Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
Ten rugby balls are randomly selected from the production line to see if their shape is correct. Over time, the company has found that 89.4% of all their rugby balls have the correct shape. If exactly 6 of the 10 have the right shape, should the company stop the production line?
1)Yes as the probability of six having the correct shape is not unusual
2)NO. as the probability of six having the correct shape is unusual
3)Yes as the probability of six having the correct shape is unusual
4) No. as the probability of six having the correct shape is not unusual
Solution:
If exactly 6 of the 10 have the right shape, it means that the probability of success for the sample is
6/10 = 0.6
Expressing the probability in terms if percentage, it becomes
0.6 × 100 = 60%
Over time, the company has found that 89.4% of all their rugby balls have the correct shape. It means that the probability of success for the population is 89.4%
Comparing both probabilities, the probability of only 6 having the right shape is unusual. Therefore, the correct option is
3)Yes as the probability of six having the correct shape is unusual
Robin read somewhere that adding salt to water while heating it will raise the temperature of
the water causing it to boil faster. To test this claim, she filled 30 identical pots with one quart
of water. She randomly selected 15 of the pots and added 1 teaspoon of salt. She then placed
each pot on identical burners set to the highest setting. She measured the water temperature
In each pot after 5 minutes.
Is Robin's research method an example of an observational study experiment, or
simulation?
b
If Robin does find that there is a difference between the water temperatures in the pots
with salt compared to those without can she conclude that the salt caused the
difference in temperature?
Answer:
a. An experiment
b. No
Step-by-step explanation:
a. Robin's research method can be concluded to be an experiment because she has a testable group (pots of water with salt) and a control group (pots of water without salt).
2. Based on this alone, she cannot conclude that the salt caused the
difference in temperature because she has not set some appropriate conditions which are to be met for this test.
The function f(x) = −x2 + 16x − 60 models the daily profit, in dollars, a shop makes for selling candles, where x is the number of candles sold. Determine the vertex, and explain what it means in the context of the problem. (6, 10); The vertex represents the maximum profit. (6, 10); The vertex represents the minimum profit. (8, 4); The vertex represents the minimum profit. (8, 4); The vertex represents the maximum profit.
Answer:
A.
f is a quadratic function, which means it's graph is a parabola.
Notice that the coefficient of is negative, so the parabola opens downwards.
the x-coordinate of a parabola is always determined by the formula:
where a is coefficient of the term, and b is the coefficient of the x term.
Thus, x-coordinate of the vertex of the graph of f is :
the y-coordinate of the vertex is f(8)=-8*8+16*8-60=4.
The vertex is (8, 4).
This means that the maximum daily profit is when exactly 8 candles are sold.
B.
The x-intercepts are the values of x such that f(x)=0,
so to find these values we solve:
complete the square:
so x-8=2 or x-8=-2
the roots are x=10 and x=6, are the roots.
This means that when the shop sells exactly 6 or 10 candles, it makes no profit.
Answer: d (8, 4); The vertex represents the maximum profit.
Explanation: i got it right on the test
Question 2 of 10
2 Points
What is the sum of the rational expressions below?
2x+3/3x+x/x+1
Answer:
5x^2+5x+3/3x^2+3x
Step-by-step explanation:
If 7 - y = 6, then y=
Answer:
y=1
Step-by-step explanation:
7-y=6
6+1=7
7-1=6
Hope this helps:)
Stay Safe
Answer:
y =1
Step-by-step explanation:
7 - y = 6
Subtract 7 from each side
7 - y-7 = 6 -7
-y = -1
Multiply each side by -1
-y*-1 = -1 *-1
y = 1
The product of 5 and the sum of 12 and a certain number is 10. What is the number 4
Answer:
-10
Step-by-step explanation:
5(12 + x) = 10
60 + 5x = 10
5x = -50
x = -10
Round 5 to the nearest ten.Enter your answer in the box below.
Answer:
[tex]10[/tex]
Step-by-step explanation:
[tex]05[/tex]
If the units place is higher than 5, then add 1 to the tens place.
Diya spent 2/5 of her money on a dress and 1/2 of the reminder on a doll. She spent $8 more o the dress than the doll. How much money did she have left?
year 6 Mathematics
Answer:
$24
Step-by-step explanation:
2/5 — dress
3/5 — remainder
1/2 of remainder = 1/2 × 3/5 = 3/10 — doll
rewrite fraction spent on dress: 4/10
dress - doll = $8
4/10 - 3/10 = 1/10
1/10 = $8
fraction of money left = 10/10 - 4/10 - 3/10
= 3/10
amount of money left = $8 × 3
$24
You are renting a car that charges a $30 fee plus 40 cents a mile. The rate of change
is $30.
True
False
Answer:
true
is the answer
Complete the following subtraction exercises.
10 – 2 =
14 – 6 =
15 – 9 =
17 – 8 =
13 – 5 =
11 – 8 =
20 – 8 =
16 – 7 =
12 – 9 =
21 – 9 =
11 – 6 =
5 – 5 =
4 – 0 =
16 – 8 =
10 – 5 =
18 – 7 =
13 – 8 =
12 – 4 =
Answer:
Below
Step-by-step explanation:
8,8,6,9,8,3,12,9,3,12,5,0,4,8,5,11,5,8. Answers are in order from the first to the last
The container of a breakfast cereal usually lists the number of calories and the amounts of protein, carbohydrate, and fat contained in one serving of the cereal. The amounts for two common cereals are given below. Suppose a mixture of these two cereals is to be prepared that contains exactly 295 calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Set up a vector equation for this problem. Include a statement of what the variables in your equation represent.
b. Write an equivalent matrix equation, and then determine if the desired mixture of the two cereals can be prepared.
$$\begin{matrix}
\text{Nutrient} & \text{General Mills Cherrios} & \text{Quaker 100% Natura Cereal}\
\text{Calories} & \text{110} & \text{130}\
\text{Protein (g)} & \text{4} & \text{3}\
\text{Carbhydrate (g)} & \text{20} & \text{18}\
\text{Fat (g)} & \text{2} & \text{5}\
\end{matrix}$$
Answer:
(a)
[tex]\left[\begin{array}{ccc}110\\4\\20\\2\end{array}\right] x+\left[\begin{array}{ccc}130\\3\\18\\5\end{array}\right] y=\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
(b)
[tex]\left[\begin{array}{ccc}110&130&295\\4&3&9\\20&18&48\\2&5&8\end{array}\right][/tex]
1.5 servings of cheerios and 1 serving of Quaker 100% natural cereal will give the desired mixture.
Step-by-step explanation:
Given the mixture of cereals below:
[tex]\left|\begin{array}{c|c|c}&$General Mills &$Quaker \\$Nutrient&$Cherrios &100\% $Natural Cereal\\----&---&---\\$Calories&110&130\\$Protein (g)&4&3\\$Carbhydrate (g)&20&18\\$Fat (g)&2&5\end{array}\right|[/tex]
Suppose a mixture of these two portions of cereals is to be prepared that contain exactly 295 calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
(a)Let x be the number of servings of Cheerios
Let y be the number of servings of Natural Cereal
From the table above, we have
[tex]110x+130y=295\\4x+3y=9\\20x+18y=48\\2x+5y=8[/tex]
Then a vector equation for this problem is:
[tex]\left[\begin{array}{ccc}110\\4\\20\\2\end{array}\right] x+\left[\begin{array}{ccc}130\\3\\18\\5\end{array}\right] y=\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
(b) Next, we obtain an equivalent matrix equation of the data
[tex]\left[\begin{array}{ccc}110&130\\4&3\\20&18\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
This is of the form AX=B. To solve for X we, therefore have an equivalence matrix:
[tex]\left[\begin{array}{ccc}110&130&295\\4&3&9\\20&18&48\\2&5&8\end{array}\right][/tex]
Next, we row reduce the matrix using a calculator to obtain the matrix:
[tex]\left[\begin{array}{ccc}1&0&1.5\\0&1&1\\0&0&0\\0&0&0\end{array}\right][/tex]
Therefore:
1x+0=1.5
0x+y=1
x=1.5 and y=1
To get the required mixture, we use 1.5 servings of cheerios and 1 serving of Quaker 100% natural cereal.
How do you solve this problem? population proportion is to be estimated from a sample of 400 with a sample proportion of 0.1. Approximate the 95% confidence interval of the population proportion
Answer:
(0.0706, 0.1294)
Step-by-step explanation:
Confidence interval of a proportion is:
CI = p ± CV × SE
where p is the proportion,
CV is the critical value (z score or t score),
and SE is the standard error.
The sample is large enough to estimate as normal. For 95% confidence level, CV = z = 1.96.
Standard error for a proportion is:
SE = √(pq/n)
SE = √(0.1 × 0.9 / 400)
SE = 0.015
The confidence interval is:
CI = 0.1 ± (1.96)(0.015)
CI = (0.0706, 0.1294)
Round as needed.
-3
n is an integer.
Write down the possible values of n.
I
Answer:
since n is an integer you substitute n with all the integers. But since that is too much you should use infinity.
n=[-∞,+∞] where -∞ is a negative infinity which stands for negative numbers and +∞ is a positive infinity where it stands for positive numbers.
an integer contains negative and positive numbers so above is the answer.
Step-by-step explanation:
Many traffic experts argue that the most important factor in accidents is not the average speed of cars but the amount of variation. Suppose that the speeds of a sample of 200 cars were taken over a stretch of highway that has seen numerous accidents. Compute the standard deviation of the speeds in Excel file Q-14.xlsx.
Answer and Step-by-step explanation: Standard Deviation is the measure of how diferent a number is from the mean of the data set. It is the spread of a data set. To calculate it manually:
1) Find the mean of the data set. Mean, represented by μ, is the sum of all the values divided by the total number of elements forming the set;
2) Subtract each number with the Mean and square the result;
3) Add the differences and divide it by the total number of elements of the set;
4) Take the square root of the result and that is the Standard Deviation.
The calculations can be done by a calculator like Excel:
1) In each cell of a same column, write the data you want to know the deviation.
2) On the last cell, write: =stdev.p(A1:A10) or =stdev.s(A1:A10).
3) Press Enter. The deviation will appeared on the same cell.
The function STDEV.P is used when the data represents the entire population, whereas STDEV.S is used when the data is for a sample of the population. Inside the parenthesis, put the cells where your data is. For example, if you put your data in the column A, from cell 1 to cell 10, you write like it's written above.
To examine the effect of high-dose green tea extract on weight loss, researchers conducted a randomized, double-blind trial on a random sample of 115 women with obesity from Taiwan. Some of these women were randomly assigned to the main treatment group taking a high-dose green tea extract ("EGCG") daily for 12 weeks. The published abstract of this 2015 study reports that, "Significant weight loss, from 76.8 ± 11.3 kg to 75.7 ± 11.5 kg (p = 0.025), was observed in the treatment group after 12 weeks of high-dose EGCG treatment."
Which of the following inference procedures would be used to reach the quoted conclusion?
a. Z procedure for a proportion
b. Chi-square for two-way tables
c. Chi-square for goodness of fit
d. Two sample t procedure for two means
e. One sample or matched-pairs t procedure for a mean
f. ANOVA for several means
Answer:
d. Two sample t procedure for two means.
Step-by-step explanation:
The study have a treatment group, which is the group of women that are taking the high dose of green tea extract, and a control group, in order to compare. They are assigned randomly to each group.
Then, the difference fo the two sample means is calculated and a t-test is performed in order to conclude if the two populations means are significantly different.
Apparently they are significantly different, as this is the conclusion with a P-value of 0.025.
After 2 hours, there are 1,400 mL of fluids remaining in a patient’s IV. The fluids drip at a rate of 300 mL per hour. Let x be the time passed, in hours, and y be the amount of fluid left in the IV, in mL. Write a linear function that models this scenario.
Answer:
[tex] y(2) = 1400[/tex]
Using this condition we got:
[tex]1400= -300*2 +b[/tex]
And solving for b we got:
[tex] b= 1400+ 600= 2000[/tex]
So then our linear function is given by:
[tex] y = -300x +2000[/tex]
Where y is the amount of fluid left and x the number of hours ellapsing
Step-by-step explanation:
We want to set up a linear function like this one:
[tex]y = mx+b[/tex]
Where y is the amount of fluid left, m the slope and b the initial amount. From the info given we know thatm = -300. And we also have the following condition:
[tex] y(2) = 1400[/tex]
Using this condition we got:
[tex]1400= -300*2 +b[/tex]
And solving for b we got:
[tex] b= 1400+ 600= 2000[/tex]
So then our linear function is given by:
[tex] y = -300x +2000[/tex]
Where y is the amount of fluid left and x the number of hours ellapsing
18x-5x=13+20 what is the answer
Answer:
3.3
Step-by-step explanation:
18x-5x=13+20
13x=33
x=2.5
What is the area of a rectangle that is 4 1/2 cm long and 2 5/9 cm wide? Solution: Answer: What is the area of a square that has a side of 4 3/5 cm?
Answer:
1) 23/2
2) 529/25
Step-by-step explanation:
Transformation:
[tex]4\frac{1}{2} = \frac{(2*4) + 1}{2} = \frac{9}{2}[/tex]
[tex]2\frac{5}{9} = \frac{(9*2) + 5}{9} = \frac{23}{9}[/tex]
A = [tex]\frac{9}{2} * \frac{23}{9} = \frac{23}{2}[/tex]
-----------------------------
Transformation:
[tex]4\frac{3}{5} = \frac{(5*4) + 3}{5} = \frac{23}{5}[/tex]
A = [tex](\frac{23}{5})^{2} = \frac{529}{25}[/tex]
(3х^2y^3)^3 =
3x^5y^6
9х^6y^9
27x^5y^6
27x^6y^9
Answer:
27x^6y^9
Step-by-step explanation:
The outside exponent multiplies all of the inside exponents. The applicable rules of exponents are ...
(ab)^c = (a^c)(b^c)
(a^b)^c = a^(bc)
__
(3x^2y^3) = (3^3)(x^(2·3))(y^(3·3)) = 27x^6y^9
Suppose that it costs $200 per day to search for chanterelle mushrooms at Pt. Reyes National Seashore. On an average day, the total weight of mushrooms M found at Pt. Reyes is M = 100x-x^2 pounds ,where x is the number of people mushroom hunting on that day. Chanterelles can be sold for $60 per pound. How many more people will go mushroom hunting than is socially optimal?
Answer:
For an overall profit, we need at least 97 people to go mushroom hunting.
Any number of people that is more than the socially optimal number should go mushroom hunting on any given day.
Step-by-step explanation:
The socially optimal number of people that will go mushroom hunting is the number where amount spent to go mushroom hunting equally balances the amount obtained by selling the mushrooms obtained.
If x people go mushroom hunting in a day, the total cost of hunting for that day = 200x
The amount of mushroom obtained is given as
M = (100x - x²) in pounds
The selling price of 1 pound = $60
The cost of M pounds = 60M = 60(100x - x²)
= (6000x - 60x²)
At socially optimal number,
200x = 6000x - 60x²
60x² - 6000x + 200x = 0
60x² - 5800x = 0
x(60x - 5800)
x = 0 or (60x - 5800) = 0
x = 0 or x = (5800/60) = 96.67
Socially optimal number of people = 0 or 96.67
For realistic purposes, we take the socially optimal number of people that went mushroom hunting as 96.67
Any number above this number will result in an overall profit, and any number below it results in an overall loss.
So, for an overall profit, we need at least 97 people to go mushroom hunting.
Hope this Helps!!
Answer:
48 people
Step-by-step explanation:
When allocating resources to a particular task it is important to assign optimal units of resources.
In this scenario if the people hunting mushrooms are too many they will not make profit. But an optimal number will guarantee everyone makes positive profit.
Optimal = (M÷x)Px - 200= 0
Optimal= {(100x -x^2) ÷ x} * 60 = 200
Optimal = 6000 - 60x = 200
x= 96.666~ 97 people
However to maximise profit MTB = MTC
Socially Optimal quantity = 60(100x - x^2) -200
∂(Socially Optimal amount) ÷ ∂ x= 6000 - 120x - 200
x = 48.33~ 48 people
So 48 more people go mushroom hunting than is socially optimal
You are playing a game called cornhole and let’s assume that you are reallygood at it with the winning probability is 0.8. For the following parts, find (a) the name ofthe appropriate probability distribution and correct parameters, (b) the expected value and (c) the variance of Y.
A. Y = the number of games it takes you to lose one time.
B. Y = the number of games it takes you to lose four times.
C. Y the number of times you win out of 100 games.
Answer:
Step-by-step explanation:
Given that :
The probability of winning is 0.8
i.e P(winning) = 0.8
Then P(losing) = 0.2
a) Y ~ Geometric distribution
[tex]P = P(loose) =0.2 \\ \\ \mu_{\delta} = \dfrac{1}{P}= \dfrac{1}{0.2}\\ \\ = 5.0 \\ \\ \\ \dfrac{\sigma ^2 }{\delta } = \dfrac{1-P}{P^2} \\ \\ =\dfrac{0.8}{0.04} \\ \\ = 20[/tex]
b) Y ~ Negative Binomial Distribution
[tex]P = P (loose) =0.2 \\ \\ \delta = number \ of \ loss = 4 \\ \\ \mu_{\delta} = \dfrac{\delta}{P} \\ \\ =\dfrac{4}{0.2} \\ \\ = 20 \\ \\ \\ \sigma ^2_{\delta} = \dfrac{\delta (1-P)}{P^2} \\ \\ = \dfrac{4*0.8}{0.04}\\ \\ = 80[/tex]
c) Y ~ Binomial Distribution;
n = 100 ; P = 0.8
[tex]\mu_{\delta} = nP \\ \\ = 100*0.8 \\ \\ = 80 \\ \\ \\ \sigma_{\delta}^2 = nP(1-P) \\ \\ =80*0.2 \\ \\ = 16[/tex]
Which of the functions below could have created this graph?
Answer:
i don't know if this is right or not i did to much work to put it all down but i pretty sure it's C.
Sam colors each tile in a 4 by 4 grid white or black. A coloring is called rotationally
symmetric if the grid can be rotated 90, 180, or 270 degrees to achieve the same pattern.
Two colorings are called rotationally distinct if neither can be rotated to match the
other. How many rotationally distinct ways are there for Sam to color the grid such
that the colorings are not rotationally symmetric?
Answer:
65,280
Step-by-step explanation:
Consider the 4×4 grid ...
[tex]\left[\begin{array}{cc}a&b\\d&c\end{array}\right][/tex]
where each of a, b, c, d is a 2×2 array of tiles. Let's use the notation a' to represent the 2×2 array "a" rotated right 1/4 turn. For 90° rotational symmetry, we must have b=a', c=b'=a'', d=c'=b''=a'''. That is, once "a" is determined, the rest of the grid is determined. Since "a" consists of 4 tiles, each of which can be black or white, there are 2^4 = 16 patterns that have 90° rotational symmetry.
The same will be true of 270° rotational symmetry, for the same reason.
__
For 180° rotational symmetry, we must have c=a'' and d=b''. Then the combination of "a" and "b" together fully determines the grid. Together, "a" and "b" consist of 8 tiles, so there are 2^8 = 256 ways to pattern the grid so it will have 180° rotational symmetry. (Of those, 16 have 90° symmetry, and 16 have 270° symmetry. The sets are overlapping.)
__
The 16 tiles of the grid can be colored 2^16 = 65,536 different ways. As we have seen, 256 of those colorings result in 180° rotational symmetry. Then the number of colorings that have no rotational symmetry is ...
65,536 -256 = 65,280 . . . . colorings not rotationally symmetric
A game is played using one die. If the die is rolled and shows 1, the player wins $5. If the die shows any number other than 1, the player wins nothing. If there is a $1 charge to play the game, what is the game’s expected value?
Answer:
1/5
Step-by-step explanation:
i had a similar question
For each roll you start with paying 2 dollars and you only with 10 dollars one out of 6 rolls (on average).
So the cost for one play is 2 dollars and your win is 10/6.
Value is -2+10/6=-1/3 dollars
So you lose 1/3 dollars on average with each game
since you have no limited rolls u put 1/5
this from another question but both same just different numbers
Autism is a serious and lifelong disability that is characterized by a severely decreased ability to engage in communication and social interaction. In 1998 citizens in a New Jersey town were concerned about the number of children diagnosed with autism, and a study was undertaken to establish the prevalence in the community. Data from the study are reported below:
Numbers of Children Diagnosed with Autistic Disorder
Age Category (y) Diagnosed with Autistic Disorder Number of Children in Population
3-5 19 3479
6-10 17 5417
Required:
a. Calculate the prevalence rate of autism for these children for the two age categories.
b. Convert the prevalence rate to a rate per 1,000
Answer:
a. Calculate the prevalence rate of autism for these children for the two age categories.
3-5: prevalence rate = 0.55%6-10: prevalence rate = 0.31%b. Convert the prevalence rate to a rate per 1,000
3-5: prevalence rate = 5.5 per thousand6-10: prevalence rate = 3.1 pér thousandStep-by-step explanation:
Generally prevalence is calculated using the following formula:
(number of people with autism / number of people measured) x 100%
age category
3-5: prevalence rate = (19/3,479) x 100% = 0.55%
6-10: prevalence rate = (17/5,417) x 100% = 0.31%
if you want to convert to a rate per 1,000, allyou need to do is multiply by 1,000 instead of 100
3-5: prevalence rate = (19/3,479) x 1,000 = 5.5
6-10: prevalence rate = (17/5,417) x 1,000 = 3.1
how do you find the zero(s) of a polynomial function
Answer:
by using the quadratic formula
Step-by-step explanation:
negative b plus or minus the square root of b squared minus 4ac, then all divided by 2a
V. Money Magazine reported that the average price of gasoline in the United States during the first quarter of 2008 was $3.46. Assume that the price reported by Money is the population mean, and the standard deviation σ is $0.15. a. What is the probability that the mean price for a sample of 30 gas stations is within $0.03 of the population mean?
Answer:
[tex] z=\frac{3.43 -3.46}{\frac{0.15}{\sqrt{30}}} = -1.095[/tex]
[tex] z=\frac{3.49 -3.46}{\frac{0.15}{\sqrt{30}}} = 1.095[/tex]
And we can find this probability using the normal standard table and we got:
[tex] P(-1.095<z<1.095) = P(z<1.095) -P(z<-1.095) =0.863 -0.137= 0.726[/tex]
Step-by-step explanation:
Let X the random variable that represent the price of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(3.46,0.15)[/tex]
Where [tex]\mu=3.46[/tex] and [tex]\sigma=0.15[/tex]
And for this case we want to find the following probability:
[tex] P(3.43 \leq \bar X \leq 3.49)[/tex]
And we can use the z score formula given by:
[tex] z=\frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
If we find the z score for the limits we got:
[tex] z=\frac{3.43 -3.46}{\frac{0.15}{\sqrt{30}}} = -1.095[/tex]
[tex] z=\frac{3.49 -3.46}{\frac{0.15}{\sqrt{30}}} = 1.095[/tex]
And we can find this probability using the normal standard table and we got:
[tex] P(-1.095<z<1.095) = P(z<1.095) -P(z<-1.095) =0.863 -0.137= 0.726[/tex]
Find the equation for the plane through the points Upper P0 (-2 ,2 ,-5),Q0 (1,2,-1), and Upper R0 (-1,-5,4 ).
The equation of plane is:________
Answer:
28x - 23y - 21z = 3
Step-by-step explanation:
First, we need to find two vectors in the plane as:
vector PQ = Q - P = (1, 2, -1) - (-2, 2, -5) = (3, 0, 4)
vector PR = R - P = (-1, -5, 4) - (-2 ,2 ,-5) = (1, -7, 9)
Then, we need to find a normal vector to the plane as:
PQ x RQ = ((0*9)-(4*-7), -(3*(9)-(4*1), (3*-7)-(0*1))
PQ x RQ = (28, -23, -21)
Finally, the equation of a plane is:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Where (A,B,C) is a normal vector to the plane and (x0, y0, z0) is a point in the plane. So, replacing (A,B,C) by (28, -23, -21) and (x0, y0, z0) by P0(-2,2,-5), we can write the equation of the plane as:
28(x+2) - 23(y-2) - 21(z+5) = 0
Solving, we get:
28x + 56 - 23y + 46 - 21z - 105 = 0
28x - 23y - 21z - 3 = 0
28x - 23y - 21z = 3
In an aquarium, there are 4 large fish and 16 small fish. Half of the small fish are blue. One fish is selected at random. Find the probability that it is a small, blue fish. Write your answer as a fraction in simplest form.
Answer:
2/5
Step-by-step explanation:
There are 20 fish, 8 of which are small and blue. Therefore, the probability of randomly selecting a small blue fish is 8/20 = 2/5.
True or False - the following scenario depicts an independent relationship between variables (tree growth and air quality): 20% of trees growing in a particular region are not growing to their expected height. In a particular neighborhood in that region, the Air Quality Index is labeled as "Unhealthy for Sensitive Groups" or worse 30% of the time. 10% of the trees in the region grow in this neighborhood. If you randomly measured the growth of a tree in that neighborhood, then the probability that that tree is not growing to its expected height is 33.33%.
winnie and kevin like to create their own triathlon courses to challenge each other. last weekend, winnie created a course that included a swim of 3/4 of a mile, a bike ride of 57/4 miles and a run of 13/4 miles. how long was the course winnie created?