Answer:
the null hypothesis would be: p = 70%/0.7
The alternative hypothesis would be: p < 0.7
Step-by-step explanation:
The null hypothesis is most of the time always the default statement while the alternative hypothesis is tested against the null and is its opposite.
In this case study the null hypothesis would be: the proportion of men who own cats is 70%: p = 0.7
The alternative hypothesis would be: the proportion of men who own cats is smaller than 70% : p < 0.7
I toss an unfair coin 12 times. This coin is 65% likely to show up heads. Calculate the probability of the following.
a. 11 heads:
b. 2 or more heads:
c. 7 heads:
d. 9 tails:
e. 8 or less heads:
Answer:
a. 0.0368
b. 0.99992131
c. 0.2039
d. 0.0048
e. 0.6533
Step-by-step explanation:
Let the probability of obtaining a head be p = 65% = 13/20 = 0.65. The probability of not obtaining a head is q = 1 - p = 1 -13/20 = 7/20 = 0.35
Since this is a binomial probability, we use a binomial probability.
a. The probability of obtaining 11 heads is ¹²C₁₁p¹¹q¹ = 12 × (0.65)¹¹(0.35) = 0.0368
b. Probability of 2 or more heads P(x ≥ 2) is
P(x ≥ 2) = 1 - P(x ≤ 1)
Now P(x ≤ 1) = P(0) + P(1)
= ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹
= (0.65)⁰(0.35)¹² + 12(0.65)¹(0.35)¹¹
= 0.000003379 + 0.00007531
= 0.0007869
P(x ≥ 2) = 1 - P(x ≤ 1)
= 1 - 0.00007869
= 0.99992131
c. The probability of obtaining 7 heads is ¹²C₇p⁷q⁵ = 792(0.65)⁷(0.35)⁵ = 0.2039
d. The probability of obtaining 7 heads is ¹²C₉q⁹p³ = 220(0.65)³(0.35)⁹ = 0.0048
e. Probability of 8 heads or less P(x ≤ 8) = ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹ + ¹²C₂p²q¹⁰ + ¹²C₃p³q⁹ + ¹²C₄p⁴q⁸ + ¹²C₅p⁵q⁷ + ¹²C₆p⁶q⁶ + ¹²C₇p⁷q⁵ + ¹²C₈p⁸q⁴
= = ¹²C₀(0.65)⁰(0.35)¹² + ¹²C₁(0.65)¹(0.35)¹¹ + ¹²C₂(0.65)²(0.35)¹⁰ + ¹²C₃(0.65)³(0.35)⁹ + ¹²C₄(0.65)⁴(0.35)⁸ + ¹²C₅(0.65)⁵(0.35)⁷ + ¹²C₆(0.65)⁶(0.35)⁶ + ¹²C₇(0.65)⁷(0.35)⁵ + ¹²C₈(0.65)⁸(0.35)⁴
= 0.000003379 + 0.00007531 + 0.0007692 + 0.004762 + 0.01990 + 0.05912 + 0.1281 + 0.2039 + 0.2367
= 0.6533
Twice a number plus three times a second number is twenty two. Three times the first number plus four times the second is thirty one. Find the numbers
Answer:
The numbers are 5 and 4Step-by-step explanation:
Let the first number be x
Let the second number be y
For the first equation
2x + 3y = 22
For the second equation
3x + 4y = 31
Multiply the first one by 3 and the second one by 2
That's
First equation
6x + 9y = 66
Second equation
6x + 8y = 62
Subtract the second equation from the first one
That's
6x - 6x + 9y - 8y = 66 - 62
y = 4Substitute y = 4 into 2x + 3y = 22
That's
2x + 3(4) = 22
2x = 22 - 12
2x = 10
Divide both sides by 2
x = 5Hope this helps you
expand(x+y2)2 plzzzzzzzzzzzzzzzz
Answer:
[tex](x + {y}^{2}) = {x}^{2} + 2x {y}^{2} + {y}^{4} [/tex]
Hope it helps!!❤❤Please mark me as the brainliest!!!Thanks!!!!
Exhibit 2-4A survey of 400 college seniors resulted in the following crosstabulation regarding their undergraduate major and whether or not they plan to go to graduate school. Undergraduate Major Graduate SchoolBusinessEngineeringOtherTotal Yes 35 42 63140 No 91104 65260 Total126146128400Among the students who plan to go to graduate school, what percentage indicated "Other" majors
Answer:
The percentage of college seniors with "Other" majors is 32%.
Step-by-step explanation:
The total number of college seniors surveyed is, N = 400.
The number of college seniors with "Other" majors is, n = 128.
The percentage of a value of x from N total is given as follows:
[tex]\text{Percentage of}\ x=\frac{x}{N}\times 100\%[/tex]
Compute the percentage of college seniors with "Other" majors as follows:
[tex]\text{Others}\%=\frac{n}{N}\times 100\%[/tex]
[tex]=\frac{128}{400}\times 100\%\\\\=32\%[/tex]
Thus, the percentage of college seniors with "Other" majors is 32%.
Solve the system by substitution. x−5y=13 4x−3y=1 Enter your answer as an ordered pair (x,y).
Answer:
(-2,-3)
Step-by-step explanation:
Well in the system,
x−5y=13
4x−3y=1
We need to find x or y in either equation.
Let's do x - 5y = 13 for x.
+5y to both sides
x = 5y + 13
Now we substitute 5y + 13 for y in 4x - 3y = 1.
4(5y + 13) - 3y = 1
20y + 52 - 3y = 1
17y + 52 = 1
-52 to both sides
17y = -51
Divide all by 17
y = -3
Now we can substitute -3 for y in 4x - 3y = 1.
4x - 3(-3) = 1
4x + 9 = 1
-9 to both sides
4x = -8
Divide 4 to both sides
x = -2
Thus,
the solution is (-2,-3).
Hope this helps :)
Answer:
( - 2 , - 3 )Step-by-step explanation:
x - 5y = 13
4x - 3y = 1
Solve the equation for x
[tex]x - 5y = 13[/tex]
Move '5y' to R.H.S and change it's sign
[tex]x = 13 + 5y[/tex]
Substitute the given value of X into the equation
4x - 3y = 1
[tex]4(13 + 5y) - 3y = 1[/tex]
Solve the equation for y
distribute 4 through the parentheses
[tex]52 + 20y - 3y = 1[/tex]
Collect like terms
[tex]52 + 17y = 1[/tex]
Move constant to R.H.S and change it's sign
[tex]17y = 1 - 52[/tex]
Calculate
[tex]17y = - 51[/tex]
Divide both sides of the equation by 17
[tex] \frac{17y}{17} = \frac{ - 51}{17} [/tex]
Calculate
[tex]y = - 3[/tex]
Now, substitute the given value of y into the equation
x = 13 + 5y
[tex]x = 13 + 5 \times ( - 3)[/tex]
Solve the equation for x
Multiply the numbers
[tex] = 13 - 15[/tex]
Calculate the difference
[tex] = - 2[/tex]
The possible solution of the system is the ordered pair
( x , y )
( x , y ) = ( - 2 , - 3 )
-----------------------------------------------------------------------
Check if the given ordered pair is the solution of the system of equation
[tex] - 2 - 5 \times ( - 3) = 15[/tex]
[tex]4 \times ( - 2) - 3 \times ( - 3) = 1[/tex]
Simplify the equalities
[tex]13 = 13[/tex]
[tex]1 = 1[/tex]
Since all of the equalities are true, the ordered pair is the solution of the system
( x , y ) = ( - 2 , - 3 )Hope this helps..
Best regards!!
consider the distribution of monthly social security (OASDI) payments. Assume a normal distribution with a standard deviation of $116. if one-fourth of payments are above $1214,87 what is the mean monthly payment?
Answer:
$1137
Step-by-step explanation:
Solution:-
We will define the random variable as follows:
X: Monthly social security (OASDI) payments
The random variable ( X ) is assumed to be normally distributed. This implies that most monthly payments are clustered around the mean value ( μ ) and the spread of payments value is defined by standard deviation ( σ ).
The normal distribution is defined by two parameters mean ( μ ) and standard deviation ( σ ) as follows:
X ~ Norm ( μ , σ^2 )
We will define the normal distribution for (OASDI) payments as follows:
X ~ Norm ( μ , 116^2 )
We are to determine the mean value of the distribution by considering the area under neat the normal distribution curve as the probability of occurrence. We are given that 1/4 th of payments lie above the value of $1214.87. We can express this as:
P ( X > 1214.87 ) = 0.25
We need to standardize the limiting value of x = $1214.87 by determining the Z-score corresponding to ( greater than ) probability of 0.25.
Using standard normal tables, determine the Z-score value corresponding to:
P ( Z > z-score ) = 0.25 OR P ( Z < z-score ) = 0.75
z-score = 0.675
- Now use the standardizing formula as follows:
[tex]z-score = \frac{x - u}{sigma} \\\\1214.87 - u = 0.675*116\\\\u = 1214.87 - 78.3\\\\u = 1136.57[/tex]
Answer: The mean value is $1137
Find the valuds to complete the table
Answer:
Where is the table
Step-by-step explanation:
I cant answer without it
If I set my alarm to read 8:10 when it is really 8:00 (i.e., it is 10 minutes fast) and the alarm goes off each day when it reads 8:10, it will be ___________ but not ___________.
Answer:
If I set my alarm to read 8:10 when it is really 8:00 (i.e., it is 10 minutes fast) and the alarm goes off each day when it reads 8:10, it will be reliable but not valid.
Step-by-step explanation:
If I set my alarm to wake me earlier than I need to be woken, it might be in order to give me enough time to adjust to the alarm, and be awake enough to get out of bed before the normal time I need to be out of bed. This method is very reliable, as there is a very little probability of me waking up late, since I have a 10 minutes head start everyday to get out of bed. The problem is that this method is not valid, since I now actually wake earlier than I am supposed to. The extra 10 minutes can actually lead to a disorientation with time.
Complete the table.PLSSS HELP ILL GIVE BRAINLIEST.PLS PLS PLS PLS
Answer:
0, 22, 44, 66
Step-by-step explanation:
Given the equation for the model, [tex] d = 11t [/tex] , you can complete the table above by simply plugging in each value of "t" has given in the table to solve for "d".
*When t (seconds) = 0, distance (feet) would be:
[tex] d = 11(0) [/tex]
[tex] d = 0 [/tex]
*When t (seconds) = 2, distance (feet) would be:
[tex] d = 11(2) [/tex]
[tex] d = 22 [/tex]
*When t (seconds) = 4, distance (feet) would be:
[tex] d = 11(4) [/tex]
[tex] d = 44 [/tex]
*When t (seconds) = 6, distance (feet) would be:
[tex] d = 11(6) [/tex]
[tex] d = 66 [/tex]
Use the Ratio Test to determine the convergence or divergence of the series. If the Ratio Test is inconclusive, determine the convergence or divergence of the series using other methods.
[infinity] n = 1 n2/5n n = 1
lim n→[infinity] an + 1/an =
a. converges
b. diverges
Answer:
A. The series CONVERGESStep-by-step explanation:
If [tex]\sum a_n[/tex] is a series, for the series to converge/diverge according to ratio test, the following conditions must be met.
[tex]\lim_{n \to \infty} |\frac{a_n_+_1}{a_n}| = \rho[/tex]
If [tex]\rho[/tex] < 1, the series converges absolutely
If [tex]\rho > 1[/tex], the series diverges
If [tex]\rho = 1[/tex], the test fails.
Given the series [tex]\sum\left\ {\infty} \atop {1} \right \frac{n^2}{5^n}[/tex]
To test for convergence or divergence using ratio test, we will use the condition above.
[tex]a_n = \frac{n^2}{5^n} \\a_n_+_1 = \frac{(n+1)^2}{5^{n+1}}[/tex]
[tex]\frac{a_n_+_1}{a_n} = \frac{{\frac{(n+1)^2}{5^{n+1}}}}{\frac{n^2}{5^n} }\\\\ \frac{a_n_+_1}{a_n} = {{\frac{(n+1)^2}{5^{n+1}} * \frac{5^n}{n^2}\[/tex]
[tex]\frac{a_n_+_1}{a_n} = {{\frac{(n^2+2n+1)}{5^n*5^1}} * \frac{5^n}{n^2}\\[/tex]
aₙ₊₁/aₙ =
[tex]\lim_{n \to \infty} |\frac{ n^2+2n+1}{5n^2}| \\\\Dividing\ through\ by \ n^2\\\\\lim_{n \to \infty} |\frac{ n^2/n^2+2n/n^2+1/n^2}{5n^2/n^2}|\\\\\lim_{n \to \infty} |\frac{1+2/n+1/n^2}{5}|\\\\[/tex]
note that any constant dividing infinity is equal to zero
[tex]|\frac{1+2/\infty+1/\infty^2}{5}|\\\\[/tex]
[tex]\frac{1+0+0}{5}\\ = 1/5[/tex]
[tex]\rho = 1/5[/tex]
Since The limit of the sequence given is less than 1, hence the series converges.
In order to sustain itself in its cold habitat, a Siberian tiger requires 25 pounds of meat per day.
How much meat would seven Siberian tigers need for the month of April?
Select one:
a. 750 pounds
b. 175 pounds
c. 5425 pounds
d. 5250 pounds
Answer:
d. 5250 pounds
Step-by-step explanation:
25 lbs per day
There are 30 days in april
25 lbs/ day * 30 days
1 tiger would eat 750 lbs
There are 7 tigers
7 * 750 =5250 lbs
Answer:
D. 5250 pounds
Step-by-step explanation:
What you need to do is multiply 25 pounds by 30 because there are 30 days in the month of April.
25 x 30 = 750
Then multiply that amount by seven because there are 7 tigers.
750 x 7 = 5250
Two passenger trains traveling in opposite directions meet and pass each other. Each train is 1 12 mi long and is traveling 50 mph. How many seconds after the front cars of the trains meet will their rear cars pass each other?
Answer:
Time taken = 6 sec (Approx)
Step-by-step explanation:
Given:
Total distance = 1/12 mi = 0.083333
Speed of train = 50 mph = 50 / 3600 = 0.01388889 mps
Find:
Time taken
Computation:
Time taken = Total distance / Speed
Time taken = Total distance / Speed of train
Time taken = 0.0833333 / 0.01388889
Time taken = 6 sec (Approx)
What is the inverse of the logarithmic function
f(x) = log2x?
f –1(x) = x2
f –1(x) = 2x
f –1(x) = logx2
f –1(x) = StartFraction 1 Over log Subscript 2 Baseline x EndFraction
Answer:
B. edge 2021
B. is correct for the next one too.
Step-by-step explanation:
B. is the correct answer for the first one
B. is also the correct answer for the second one
Solve the following system of equations. Express your answer as an ordered pair in the format (a,b). 3x+4y=17 -4x-7y=-18
Answer:
Step-by-step explanation:
3x+4y = 17 _______ equation 1
-4x -7y= -18 _______ equation 2
muliply by 4 in equation 1
12x + 16y = 68 ______ equation 3
multiply by 3 in equation 2
-12x - 21y = -54 ________ equation 4
add equation 3 & 4
- 5y = 14
y = - 14/5
substitute y in equation 1
3x + 4 (-14/5) =17
3x = 17+ (56/5)
3x =( 85 + 56) / 5
3x = 141/5
x = 47/5
hence (a,b) = (47/5, -14/5)
A new city Mayor would like to determine the proportion of community voters who are ages 18 to 20 years. He has heard it is 10%. To test this prediction, he surveys 1000 random community voters and found that 111 of them are aged 18 to 20. The following is the setup for this hypothesis test: H0:p=0.10 H0:p≠0.10 The p-value for this hypothesis test is 0.04. At the 5% significance level, should he reject or fail to reject the null hypothesis?
Answer: He should reject the null hypothesis.
Step-by-step explanation: When using P-Values to decide if you accept or not the alternative hypothesis, compare the p-value with the chosen significance level (α).
In the Mayor's survey:
p-value = 0.04
α = 5% or 0.05
If the p-value is less than α, reject the null hypothesis and accept the alternative. If p-value is greater than or equals α, fail to reject the null hypothesis and don't accept the alternative.
Analysing the Mayor's survey:
p-value = 0.04 < α = 0.05
In conclusion, the Mayor should reject the null hypothesis and accept that the proportion of voters who are aged 18 to 20 is not equal to 10%, i.e., accept the alternative hypothesis: [tex]H_{a}[/tex]: p≠0.10
A national survey of 1000 adult citizens of a nation found that 25% dreaded Valentine's Day. The margin of error for the survey was 3.6 percentage points with 90% confidence. Explain what this means.
Answer:
There is 90% confidence that the proportion of the adult citizens of the nation that dreaded Valentine’s Day is between 0.214 and 0.286.
Step-by-step explanation:
The summary of the statistics from the information given is ;
At 90% confidence interval, 25% dreaded Valentine's Day and the margin of error for the survey was 3.6 percentage points
SO;
[tex]C.I = \hat p \pm M.O.E[/tex]
[tex]C.I = 0.25 \pm 0.036[/tex]
C.I = (0.25-0.036 , 0.25+0.036)
C.I = (0.214, 0.286)
The 90% confidence interval for the proportion of the adult citizens of the nation that dreaded Valentine’s day is 0.214 and 0.286.
There is 90% confidence that the proportion of the adult citizens of the nation that dreaded Valentine’s Day is between 0.214 and 0.286.
Out of 600 people sampled, 66 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A.
Required:
Use a 90% confidence level, and give your answers as decimals, to three places.
Answer:
11% of the Total the entire voting population
Step-by-step explanation:
Let's bear in mind that the total number of sample candidates is equal to 600.
But out of 600 only 66 preffered candidate A.
The proportion of sampled people to that prefer candidate A to the total number of people is 66/600
= 11/100
In percentage
=11/100 *100/1 =1100/100
=11% of the entire voting population
What point lies on the line described by the equation below? Y+3=2 (x-1
Answer:
[tex]\boxed{(1, -3)}[/tex]
Step-by-step explanation:
[tex]y+3=2 (x-1)[/tex]
Put equation in slope-intercept form.
[tex]y=mx+b[/tex]
[tex]y=2(x-1)-3[/tex]
[tex]y=2x-2-3[/tex]
[tex]y=2x-5[/tex]
Let x = 1
[tex]y=2(1)-5[/tex]
[tex]y=2-5[/tex]
[tex]y=-3[/tex]
The point (1, -3) lies on the line.
A baseball is hit into the air, and its height h in feet after t seconds is given by h(t)= -16t^2+128t+2. The height of the baseball when it is hit is ? The baseball reaches its maximum height after ? The maximum height of the baseball is ?
Answer:
[tex]\large \boxed{\sf \ \text{2 feet, 4 seconds, 258 feet } \ }[/tex]
Step-by-step explanation:
Hello,
To know the height of the baseball when it is hit we have to compute h(0), as t = 0 is when the baseball is hit into the air.
[tex]h(0)=-16\cdot 0^2+128 \cdot 0+2=2[/tex]
So, the answer is 2 feet.
h(x) is a parabola which can be written as [tex]ax^2+bx+c[/tex], it means that the vertex is the point (-b/2a,h(-b/2a)).
The baseball reached its maximum height after
[tex]\dfrac{-b}{2a}=\dfrac{-128}{-2*16}=\boxed{4 \text{ seconds}}[/tex]
And the maximum height of the baseball is h(4).
[tex]h(0)=-16\cdot 4^2+128 \cdot 4+2=-256+512+2=\boxed{258 \ \text{feet}}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Use the given categorical data to construct the relative frequency distribution. Natural births randomly selected from four hospitals in a highly populated region occurred on the days of the week (in the order of Monday through Sunday) with the frequencies 53, 63, 68, 58, 61, 43, 54. Does it appear that such births occur on the days of the week with equal frequency?
Answer: Yes
Step-by-step explanation:
See explanations in the attached document
What is the slope of the line passing through the points (6,7) and (1,5)
Answer:
2/5
Step-by-step explanation:
(7-5)/(6-1)
What are the trigonometric ratios? Write all six.
Step-by-step explanation:
Check that attachment
Hope it helps :)
Hey! :)
________ ☆ ☆_________________________________________
Answer:
There are six trigonometric ratios, which will be under “Explanation”
Step-by-step explanation:
Trigonometric ratios are a measurements of a right triangle.
Here are the all the six trigonometric ratios.
1. cotangent (cot)
2. cosecant (csc)
3. cosine (cos)
4. secant (sec)
5. sine (sin)
6. tangent (tan)
Hope this helps! :)
_________ ☆ ☆________________________________________
By, BrainlyMember ^-^
Good luck!
The half-life of iron-52 is approximately 8.3 hours. Step 1 of 3: Determine a so that A(t)=A0at describes the amount of iron-52 left after t hours, where A0 is the amount at time t=0. Round to six decimal places.
Answer:
Step-by-step explanation:
Given the half like of a material to be 8.3 hours and the amount of iron-52 left after t hours is modeled by the equation [tex]A(t) = A_0 a^{t}[/tex], we can get A(t) as shown;
At t = 8.3 hours, A(8.3) = 1/2
Initially at t = 0; A(0) = 1
Substituting this values into the function we will have;
[tex]\frac{1}{2} = 1 * a^{8.3}\\\\Taking \ the \ log \ of\ both \ sides;\\\\log(\frac{1}{2} ) = log(a^{8.3} )\\\\log(\frac{1}{2} ) = 8.3 log(a)\\\\\fr-0.30103 = 8.3 log(a)\\\Dividing\ both\ sides\ by \ 8.3\\\\\frac{-0.30103}{8.3} = log(a)\\\\log(a) = - 0.03627\\\\a =10^{-0.03627} \\\\a = 0.919878 (to\ 6dp)[/tex]
When randomly selecting an adult, let B represent the event of randomly selecting someone with type B blood. Write a sentence describing what the rule of complements below is telling us. P B or B = 1 Choose the correct answer below. A. It is impossible that the selected adult has type B blood or does not have type B blood. B. It is certain that the selected adult has type B blood. C. It is certain that the selected adult has type B blood or does not have type B blood. D. It is certain that the selected adult does not have type B blood.
Answer: The rule of complements is apprising us that, the person selected will.eithwr have a type B blood or will not have a type B blood
Step-by-step explanations:
Find explanations in the attachment
FIRST ANSWER GETS BRAINLIEST!!!
How do you write 0.00696 in scientific notation?
Answer:
6.96x10^-3
Step-by-step explanation:
0.00696
We move the decimal point to between 6 and 9
since the number with the decimal point should be between 0 and 9.
Then we count the numbers.
6.96x10^-3.
Hope this helps. ❤❤❤
Answer: 6.96 * 10^(-3)
Step-by-step explanation:
In scientific notation, you multiply a number that has a value in the ones place and no value in the tens place by 10 raised to an exponent.
Hope it helps <3
Wholemark is an internet order business that sells one popular New Year greeting card once a year. The cost of the paper on the which the card is printed is $0.05 per card, and the cost of printing is $0.15 per card. The company receives $2.15 per card sold. Since the cards have the current year printed on them, unsold cards have no salvage value. Their customers are from the four areas: Los Angeles, Santa Monica, Hollywood, and Pasadena. Based on past data, the number of customers from the each of the four regions is normally distributed with mean 2,000 and standard deviation of 500. (Assume these four are independent.)
What is the optimal production quality for the card? (Use Excel's NORMSINV{} function to find the Z-score. Round intermediate calculations to four decimal places. Submit your answer to the nearest whole number.)
Answer:
The optimal production quantity is 9,322 cards.
Step-by-step explanation:
The information provided is:
Cost of the paper = $0.05 per card
Cost of printing = $0.15 per card
Selling price = $2.15 per card
Number of region (n) = 4
Mean demand = 2000
Standard deviation = 500
Compute the total cost per card as follows:
Total cost per card = Cost of the paper + Cost of printing
= $0.05 + $0.15
= $0.20
Compute the total demand as follows:
Total demand = Mean × n
= 2000 × 4
= 8000
Compute the standard deviation of total demand as follows:
[tex]SD_{\text{total demand}}=\sqrt{500^{2}\times 4}=1000[/tex]
Compute the profit earned per card as follows:
Profit = Selling Price - Total Cost Price
= $2.15 - $0.20
= $1.95
The loss incurred per card is:
Loss = Total Cost Price = $0.20
Compute the optimal probability as follows:
[tex]\text{Optimal probability}=\frac{\text{Profit}}{\text{Profit+Loss}}[/tex]
[tex]=\frac{1.95}{1.95+0.20}\\\\=\frac{1.95}{2.15}\\\\=0.9069767\\\\\approx 0.907[/tex]
Use Excel's NORMSINV{0.907} function to find the Z-score.
z = 1.322
Compute the optimal production quantity for the card as follows:
[tex]\text{Optimal Production Quantity}=\text{Total Demand}+(z\times SD_{\text{total demand}}) \\[/tex]
[tex]=8000+(1.322\times 1000)\\=8000+1322\\=9322[/tex]
Thus, the optimal production quantity is 9,322 cards.
Solve triangle ABC given:
(a) angle A = 40°, angle B = 60°, b = 8 cm.
(b) a = 4, b = 5, c = 6.
(c) angle B = 104°, a = 17 cm, c = 11 cm.
Answer:
(a) C = 80 a = 5.938cm c = 9.097cm
(b) unsure
(c) b= 22.147cm
A = 48.16 degrees
C = 22.82 degrees
Note angle sum higher than 180 due to rounding inaccuracies
Step-by-step explanation:
(a) <C == 180 - (40 + 60) == 80 (Interior angles on triangle have sum of 180 degrees)
side a = (8*sin(40))/sin(60) == 5.938cm by law of sines
side c = (8*sin(80))/sin(
60) == 9.097cm by law of sines
(b) unsure
(c) b^2 = 17^2 + 11^2 - 2(17)(11)cos(104) --> Law of cosines
b^2 = 289 + 121 - 2(187)cos(104)
b^2 = 400 - -90.479
b^2 = 490.479
b = 22.147 cm
sin(A)/17cm = sin(104)/22.147cm
A = arcsin((17/22.147)*sin(104))
A = 48.16 degrees
sin(C)/11cm = sin(104)/22.147cm
C = arcsin((11/22.147)*sin(104))
C = 28.82 degrees
f(n)=4n-3 find the 15th term of the sequence defined by the explicit rule
Answer:
57
Step-by-step explanation:
f(15)=4(15)-3
f(15)=60-3
f(15)=57
Hope that helps, tell me if you need more help
Answer:
57
Step-by-step explanation:
If you plug 15 into the equation, you get f(15)=4(15)-3
60-3
57
:)
Which is the equation of the line for the points in the given table
Answer:
A...............................
A firm has 18 senior and 22 junior partners. A committee of three partners is selected at random to represent the firm at a conference. In how many ways can at least one of the junior partners be chosen to be on the committee?
Answer:
Answer is 24288.
Step-by-step explanation:
Given that there are 18 senior and 22 junior partners.
To find:
Number of ways of selecting at least one junior partner to form a committee of 3 partners.
Solution:
At least junior 1 member means 3 case:
1. Exactly 1 junior member
2. Exactly 2 junior member
3. Exactly 3 junior member
Let us find number of ways for each case and then add them.
Case 1:
Exactly 1 junior member:
Number of ways to select 1 junior member out of 22: 22
Number of ways to select 2 senior members out of 18: 18 [tex]\times[/tex] 17
Total number of ways to select exactly 1 junior member in 3 member committee: 22 [tex]\times[/tex] 18 [tex]\times[/tex] 17 = 6732
Case 2:
Exactly 2 junior member:
Number of ways to select 2 junior members out of 22: 22 [tex]\times[/tex] 21
Number of ways to select 1 senior member out of 18: 18
Total number of ways to select exactly 2 junior members in 3 member committee: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 18 = 8316
Case 3:
Exactly 3 junior member:
Number of ways to select 3 junior members out of 22: 22 [tex]\times[/tex] 21 [tex]\times[/tex] 20 = 9240
So, Total number of ways = 24288