Answer:
[tex]sin\theta = \sqrt{1-C^2}[/tex]
[tex]tan\theta = \dfrac{\sqrt{1-C^2}}{C}[/tex]
[tex]cot\theta = \dfrac{C}{\sqrt{1-C^2}}[/tex]
[tex]sec\theta = \dfrac{1}{C}}[/tex]
[tex]cosec\theta = \dfrac{1}{\sqrt{1-C^2}}[/tex]
Step-by-step explanation:
Given that:
[tex]\theta[/tex] is an angle in a right angled triangle.
and [tex]cos\theta = C[/tex]
To find:
To draw the triangle and write other five trigonometric functions in terms of C.
Solution:
We know that cosine of an angle is given by the formula:
[tex]cosx =\dfrac{Base}{Hypotenuse}[/tex]
Here, we are given that [tex]cos\theta = C[/tex] OR
[tex]cos\theta = \dfrac{C}{1}[/tex]
i.e. Base = C and Hypotenuse of triangle = 1
Please refer to the right angled triangle as per given statements.
[tex]\triangle PQR[/tex], with base PR = C units
and hypotenuse, QP = 1 unit
[tex]\angle R[/tex] is the right angle.
Let us use pythagorean theorem to find the value of perpendicular.
According to pythagorean theorem:
[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}[/tex]
[tex]1^{2} = C^{2} + QR^{2}\\\Rightarrow QR = \sqrt {1-C^2}[/tex]
[tex]sin\theta = \dfrac{Perpendicular}{Hypotenuse}\\\Rightarrow sin\theta = \dfrac{\sqrt{1-C^2}}{1}\\\Rightarrow sin\theta = \sqrt{1-C^2}[/tex]
[tex]tan\theta = \dfrac{Perpendicular}{Base}\\\Rightarrow tan\theta = \dfrac{\sqrt{1-C^2}}{C}[/tex]
[tex]cot\theta = \dfrac{Base}{Perpendicular}\\\Rightarrow cot\theta = \dfrac{C}{\sqrt{1-C^2}}[/tex]
[tex]sec\theta = \dfrac{Hypotenuse}{Base}\\\Rightarrow sec\theta = \dfrac{1}{C}}[/tex]
[tex]cosec\theta = \dfrac{Hypotenuse}{Perpendicular}\\\Rightarrow cosec\theta = \dfrac{1}{\sqrt{1-C^2}}[/tex]
Jennifer wants to see if the color of the testing room causes test anxiety. She asks 100 participants to come to a modified classroom, and as they walk in, she asks each person to choose either a testing cubicle painted bright red or a testing cubicle painted off white. On the basis of their choices, participants spend 20 minutes in one or the other cubicle solving challenging math problems. Then, they complete a survey asking them questions about how anxious they were during the math test. What's wrong with Jennifer's experiment?
Answer: Jennifer didn't randomly assign participants to the control and experimental group.
Step-by-step explanation: In the scenario discussed above, Jennifer failed to perform a random assignment of the participants who took part in the survey, that is the experimental group, those who receive the treatment and the control group, those who don't. Random assignment is required in other to address the issue of bias in our experiment. She was supposed to perform a random assignment of the participants to the two groups instead of asking them to make a choice.
Which values for h and k are used to write the function f of x = x squared + 12 x + 6 in vertex form?
h=6, k=36
h=−6, k=−36
h=6, k=30
h=−6, k=−30
Answer:
h=−6, k=−30
Step-by-step explanation:
did on edge
Considering the equation of the parabola, the coefficients of the vertex are:
h=−6, k=−30
What is the vertex of a quadratic equation?A quadratic equation is modeled by:
[tex]y = ax^2 + bx + c[/tex]
The vertex is given by:
[tex](h,k)[/tex]
In which:
[tex]h = -\frac{b}{2a}[/tex]
[tex]k = -\frac{b^2 - 4ac}{4a}[/tex]
In this problem, the equation is:
[tex]f(x) = x^2 + 12x + 6[/tex]
Hence the coefficients are a = 1, b = 12, c = 6, thus:
[tex]h = -\frac{12}{2} = -6[/tex]
[tex]k = -\frac{120}{4} = -30[/tex]
More can be learned about the equation of a parabola at https://brainly.com/question/24737967
At the end of any year a car is worth 5%
less than what it was worth at the beginning
of the year. If a car was worth $9 500 in
December 2016, then its value in January
2016 was
Answer:
Step-by-step explanation:
Multiply $9500 by .05 (5%) to get 475. That is 5% of $9500. Now subtract 475 from 9500 to get 9025. That is your answer!
The value of car in month of January is, [tex]\$ 9975[/tex]
Percentage :It is given that, At the end of any year a car is worth 5% less than what it was worth at the beginning of the year.
Since, car was worth $9 500 in December 2016.
Then, the value of car in month of January is, 105 % of value of car in moth of December.
So that, value of car in month of January is,
[tex]=9500*\frac{105}{100}\\ \\=9500*1.05=9975[/tex]
The value of car in month of January is, [tex]\$ 9975[/tex]
Learn more about percentage here:
https://brainly.com/question/24304697
The diagonals of a rhombus are 12cm and 16cm.Find the length of each side.
Answer:Let PQRS to be the rhombus where PQ=12cm and RS = 16cm
step 1:let,PQ and RS intersect each other at O.Now, diagonals of rhombus bisect each other at right angles.
STEP 2:Since POQ is a right angled triangle, by pythagoras theoram.
STEP 3:After applying formula , PQ =10cm .length of each side of rhombus is 10cm.
Step-by-step explanation:
Answer:
10cm
Step-by-step explanation:
As you can see in the first image is a rhombus with its diagonals 12cm and 16cm
You can see that the diagonals divide the rhombus into four right triangles and that the hypotenuse of each triangle is one side of the rhombus.
In the second image I picked out one triangle from the rhombus and slashed the length of the diagonals of the rhombus in half to get the sides of the triangle.
Now all you have to do is use the Pythagorean theorem to find the hypotenuse of the triangle which will give you the length of side of rhombus
6² + 8² = hypotenuse²
36 + 64 = h²
100 = h²
h = √100
h = 10
All the side of the rhombus are equal so all the sides of the rhombus are 10cm
The amount that two groups of students spent on snacks in one day is shown in the dot plots below. Which statements about the measures of center are true? Select three choices. The mean for Group A is less than the mean for Group B. The median for Group A is less than the median for Group B. The mode for Group A is less than the mode for Group B. The median for Group A is 2. The median for Group B is 3.
Answer:
The mean for Group A is less than the mean for Group B. The median for Group A is less than the median for Group B.The mode for Group A is less than the mode for Group B.Step-by-step explanation:
First, we can find the measures of center for each group.
Group A
Mode: 1
Median: (1 + 2) / 2 = 3 / 2 = 1.5
Mean: (1 * 5 + 2 * 4 + 3) / 10 = (5 + 8 + 3) / 10 = 16 / 10 = 1.6
Group B
Mode: 3
Median: 92 + 3) / 2 = 5 / 2 = 2.5
Mean: (1 * 3 + 2 * 2 + 3 * 4 + 5) / 10 = (3 + 4 + 12 + 5) / 10 = 24 / 10 = 2.4
From here, we can see that...
The mean for Group A is less than the mean for Group B. The median for Group A is less than the median for Group B.The mode for Group A is less than the mode for Group B.Hope this helps!
Answer:
ABC
Step-by-step explanation:
A play school is designing two sand pits in ts play area . Each must have an area of 36 m2 . However , one of the sand pits must be rectangular , and the other must be square haped . What might be the dimensions of ach of the sand pits ?
Answer:
Dimensions of square shaped pit = 6m [tex]\times[/tex] 6m
Dimensions of rectangular pit = 1m [tex]\times[/tex] 36m or 2m [tex]\times[/tex] 18m or 3m [tex]\times[/tex] 12m or 4m [tex]\times[/tex] 9m
Step-by-step explanation:
Given:
Two pits in the school playground area (one square shaped and one rectangular shaped).
Each pit must have an area = 36 [tex]m^2[/tex]
To find:
Dimensions of each pit = ?
Solution:
First of all, let us have a look at the formula for area of a square and a rectangle:
[tex]Area_{square} = (Side)^2[/tex]
[tex]Area_{Rectangle} = Length\times Width[/tex]
Now, let us try to find out dimensions of square:
[tex]36 = Side^2\\\Rightarrow Side = 6\ m[/tex]
So, dimensions of Square will be 6m [tex]\times[/tex] 6m.
Now, let us try to find out dimensions of rectangle.
[tex]36 = Length\times Width[/tex]
We are not given any restrictions on the Length and Width of the rectangle.
So, let us explore all the possibilities by factorizing 36:
[tex]36 = 1 \times 36\\36 = 2 \times 18\\36 = 3 \times 12\\36 = 4 \times 9[/tex]
6 [tex]\times[/tex] 6 factors not considered because then it will become a square and which is not the required case.
Dimensions of rectangular pit = 1m [tex]\times[/tex] 36m or 2m [tex]\times[/tex] 18m or 3m [tex]\times[/tex] 12m or 4m [tex]\times[/tex] 9m
At Camp Sunshine, 4 kids went home sick. Of the remaining campers, 18 kids went hiking and the other 41 kids spent the day swimming. How many kids started the day at Camp Sunshine?
Answer:
63 kids
Step-by-step explanation:
We can add up the number of students who went home sick, hiked, and swam to find the total amount of people.
[tex]4+18+41 = 63[/tex]
Therefore, 63 kids started their day at Camp Sunshine.
I get that feeling I oversimplified this one, let me know if I did. I'm not sure if this is right.
Answer:
63 kids
Step-by-step explanation:
We know that there are some kids who went home sick, some went hiking and some went swimming.
The total number of kids that started the day at Camp Sunshine can be found by adding the number who went home sick, went hiking and went swimming.
sick + hiking + swimming
4 went home sick, 18 went hiking and 41 went swimming.
4+ 18 + 41
Add the numbers together
22+ 41
63
63 kids started the day at Camp Sunshine.
Solve for x. (x+2)/3+(2x-4)/4=3
Answer:
x=4
Step-by-step explanation:
First you need to factor the equation. You can do this by multiplying the numbers by eachother so they have a denominatior of 12.
You would come out to have this...
((x+2)*4)/12 + ((2x-4)*3)/4=3
At this point you can combine the numerators over the common denominator.
((x+2)*4+(2x-4)*3)/12=3
You can now rewrite the equation into factored form.
5x-2/6=3
Multiply both sides of the equation by 6.
5x-2=18
move the terms not containing x to the right
5x=20
and divide by 5
x=4
Where is the function increasing?
A)1
B)3< X
C)-infinity < x < 1
D)-infinity
Answer:
A) [tex]1<x<\infty[/tex]
Step-by-step explanation:
Given:
A graph of a function.
When we analyze the given graph, it is of a parabola.
To find:
The interval of values of [tex]x[/tex] where the function is increasing.
Solution:
First of all, let us learn about the meaning of increasing and decreasing functions.
1. A function [tex]y=f(x)[/tex] is known as increasing in an interval [tex]a<x<b[/tex] when
Value of y keeps on increasing when we move from the value of x from a to b.
2. A function [tex]y=f(x)[/tex] is known as decreasing in an interval [tex]a<x<b[/tex] when
Value of y keeps on decreasing when we move from the value of x from a to b.
On analyzing the given graph , we can see that the graph is decreasing on the interval: [tex]-\infty<x<1[/tex]
and is increasing on the interval: [tex]1<x<\infty[/tex]
When we choose from the options,
The correct answer is option A) [tex]1<x<\infty[/tex]
For which system of equations would you need to estimate the solution?
On a coordinate plane, 2 lines intersect at (3, 0).
On a coordinate plane, 2 lines intersect around (negative 2.1, negative 3.5).
On a coordinate plane, 2 lines intersect at (negative 2, 3).
On a coordinate plane, 2 lines intersect at (2, 2).
Answer: It is option 2 or B
Step-by-step explanation: Simple and easy, the test said it was right too.
Find the perimeter of parallelogram AFCB.
A. 14
B. 12
C. 28
D. 24
Answer:
C.28
Step-by-step explanation:
It gives you 2 sides.
One of them is 8.
The other one is 12 but the 12 is divided by 2 which is 6.
Since it is a parallelogram there is the same measurements on the opposite sides.
So finally you get 6+6+8+8= 28
The perimeter of parallelogram AFCB is C. 28
How do you calculate a perimeter?
With the purpose to discover the perimeter or distance around the rectangle, we want to add up all four side lengths. this can be performed efficiently by using truly including the duration and the width, after which multiplying this sum by means of when you consider that there are of every facet length.
What is perimeter for instance?The Perimeter is the gap around the item. for instance, your own home has a fenced backyard. the perimeter is the length of the fence. If the yard is 50 toes × 50 feet your fence is 2 hundred feet long.
Learn more about Perimeter here https://brainly.com/question/397857
#SPJ2
Kaylee has $4,500 for a down payment and thinks she can afford monthly payments of $300. If he can finance a vehicle with a 7%, 4-year loan (assume a 0% tax rate), what is the maximum amount Kaylee can afford to spend on the car? [use the calculation in the text or the online calculators in the resource section]
Answer:
$17,028.06
Step-by-step explanation:
Given that :
Kaylee's down payment = $4500
monthly payment = $300
If he can finance a vehicle with a 7%, 4-year loan (assume a 0% tax rate).
the maximum amount Kaylee can afford to spend on the car is being calculated as the present value for all the payments.
= [tex]=\$4,500 +\dfrac{\$300}{(1+\frac{0.07}{12})} + \dfrac{\$300}{(1+\frac{0.07}{12})^2} +\dfrac{\$300}{(1+\frac{0.07}{12})^3} + ....+ \dfrac{\$300}{(1+\frac{0.07}{12})^{46}}+ \dfrac{\$300}{(1+\frac{0.07}{12})^{47}}+ \dfrac{\$300}{(1+\frac{0.07}{12})^{48}}[/tex]
Using the online desmos calculator to determine the maximum amount Kaylee can afford to spend on the car; we have:
= $17,028.06
What is the center of the circle with the equation (x-1)^2 + (y+3)^2= 9? a (1,3) b (-1,3) c (-1,-3) d (1,-3)
Answer:
The center is ( 1,-3) and the radius is 3
Step-by-step explanation:
The equation of a circle can be written in the form
( x-h)^2 + ( y-k) ^2 = r^2 where ( h,k) is the center and r is the radius
(x-1)^2 + (y+3)^2= 9
(x-1)^2 + (- -3)^2= 3^2
The center is ( 1,-3) and the radius is 3
What is the equation of the graphed line in standard form? y = 2x + 6 12x+y=6 12x−y=−6 −2x+y=6
Answer:
THe standard form of equation for a line is -2x+y=6
Step-by-step explanation:
THe standard equation has a form of Ax+ By=C, where A, B and C are constants.
12x-y=-6 is not a standard form of a line equation, because the value near you is negative, but should be positive. It would be this form if we would change it a little bit to the form:
-12x=y=6
Simplify
[tex]\ \textless \ br /\ \textgreater \ \sqrt[4]{16a^- 12}\ \textless \ br /\ \textgreater \ [/tex]
Answer:
[tex]\huge\boxed{\sqrt[4]{16a^{-12}}=2a^{-3}=\dfrac{2}{a^3}}[/tex]
Step-by-step explanation:
[tex]16=2^4\\\\a^{-12}=a^{(-3)(4)}=\left(a^{-3}\right)^4\qquad\text{used}\ (a^n)^m=a^{nm}\\\\\sqrt[4]{16a^{-12}}=\bigg(16a^{-12}\bigg)^\frac{1}{4}\qquad\text{used}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\=\bigg(2^4(a^{-3})^4\bigg)^\frac{1}{4}\qquad\text{use}\ (ab)^n=a^nb^n\\\\=\bigg(2^4\bigg)^\frac{1}{4}\bigg[(a^{-3})^4\bigg]^\frac{1}{4}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=2^{(4)(\frac{1}{4})}(a^{-3})^{(4)(\frac{1}{4})}=2^1(a^{-3})^1=2a^{-3}\qquad\text{use}\ a^{-n}=\dfrac{1}{a^n}[/tex]
[tex]=2\left(\dfrac{1}{a^3}\right)=\dfrac{2}{a^3}[/tex]
A box of 15 cookies costs $ 9 What is the cost for 1 cookie?
Answer:
60 cents or $0.60
Step-by-step explanation:
9.00/15 = 0.6
Answer:
$.60
Step-by-step explanation:
This is just 9 divided by 15 which is $.60
The linear function f (x) and g(x) are represented on the graph where g(x) is a tranfomation of f(x) I need help with part A part B and Part C
Answer:
see below
Step-by-step explanation:
Part A
We can shift f(x) to the left or we can shift f(x) up to make it become g(x)
Part B
y = f(x + k) k > 0 moves it left
Using the point ( 2,8) for f(x) and ( 0,8) for g(x)
k is 2 units
g(x) = f(x+2)
y = f(x) + k k > 0 moves it up
Using the point ( 0,-2) for f(x) and ( 0,8) for g(x)
The difference between -2 and 8 is 10
k = 10
g(x) = f(x) + 10
Part C
for the shift to the left g(x) = f(x+2)
for the shift up g(x) = f(x) + 10
If b = 1/2x −1/y, then what is an expression for 2/b in terms of x and y?
Answer:
2/xy
Step-by-step explanation:
you have to do the math but im not very sure on this
Two planes make a 1750 mile flight, one flying 75 miles per hour faster than the other. The quicker plane makes the trip 3 hours faster. How long did it take the slower plane to complete the flight?
Answer:
The slower plane is flying at 175 miles per hour and complete the trip in 10 hours
The faster plane is flying at 250 Miles per hour and complete the trip in 7 hours
Step-by-step explanation:
Let s= speed of the slower plane s+75= speed of the faster plane
The time it takes the slower plane to make the flight = 1750/s
The time it takes the faster plane to make the flight is=1750/(s+75)
The difference in these two times is 3 hours
1750/s - 1750/(s+7)=3
{(s+75) / (s+75) * (1750/s)} - {(s/s) * (1750/s+75)} =3
(1750s+131250 / s^2+75s) - (1750s/s^2+75s) =3
1750s+131,250-1750s / s^2+75d =3
131,250 / s^2+75s = 3
Cross product
131,250=3(s^2+75s)
131,250=3s^2+225s
43,750=s^2+75s
s^2+75s-43,750=0
Solve the quadratic equation
x= -b +or- √b^2-4ac / 2a
a=1
b=75
c= -43750
x= -b +or- √b^2-4ac / 2a
= -75 +or- √(75)^2 - (4)(1)(-43750) / (2)(1)
= -75 +or- √(5625) - (-175,000) / 2
= -75 +or- √180625) / 2
= -75 +or- 425 / 2
x= -75 + 425/2 OR -75- 425/2
=350/2 OR -500/2
x=175 OR -250
We will ignore the negative sign because the planes are not flying Backward
The slower plane is flying at 175 miles per hour and complete the trip in 1750/175= 10 hours
The faster plane is flying at 250 Miles per hour and complete the trip in 1750/250= 7 hours
A college student team won 20% of the games it played this year. If the team won 11 games, how many games did it play?
Answer:
55 games
Step-by-step explanation:
What we have to figure out is the total amount of games they played the whole year. We know they won 20% of their games, which equates to 11 games won in total. In order to find the total amount of games we will need to set up the equation [tex]g = 11/20[/tex]%. We solve this accordingly: [tex]g = (11/20) *100[/tex]; [tex]g = (.55)*100[/tex]; [tex]g = 55[/tex].
The average age of 15 students is 16 years. If teacher’s age is included the average increases
by 1. Find teacher’s age
31
because 15 +16 :31
[tex]. = y1 = \times [/tex]
What the correct answer fast
Answer:
[tex] s = 5.8 [/tex]
Step-by-step Explanation:
Given:
∆RST,
m < T = 17°
t = RS = 5
m < S = 20°
s = RT = ?
Apply the Law of Sines to find s
[tex] \frac{s}{sin(S)} = \frac{t}{sin(T)} [/tex]
[tex] \frac{s}{sin(20)} = \frac{5}{sin(17)} [/tex]
Multiply both sides by sin(20) to make s the subject of formula.
[tex] \frac{s}{sin(20)}*sin(20) = \frac{5}{sin(17)}*sin(20) [/tex]
[tex] s = \frac{5*sin(20)}{sin(17)} [/tex]
[tex] s = 5.8 [/tex] (to nearest tenth)
A local high school has 1250 students in grades 9 through 12. Twenty-eight percent of the students in the school are in the ninth grade. One-half of the ninth-grade students ride the bus to school. How many ninth-grade students ride the bus?
Answer:175
Step-by-step explanation:
1. Turn 28% into a decima: 0.28
2. Multiply 1250 by 0.28 to get the amount of ninth grade students:350
3. Half the amount of ninth grade students:175
Answer:
The answer is 175
Step-by-step explanation:
Because I read the problem carefully and identified that the explanation is way too long so I am gonna make this short and easy for you. I am correct, just Trust me :)
The product of ages of a man 5 years ago and
5 years hence is 600, find his present age.
Answer:
25
Step-by-step explanation:
let his age be x, then
5 years ago his age was x - 5 and in 5 years will be x + 5 , thus
(x - 5)(x + 5) = 600 ← expand factors using FOIL
x² - 25 = 600 ( add 25 to both sides )
x² = 625 ( take the square root of both sides )
x = [tex]\sqrt{625}[/tex] = 25
Answer:
[tex]\boxed{Age \ of \ man = 25 \ years}[/tex]
Step-by-step explanation:
Let the age be x
Then, the given condition is:
(x-5)(x+5) = 600 [ x-5 for age 5 years ago and x+5 for age 5 years after ]
Using Formula [tex](a+b)(a-b) = a^2-b^2[/tex]
[tex]x^2-25 = 600[/tex]
Adding 25 to both sides
[tex]x^2 = 600+25[/tex]
[tex]x^2 = 625[/tex]
Taking sqrt on both sides
[tex]x = 25[/tex] years
The price of sugar increased by 20%. What percent of sugar would the family have to stop using so that they pay the same amount of money each month?
Answer:
9.16
Step-by-step explanation:
We know that
Total expense = price of sugar * consumption
let price of sugar was 100
So total expense = 100*10=1000
But now new expense =1100 (I,e.10% more than 1000)
and new price =120(i,e. 20% more than 100)
So new consumption = new expense/ new price=
1100/120
=110/12
=9.16
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
Answer:
16 2/3 % or approx. 16.67%
Step-by-step explanation:
Original price = 100%
New price = 100+20% = 120%
To reduce back to 100%
we need to reduce 20% from 120 % = 20/120 = 1/6 = 16 2/3 % = 16.7% approx.
Will mark BRAINIEST. Solve this.
Answer:
3x+7=10x+17
Step-by-step explanation:
1.9
10x
27x
Answers:
Equation is 3x+7 + 10x+17 = 180 (there are infinitely many other ways to write the equation)
x = 12
Angles are 43 and 137
==========================================================
Explanation:
The horizontal lines are parallel, so the same side interior angles marked are supplementary. The angles add to 180
(3x+7) + (10x+17) = 180 is the equation, or one variation of such
13x+24 = 180
13x = 180-24
13x = 156
x = 156/13
x = 12 is the value of x
Use this x value to find the measure of each angle
3x+7 = 3*12+7 = 43
10x+17 = 10*12+17 = 137
The two angles are 43 and 137 degrees
Note how 43 and 137 add to 180.
Agrid shows the positions of a subway stop and your house. The
subway stop is located at (-7,8) and your house is located at (6,4).
What is the distance, to the nearest unit, between your house and
the subway stop?
Answer: about 13u
Step-by-step explanation:
Distance can be calculated as [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\\sqrt{(6-(-7))^2+(4-8)^2}\\\\\\\sqrt{(13)^2+(-4)^2}\\\\\\\sqrt{185}\\\\13[/tex]
Hope it helps <3
A large company is hosting a conference. So far, a total of 3,922 people have signed up, including 26 from united states. How many people from other countries have signed up?
Answer:
3,896 have signed up from other countries
Step-by-step explanation:
In this problem we are required to calculate the number of signups from other countries.
well, since we know the total sign ups to be 3,922
And also we know that 26 out of the total signed up from the USA
This means that the sign ups from other countries will be
3,922-26=3,896
Jackson is running a 10-mile race. He runs 1 mile every 8 minutes. Jackson's distance from this finish line after x minutes is represented by the function x+8y=80
Answer:
Jackson's distance from the finish line after x minutes will be given as;
since from the statements we know that x represents the number of minutes he had run, for us to be able to calculate his distance from the finish line we simply solve the problem mathematically as follows;
x=80-8y
Step-by-step explanation:
from the initial representation we have x+8y=80,
from the preliminary statement we know x to be the number of minutes from the start of the race to the current point Jackson.
so we assume that y in the equation represents the number of distance covered by the x minutes in miles.
that is how we end up with ;
x=80-8y.
4(x − 7) = 0.3(x + 2) + 2.11
Step-by-step explanation:
[tex]4(x-7)=0.3(x+2)+2.11\\\\Distribute\\\\4x+28=0.3(x+2)+2.11\\\\Distribute\\\\4x+28=0.3x+0.6+2.11\\\\Combine\\like\\terms\\\\4x+28=0.3x+2.71\\\\Subtract\\\\3.7x+28=2.71\\\\Subtract\\\\3.7x=-25.29\\\\Divide\\\\x=\tex{ about }6.83513514[/tex]
Hope it helps <3
Answer:
x = 83/10=8^3/10=8.3
Step-by-step explanation:
4(x − 7) = 0.3(x + 2) + 2.11
Use the distributive property to multiply 4 by x−7.
4x−28=0.3(x+2)+2.11
Use the distributive property to multiply 0.3 by x+2.
4x−28=0.3x+0.6+2.11
Add 0.6 and 2.11 to get 2.71.
4x−28=0.3x+2.71
Subtract 0.3x from both sides.
4x−28−0.3x=2.71
Combine 4x and −0.3x to get 3.7x.
3.7x−28=2.71
Add 28 to both sides.
3.7x=2.71+28
Add 2.71 and 28 to get 30.71.
3.7x=30.71
Divide both sides by 3.7.
x= 3071/370
Expand 3.7/30.71≈8.3 by multiplying both numerator and the denominator by 100.
x = 83/10