Hey,
Who plays a role in the financial activities of a company?
O D. Everyone at the company, including managers and employees
Answer:
Everyone at the company, including managers and employees
Explanation:
A series circuit contains four resistors. In the circuit, R1 is 80 , R2 is 60 , R3 is 90 , and R4 is 100 . What is the total resistance? A. 330 B. 250 C. 460 D. 70.3
An inventor claims to have developed a heat pump that produces a 200-kW heating effect for a 293 K heatedzone while only using 75 kW of power and a heat source at 273 K. Justify the validity of this claim.
Answer:
From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.
Explanation:
Heat generated Q = 200 kW
power input W = 75 kW
Temperature of heated region [tex]T_{h}[/tex] = 293 K
Temperature of heat source [tex]T_{c}[/tex] = 273 K
For this engine,
coefficient of performance COP = Q/W = 200/75 = 2.67
The maximum theoretical COP obtainable for a heat pump is given as
COP = [tex]\frac{T_{h} }{T_{h} - T_{c} }[/tex] = [tex]\frac{293 }{293 - 273 }[/tex] = 14.65
From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to the maximum shear stress.
In this exercise we have to calculate the formula that will be able to determine the length of the cantilevered, like this:
[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]
So to determinated the maximum tensile and compreensive stress due to bending we can describe the formula as:
[tex]\sigma_b = \frac{MC}{I}[/tex]
Where,
[tex]\sigma_b[/tex] is the compressive stress or tensile stress[tex]M[/tex] is the B.M [tex]C[/tex] is the N.A distance[tex]I[/tex] is the moment of interiorSo making this formula for the max, we have:
[tex]\sigma_c=\frac{MC}{I} \\\sigma_T=-\sigma_c=-\frac{MC}{I}\\\sigma_{max}=M_{max}\\[/tex]
With all this information we can put the formula as:
[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]
See more about stress in the beam at brainly.com/question/23637191