Answer:If it has 4 equal sides
If the angles are 90°
Hope this may helps you
Answer:
A square is characterized by
4 equal sides.Each angle measures 90°Diagonals meet and bisect each other at 90°Opposite sides are parallel and equal.Diagonals are equal.Hope this helps ;) ❤❤❤
Find the area of an equilateral triangle (regular 3-gon) with 6-inch sides. Round your answer to the nearest hundredth.
Answer:
15.59 in^2
Step-by-step explanation:
The area of an equilateral triangle with side length "s" is given by ...
A = (√3)/4·s^2
Filling in your numbers, we have ...
A = (√3)/4·(6 in)^2 = 9√3 in^2
A ≈ 15.59 in^2
The area is about 15.59 square inches.
The side length of each square is 6 units. Find the areas of the inscribed shapes.
Answer:
a) A₁ = 18 unit²
b) A₂ = 20 unit²
c) A₃ = 12 unit²
d) A₄ = 12 unit²
Step-by-step explanation:
a) Given that the side length of square is 6 units, we have;
The height of the square = The height of the triangle = 6 units
The base of the triangle = The side length of the square = 6 units
The area of a triangle A₁ = 1/2×base×height = 1/2×6×6 = 18 unit²
b) The side of the square A₂ forms an hypotenuse side to the side length 2 and 4 on sides of the circumscribing square
The length of the side = √(4^2 + 2^2) = 2·√5
A₂ = The area of a square =Side² = (2·√5)² = 20 unit²
c) The base length of the triangle, A₃ + 2 = The side length of the circumscribing square = 6 units
∴ The base length of the triangle, ₃₂ = 6 - 2 = 4 units
The height of the triangle, A₃ = The side length of the circumscribing square = 6 units
The area of a triangle A₃ = 1/2×base×height = 1/2×4×6 = 12 unit²
d) Figure, A₄, is a parallelogram;
The area of a parallelogram = Base × Height
The base of the parallelogram, A₄ + 4 = 6 units
Therefore, the base of the parallelogram, A₄ = 6 - 4 = 2 units
The height of the parallelogram = The side length of the circumscribing square = 6 units
The area of a parallelogram A₄ = 2× 6 = 12 unit².
Real solutions please WILL GIVE BRAINLIEST
Answer:
the answer is A=2
Step-by-step explanation:
a real solution is a solution that uses real numbers. This equation has 2 real solutions.
Answer:
A. 2 real solutions
Step-by-step explanation:
One graph is a parabola and 1 graph is a straight line and they intersect twice.
A solid square pyramid has a mass of 750 g. It is made of a material with a
density of 8.05 g/cm'. Given that the height of the pyramid is 13.5 cm, find the
length of its square base.
Answer:
4.55cmStep-by-step explanation:
The unit of a volume: [tex]cm^3[/tex]
The unit of a density: [tex]\dfrac{g}{cm^3}[/tex]
The density is [tex]\dfrac{mass}{volume}[/tex]
Substitute:
[tex]\dfrac{8.05g}{cm^3}=\dfrac{750g}{V}[/tex]
cross multiply
[tex]8.05gV=750gcm^3[/tex]
divide both sides by 8.05g
[tex]V\approx93.17cm^3[/tex]
The formula of a volume of a square pyramid:
[tex]V=\dfrac{1}{3}a^2H[/tex]
a - length of square base
H - height of a pyramid
We have:
[tex]V=93.17cm^3;\ H=13.5cm[/tex]
Substitute:
[tex]93.17=\dfrac{1}{3}a^2(13.5)[/tex]
multiply both sides by 3
[tex]279.51=13.5H[/tex]
[tex]297.51=13.5a^2[/tex]
divide both sides by 13.5
[tex]a^2\approx20.7\to a=\sqrt{20.7}\approx4.55(cm)[/tex]
Answer:
Step-by-step explanation:
volume of pyramid=1/3×base area×height
let the length of base=x
base area=x²
volume V=1/3×x²×13.5=4.5 x²
mass=volume×density
750=4.5 x²×8.05=36.225 x²
x²=750/36.225
x=√(750/36.225)≈4.55 cm
The surface area of a sphere is 3000 m square units. What is the volume of the sphere to the nearest hunderedth?
Answer:
The answer is
15448m³Step-by-step explanation:
To find the volume of the sphere we must first find the radius
Surface area of a sphere = 4πr²
where r is the radius
From the question surface area = 3000m²
3000 = 4πr²
Divide both sides by 4π
750/π = r²
Find the square root of both sides
r = 15.45 cm
Volume of a sphere is 4/3πr³
So we have
4/3π(15.45)³
= 15448.06
= 15448m³ to the nearest hundredth
Hope this helps you
Which way would you choose to solve 3/x=6/14 ?
Explain your reasoning.
Answer:
I'd cross multiply to solve this equation.
Step-by-step explanation:
Since we have a fraction where we're finding a ratio:
[tex]\frac{3}{x} = \frac{6}{14}[/tex],
I'd find it easiest to cross multiply. This is because we are finding an equivalent to a ratio, so cross multiplication works best here.
Let's solve it.
[tex]14\cdot 3 = 42\\42\div6=7[/tex]
x = 7
Hope this helped!
what is a continent To eliminate the terms and solve for y in the fewest steps, by which constants should the equations be multiplied by before adding the equations together? First equation: 9x + 3y = -18 Second equation: 8x + 7y = 10
Answer:
To eliminate solve for y, we need to eliminate x and we will do that by multiplying the first equation by 8 and multiply the second equation by 9.
y=6
Step-by-step explanation:
In the equations:
9x + 3y = -18 -----------------------------------------------------------------(1)
8x + 7y = 10 --------------------------------------------------------------------(2)
To solve for y, we will have to eliminate x
To eliminate x, we will follow the steps below;
multiply equation (1) through by 8 and multiply equation (2) through by 9
The resulting equations are
72x + 24y = -144 ----------------------------------------------------------(3)
72x + 63y = 90 -----------------------------------------------------------(4)
Then we will go ahead and subtract equation (4) from equation (3)
39y =234
divide both-side of the equation by 39
39y /39=234/39
y=6
the slope of the line below is -5 which of the following is the point slope form of the line (4,-8)
Answer:
y + 8 = -5(x - 4).
Step-by-step explanation:
In this case, y1 = -8, x1 = 4, and m = -5.
y - (-8) = -5(x - 4)
y + 8 = -5(x - 4).
Hope this helps!
Which equation represents the line that passes through (-6, 7) and (-3, 6)?
y=-*x+9
y=-*x+5
y=-3x – 1ly
y=-3x + 25
Answer:
y = -3x - 11
Step-by-step explanation:
(y - y1)/(x - x1) = (x2 - x1)/(y2 - y1)
(y - 7)/(x + 6) = (-3 + 6)/(6 - 7)
(y - 7)/(x + 6) = 3/-1 = -3
y - 7 = -3(x + 6)
y - 7 = -3x - 18
y = -3x -18 - 7
y = -3x - 11
A walking path across a park is represented by the equation y=-3x - 3.A
new path will be built perpendicular to this path. The paths will intersect at
the point (-3,6). Identify the equation that represents the new path.
Answer:
[tex]y=\frac{1}{3} x+7[/tex]
Step-by-step explanation:
We need to find the equation of a line perpendicular to [tex]y=-3x-3[/tex], which passes through the point (-3, 6).
Recall that a line perpendicular to a line of the form: [tex]y=mx+b[/tex], must have a slope which is the opposite of the reciprocal of the slope of the original line. that is, a slope of the form;
[tex]slope=-\frac{1}{m}[/tex]
Then, in our case, since the original line has slope "-3", a perpendicular line to it should have a slope given by:
[tex]slope=-\frac{1}{-3} =\frac{1}{3}[/tex]
We now know the slope, and also a point for this new line, so we use the point-slope form of a line:
[tex]y-y_0=m_\perp\,(x-x_0)\\y-6=\frac{1}{3} (x-(-3))\\y-6=\frac{1}{3} x+\frac{3}{3} \\y-6=\frac{1}{3} x+1\\y=\frac{1}{3} x+7[/tex]
The graph of f(x) = 2x3 – 19x2 + 57x – 54 is shown below.
On a coordinate plane, a graph of a function is in quadrants 1 and 4. The function goes through the x-axis at (2, 0), (3, ), and (4.5, 0).
How many roots of f(x) are rational numbers?
0
1
2
3
Mark this and return
Answer:
it'd be 3! :)
Step-by-step explanation:
took quiz
to be sure, the graph goes like
/ , then a hill like shape, then goes U, and then goes up
The number of rational roots of the equation are 3.
What is the root of an equation?The root of an equation are the solutions to an equation. The equation as shown is a cubic equation hence will have three roots shows as (2, 0), (3, 0), and (4.5, 0).
It thus implies from the foregoing that the number of rational roots of the equation are 3.
Learn more about root of an equation:https://brainly.com/question/12029673
#SPJ5
help me out with a and b
i Will give brainliest and follow you back if you answer first.
Answer:
Step-by-step explanation:
A = {2,8,10,14}
B= {6,8,20}
C={8,18,20,24}
A ∩ B --> intersection means elements that are in both sets A & B
A ∩ B = {8}
A∩ C = {8}
B ∩ C = {8 , 20}
A∩B ∩ C = {8}
First blue box = { 2,10, 14}
Second blue box = {18, 24}
First green box = { 8}
Second green box = { 20}
b) A ∩ B = {8}
n [ A ∩ B] = 1
Probability of the number to be a member of A∩B = 1 / 25
Need help ASAP please
If some of the omitted variables, which you hope to capture in the changes analysis, in fact change over time within entity, then the FE estimator a. will be unbiased only when allowing for heteroskedastic-robust standard errors. b. may still be biased. c. will only be unbiased in large samples. d. will always be unbiased.
Answer:
d. will always be unbiased.
Step-by-step explanation:
When some of variables are omitted the estimator on indulge charge regressor may still be unbiased. If there is a special case where T = 2 then the FE estimator will be unbiased. Fixed effect regression model has different intercepts.
Write a polynomial f(x) that satisfies the given conditions.
8
Degree 3 polynomial with integer coefficients with zeros -5i and
5
Answer:
f(x) = x^3 -5x^2 +25x -125
Step-by-step explanation:
For zero x=a, one of the factors is (x -a). If the polynomial has integer coefficients, its complex roots come in conjugate pairs. So, the roots are ...
roots: -5i, 5i, 5
factors: (x -(-5i))(x -5i)(x -5)
Multiplying these out gives your polynomial as ...
f(x) = (x^2 +25)(x -5)
f(x) = x^3 -5x^2 +25x -125
What is the best first step to solve this equation 8x =25 ?
Hey there!
"8x = 25"
In order for you to solve for "x-value" (or the equation) we have to DIVIDE both of your sides by 8
8x/8 = 25/8
Cancel out: 8x/8 because that gives you the value of 1 and you don't need it at the moment (in that equation that is)
Keep: 25/8 Because it solves for your equation
Your x equals: 25/8 aka 1 1/8 aka 3.125 (you could choose any one of these as your answer because they are all correct)
Good luck on your assignment and enjoy your day!
~LoveYourselfFirst:)
A paintball court charges an initial entrance fee plus a fixed price per ball. P represents the total price (in dollars) as a function of the number of balls used n P=0.80n+5.50 What is the price for 10 balls, not including the entrance fee?
Answer:
$8
Step-by-step explanation:
It says P = per ball (which will be a number, n, for balls times the fixed price) plus a set entrance fee. So we find that the price per ball is $0.80, so 10 balls cost $8.
Answer:
$8
Step-by-step explanation:
The equations 9 x minus 10 y = 6, 8 x minus 10 y = negative 23, 9 x + 10 y = negative 16, and 8 x + 10 y = 13 are shown on the graph below. On a coordinate plane, there are 4 lines. Green line goes through (negative 2, 0.75) and (negative 2, 1.5). Blue line goes through (negative 1.75, 0) and (1, negative 2). Pink line goes through (negative 1.5, negative 2), and (1.5, 0.75). Purple line goes through (0, 1.25) and (1, 0.5). PLEASE ANSWER IS 2 MINUTES WILL GIVE BRAINLIEST Which is the approximate solution for the system of equations 8 x minus 10 y = negative 23 and 9 x + 10 y = negative 16? (–2.3, 0.5) (–2.5, 1) (–2.3, –0.5) (–2.5, –1)
Answer:
Step-by-step explanation:
The two equations are 8x-10y=-23 and 9x+10y=-16.
If you plug them both into a graphing calculator, you will see that the point where they cross (the solution) is (-2.3, 0.5).
The answer is A.
Answer:
i think it is A
Step-by-step explanation:
if right pls give brainliest
Nvm it is right pls give brainliest i need 5 to get to next rank
A drone is monitoring the atmospheric conditions above a farm field. The drone hovers 5 meters above the crop line. Suddenly, it rises to approximately 5.9 meters (which takes 1.9 seconds) to avoid colliding with the sprinkler system. Based on this information, which equations could model the height, y, of the drone as a function of time, x?
Answer:
The correct options are;
g(x) = -0.27·x² + x + 5
h(x) = 2·㏒(x + 1) + 5
Step-by-step explanation:
To answer the question, we substitute x = 1.9 seconds into the given options as follows;
1) For f(x) = √(1.6·x) + 5
When x = 1.9 seconds, we have;
y = f(1.9) = √(1.6×1.9) + 5 = 6.74 which is not equal to the given height of 5.9 meters
Therefore, f(x) = √(1.6·x) + 5 does not model the height of the drone y as a function of time, x
2) For g(x) = -0.27·x² + x + 5
When x = 1.9 seconds, we have;
y = g(1.9) = -0.27×1.9^2 + 1.9 + 5 = 5.93 meters, which is approximately 5.9 meters to one place of decimal
Therefore, the function, g(x) = -0.27·x² + x + 5, approximately models the height of the drone y as a function of time, x
3) For h(x) = 2·㏒(x + 1) + 5
When x = 1.9 seconds, we have;
y = h(1.9) = 2·log(1.9 + 1) + 5 = 5.92 meters,
The function, h(x) = 2·㏒(x + 1) + 5, approximately models the height of the drone y as a function of time, x
4) For j(x) = -∛(-1.4·x - 1) + 5
When x = 1.9 seconds, we have;
y = j(1.9) = -∛(-1.4×1.9 - 1) + 5 = 6.54 meters
The function j(x) = -∛(-1.4·x - 1) + 5 does not model the height of the drone y as a function of time, x
5) For k(x) = -1.2·x³ + 2.6·x² - 0.5·x + 5
When x = 1.9 seconds, we have;
y = k(1.9) = -1.2×1.9^3 + 2.6×1.9^2 - 0.5×1.9 + 5 = 5.21 meters
Therefore, the function, k(x) = -1.2·x³ + 2.6·x² - 0.5·x + 5, does not model the height of the drone y as a function of time, x
A survey devices eyepiece is 6 feet off the ground. The device is placed 60 feet from a tree, the eyepiece must be elevated upwards at a 33 angle to see the top of the tree. How tall is the tree?
Greetings from Brasil...
Pure application of trigonometry - tangent
see the attachment
H = X + 6
and
TG 33 = X/60
X = 60.TG 33
X ≈ 39
H = X + 6
H = 39 + 6
H = 45A woman bought a cup
of beans for 12 and sold it
for ₦15. What was her
percentage profit
Answer:
25 %Step-by-step explanation:
Given,
Cost price ( CP ) = 12
Selling price ( SP ) = 15
Since, CP < SP , she made a profit
Actual profit = SP - CP
plug the values
[tex] = 15 - 12[/tex]
Subtract the numbers
[tex] = 3[/tex]
Profit = 3
Now,
Profit percent = [tex] \frac{actual \: profit}{cost \: price} \times 100[/tex] %
Plug the values
[tex] = \frac{3}{12} \times 100[/tex] %
Calculate
[tex] = 25[/tex] %
Hope this helps...
Best regards!!
Answer:
25%
Step-by-step explanation:
Cost Price: ₦12
Selling Price: ₦15
Profit: ₦15 - ₦12 = ₦3
Profit Percentage = [tex]\frac{profit}{cost price}[/tex] × [tex]\frac{100}{1}[/tex]
Profit Percentage = [tex]\frac{3}{12}[/tex] × [tex]\frac{100}{1}[/tex]
Profit Percentage = [tex]\frac{1}{4}[/tex] × [tex]\frac{100}{1}[/tex] = 25%
Final Answer = 25%
how many ways can you order a hot dog with the choices below?
Answer:
8
Step-by-step explanation:
2 x 2 x 2 = 8
you have 2 choices each time, with or without
Answer choice
C) All nonnegative real numbers
D) All positive integers
The number of boxes can't be negative or in fractions.
so the domain would be "All whole numbers from 0 to 10"
Answer:
A) All whole numbers from 0 to 10.
Step-by-step explanation:
The domain of a function is given by the available values of the independent variable.
In this case you have that the independent variable is the number of boxes, and the available values of this variable are integers in between 0 and 10, by including 0 and 10.
Then, the domain of the functions composed by all positive integers number from 0 to 10 including 0 and 10.
A) All whole numbers from 0 to 10.
What is the sine value of pi over 6? negative 1 over 2 1 over 2 negative square root 3 over 2 square root 3 over 2
Answer:
1/2
Step-by-step explanation:
[tex]sin(\frac{\pi }{6} )=\frac{1}{2}[/tex]
sin(pi) = 0
sin(7pi/6) = -1/2
sin(pi/6) = 1/2
sin 3pi/2 = -1
sin pi/2 = 1
sin pi/3 = √3/2
sin 4pi/3 = -√3/2
Answer:
1/2
Step-by-step explanation:
I got it right on the exam.
In one design being considered for the containers shaped like a rectangular prism, each
container will have a height of 114 inches and length of 74 inches. What will be the within
inches, of the container?
A.3
B.4
C.14
D.15
Answer:
your answer is A 3 inches
How to do this question plz answer
Answer:
126 cm³
Step-by-step explanation:
The volume (V) of the prism is calculated as
V = Al ( A is the cross sectional area and l the length ), thus
V = 21 × 6
= 126 cm³