Set up two equations:
Let a = adults and c = child:
a + c = 289 ( rewrite as a = 289 - c)
1.50c + 4a = 746
Replace a with the rewritten formula:
1.50c + 4(289-c) = 746
SImplify:
1.50c + 1156 - 4c = 746
Combine like terms:
-2.50c + 1156 = 746
Subtract 1156 from both sides:
-2.50c = -410
Divide both sides by -2.50
c = -410 / -2.50 = 164
Number of children = 164
Number of adults = 289 - 164 = 125
Answer:
[tex] x+y = 289[/tex] (1) total people entered
[tex] 1.50 x +4 y = 746[/tex] (2) total amount collected
From the first equation we can solve for x and we got:
[tex] x = 289-y[/tex] (3)
Replacing (3) into (2) we got:
[tex] 1.5(289-y) +4y = 746[/tex]
And solving for y we got:
[tex] 433.5 -1.5 y +4y = 746[/tex]
[tex] 2.5 y= 312.5[/tex]
[tex]y=\frac{312.5}{2.5}= 125[/tex]
And then using (3) we can solve for x and we got:
[tex] x= 289-125= 164[/tex]
So then we have:
number of children = 164
number of adults = 125
Step-by-step explanation:
Let x the number of children and y the number of adults. From the info given we can set up the following equations:
[tex] x+y = 289[/tex] (1) total people entered
[tex] 1.50 x +4 y = 746[/tex] (2) total amount collected
From the first equation we can solve for x and we got:
[tex] x = 289-y[/tex] (3)
Replacing (3) into (2) we got:
[tex] 1.5(289-y) +4y = 746[/tex]
And solving for y we got:
[tex] 433.5 -1.5 y +4y = 746[/tex]
[tex] 2.5 y= 312.5[/tex]
[tex]y=\frac{312.5}{2.5}= 125[/tex]
And then using (3) we can solve for x and we got:
[tex] x= 289-125= 164[/tex]
So then we have:
number of children = 164
number of adults = 125
EMILIEJI
Find the slope of the line through (3, 7) and (-1, 4)
a) 2
11
Ob) 4
Od
2
O d) 3
Answer:
slope of the line through (3, 7) and (-1, 4) is
[tex]m = \frac{4 - 7}{ - 1 - 3} \\ \\ = \frac{ - 3}{ - 4} \\ \\ = \frac{3}{4} [/tex]
Hope this helps you
Answer:
3/4
Step-by-step explanation:
Using the slope formula
m = (y2-y1)/(x2-x1)
= (4-7)/(-1-3)
= -3/-4
= 3/4
15 points + brainliest if you can figure this out!
Answer:
(H1, T1)
Step-by-step explanation:
Since we know that the only number option is 1, we can cancel out the first 3 options. and obviously, there are only heads, and tails. So, using only the # 1 and heads and tails, we can conclude that the answer is (H1, T1).
Answer:
D. (H1, T1)
Step-by-step explanation:
Since all outcomes require card #1 is chosen, so any answer with 2 or 3 can be rejected, therefore the answer is
D. (H1, T1)
hich sequence of transformations could map △ABC to △XYZ? a reflection across line m and a dilation a dilation by One-fourth and a reflection across line m a rotation about C and a dilation a dilation by One-fourth and a translation
Answer:
a dilation by One-fourth and a translation
Step-by-step explanation:
For determining the sequence first we have to find out the scale factor which is shown below:
We can calculate the scale factor to obtain
[tex]= \frac{1.5}{6} \\\\ = \frac{1}{4}[/tex]
Now as we know that the triangle XYZ and the triangle ABC are similar to each other but in the triangle XYZ is smaller in size and it is a shift to upward and right
Therefore the last option is correct
can someone help me with this question?l
Answer:
1. 32x³ - 25x² + 35x2. 6x - 11y + 14z - 7Step-by-step explanation:
1).(4x³ - 5x² + 3x ) - 4(5x² - 7x³ - 8x)
Remove the brackets and simplify.
We have
4x³ - 5x² + 3x - 20x² + 28x³ + 32x
Group like terms and simplify
That's
4x³ + 28x³ - 5x² - 20x² + 3x + 32x
We have the final answer as
32x³ - 25x² + 35x2).- 3 - ( 4x + 3y - 2z ) - 4 + 2( 5x - 4y + 6z)
Remove the brackets and simplify
That's
- 3 - 4x - 3y + 2z - 4 + 10x - 8y + 12z
Group like terms and simplify
- 4x + 10x - 3y - 8y + 2z + 12z - 3 - 4
We have the final answer as
6x - 11y + 14z - 7Hope this helps you
Write 21/7 as a whole number
Answer: 3
Step-by-step explanation:
7x=21 21/7=3
please Help will mark brainliest !!1!Use the linear combination method to solve the system of equations. Explain each step of your solution. 2x -3y = 13 x+2=- 4
Answer:
work is shown and pictured
Find the surface area of the attached figure and round your answer to the nearest tenth, if necessary.
Answer:
[tex] S.A = 246.6 in^2 [/tex]
Step-by-step explanation:
The figure given above is a square pyramid, having a square base and 4 triangular faces on the sides that are of the same dimensions.
Surface area of the square pyramid is given as: [tex] B.A + \frac{1}{2}*P*L [/tex]
Where,
B.A = Base Area of the pyramid = 9*9 = 81 in²
P = perimeter of the base = 4(9) = 36 in
L = slant height of pyramid = 9.2 in
Plug in the values into the given formula to find the surface area
[tex] S.A = 81 + \frac{1}{2}*36*9.2 [/tex]
[tex] = 81 + 18*9.2 [/tex]
[tex] = 81 + 165.6 [/tex]
[tex] S.A = 246.6 in^2 [/tex]
The length of a rectangle is 4yd longer than its width. If the perimeter of the rectangle is 36yd, find its area
Answer:
[tex] \boxed{\sf Area \ of \ the \ rectangle = 91 \ yd^{2}} [/tex]
Given:
Length of the rectangle = 4 yd longer than its width
Perimeter of the rectangle = 36 yd
To Find:
Area of the rectangle
Step-by-step explanation:
Let the width of the rectangle be 'w' yd
So,
Length of the rectangle = (w + 4) yd
[tex] \therefore \\ \sf \implies Perimeter \: of \: the \: rectangle = 2(Length + Width) \\ \\ \sf \implies 36 = 2((4 + w) + w) \\ \\ \sf \implies 36 = 2(4 + w + w) \\ \\ \sf \implies 36 = 2(4 + 2w) \\ \\ \sf 36 =2(2w+4) \: is \: equivalent \: to \: 2(2w + 4) = 36: \\ \sf \implies 2(2w + 4) = 36 \\ \\ \sf Divide \: both \: sides \: of \: 2 (2w + 4) = 36 \: by \: 2: \\ \sf \implies 2w + 4 = 18 \\ \\ \sf Subtract \: 4 \: from \: both \: sides: \\ \sf \implies 2w = 14 \\ \\ \sf Divide \: both \: sides \: of \: 2w = 14 \: by \: 2: \\ \sf \implies w = 7[/tex]
So,
Width of the rectangle = 7 yd
Length of the rectangle = (7 + 4) yd
= 13 yd
[tex] \therefore \\ \sf Area \ of \ the \ rectangle = Length \times Width \\ \\ \sf = 7 \times 13 \\ \\ \sf = 91 \: {yd}^{2} [/tex]
Suppose ABC is a right triangle with sides of lengths a, b, and c and right angle at C. Find the unknown side length using the Pythagorean theorem, and then find the values of the six trigonometric functions for angle B. Rationalize denominators when applicable. b=4, c=7
Answer:
Side a^2 = 49 + 16
Side a^2 = 65
Side a = 8.062
sin (B) = 4 / 8.062
cos (B) = 7 / 8.062
tan (B) = 4 / 7
cot (B) = 7 / 4
sec (B) = 8.062 / 7
csc (B) = 8.062 / 4
Step-by-step explanation:
Compute P7,2. (Enter an exact number.)
Need Help?
Read It
Talk to a Tutor
Submit Answer
Answer:
42
Step-by-step explanation:
The permutation formula is P(n, r) = n! / (n - r)!. We know that n = 7 and r = 2 so we can write:
7! / (7 - 2)!
= 7! / 5!
= 7 * 6 * 5 * 4 * 3 * 2 * 1 / 5 * 4 * 3 * 2 * 1
= 7 * 6 (5 * 4 * 3 * 2 * 1 cancels out)
= 42
Answer:
[tex]\boxed{42}[/tex]
Step-by-step explanation:
Apply the permutation formula.
[tex]P(n,r)=\frac{n!}{ (n-r)!}[/tex]
[tex]P=number \: of \: permutations\\n=total \: number \: of \: objects \: in \: the \: set\\r=number \: of \: choosing \: objects \: from \: the \: set\\[/tex]
[tex]n=7\\r=2[/tex]
Plug in the values and evaluate.
[tex]P(7,2)=\frac{7!}{ (7-2)!}[/tex]
[tex]P(7,2)=\frac{7!}{ (5)!}[/tex]
[tex]P(7,2)=\frac{5040}{120}[/tex]
[tex]P(7,2)=42[/tex]
given g(x)=3/x^2+2x find g^-1(x)
Answer:
A
Step-by-step explanation:
[tex]g(x) = \frac{3}{{x}^{2} + 2x} \\ {x}^{2} + 2x - \frac{3}{g(x)} = 0 \\ x = \frac{1}{2} \Big( - 2 + \sqrt{12 + \frac{12}{g(x)} }\Big) \\ x = - 1 + \sqrt{1 \pm \frac{3}{g(x)} } [/tex]
Now replace $x$ by $g^{-1}(x)$ and $g(x)$ by $x$ and you have your answer.
Find the area of the figure. Round to the nearest tenth if necessary. 386.3m^2 194.3m^2 193.1m^2 201.9m^2
Add the top and bottom numbers together, divide that by 2 then multiply by the height.
15.3 + 19.5 = 34.8
34.8/2 = 17.4
17.4 x 11.1 = 193.14
Answer is 193.1 m^2
Find the zeros of the quadratic function: y = 6(7x + 9)(8x – 3)
Answer:
hello :- 9/7 and 3/8
Step-by-step explanation:
y = 6(7x + 9)(8x – 3)
y=0 means : 7x+9=0 or 8x-3=0
7x = -9 or 8x=3
x= - 9/7 or x= 3/8
Answer:
-9/7, 3/8
Step-by-step explanation:
The zeroes can be found in the parenthesis.
You need to set each parenthesis to zero first.
7x+9=0
subtract 9
7x=-9
divide 7
x=-9/7
For 8x-3=0
add the 3
8x=3
divide the 8
x=3/8
Lisa, a dentist, believes not enough teenagers floss daily. She would like to test the claim that the proportion of teenagers who floss twice a day is less than 40%. To test this claim, a group of 400 teenagers are randomly selected and its determined that 149 floss twice a day. The following is the setup for this hypothesis test: H0:p=0.40 H0:p<0.40 The p-value for this hypothesis test is 0.131. At the 5% significance level, should the dentist reject or fail to reject the null hypothesis?
Answer:
The dentist should fail to reject the Null hypothesis
Step-by-step explanation:
From the question we are told that
The sample size is n = 400
The sample mean is [tex]\= x = 149[/tex]
The level of significance is 5% = 0.05
The Null hypothesis is [tex]H_o : p = 0.40[/tex]
The Alternative hypothesis is [tex]H_a : p < 0.40[/tex]
The p-value is [tex]p-value = 0.131[/tex]
Looking at the given data we can see that the p-value is greater than the level of significance hence the dentist should fail to reject the Null hypothesis
HELP number 12 pls i do nor have long more
Answer:
Dian has $250 originally.
Step-by-step explanation:
Let the total money Dian has originally = $S
Dian gave [tex]\frac{2}{5}[/tex] of her total money to Justin,
Money given to Justin = [tex]\frac{2}{5}(\text{S})[/tex]
Money left with Dian = S - [tex]\frac{2}{5}(\text{S})[/tex]
= [tex]\frac{\text{5S-2S}}{5}[/tex]
= [tex]\frac{3S}{5}[/tex]
Since Dian has $150 left then the equation will be,
[tex]\frac{3S}{5}=150[/tex]
S = [tex]\frac{150\times 5}{3}[/tex]
S = $250
Therefore, Dian has $250 originally.
Which of the following are solutions to the equation below?
Check all that apply.
x2 - 6x + 9 = 11
Answer:
x = 3 ± sqrt(11)
Step-by-step explanation:
x^2 - 6x + 9 = 11
Recognizing that this is a perfect square trinomial
(x-3) ^2 =11
Taking the square root of each side
sqrt((x-3) ^2) = ± sqrt(11)
x-3 =± sqrt(11)
Add 3 to each side
x = 3 ± sqrt(11)
Answer:
[tex]\large\boxed{\sf \ \ x = 3+\sqrt{11} \ \ or \ \ x = 3-\sqrt{11} \ \ }[/tex]
Step-by-step explanation:
Hello,
[tex]x^2-6x+9=11\\<=> x^2-2*3*x+3^2=11\\<=>(x-3)^2=11\\<=> x-3=\sqrt{11} \ or \ x-3=-\sqrt{11}\\<=> x = 3+\sqrt{11} \ or \ x = 3-\sqrt{11}[/tex]
Do not hesitate if you have any question
Hope this helps
The coordinates of the vertices of a rectangle are given by R(- 3, - 4), E(- 3, 4), C (4, 4), and T (4, - 4). A. Use the Pythagorean Theorem to find the exact length of ET. B. How can you use the Distance Formula to find the length of ET? Show that the Distance Formula gives the same answer.
Answer:
see explanation
Step-by-step explanation:
Pythagorean Theorem
7² + 8² = x²
49 + 64 = x²
113 = x²
x = √113 or 10.63
Distance Formula
√(-4 - 4)² + (4 - -3)²
= √8² + 7²
= √113 or 10.63
Which correlation coefficient could represent the relationship in the scatterpot. Beach visitors
Answer:
A. 0.89.
Step-by-step explanation:
The value of correlation coefficient ranges from -1 to 1. Any value outside this range cannot possibly be correlation coefficient of a scatter plot representing relationship between two variables.
The scatter plot given shows a positive correlation between average daily temperatures and number of visitors, as the trend shows the two variables are moving in the same direction. As daily temperature increases, visitors also increases.
From the options given, the only plausible correlation that can represent this positive relationship is A. 0.89.
there are three oranges in 200g of bag . if the weight of them with bag is 1.4kg. find the weight of an orange.i want full methods
the bag is 200g
total weight with oranges is 1400g
deduct the bags weight from total weight
1400 - 200
1200g
this is the weight of the three oranges
so each orange would be
1200 ÷ 3
400g
Which of the following situations may be modeled by the equation y = 2x +20
A. Carlos has written 18 pages of his article. He plans to write an
additional 2 pages per day.
B. Don has already sold 22 vehicles. He plans to sell 2 vehicles per
week.
C. Martin has saved $2. He plans to save $20 per month.
D. Eleanor has collected 20 action figures. She plans to collect 2
additional figures per month
Answer:
D.
m = 2 = figures/month
b = 20 = # of action figures
Identify the parameter n in the following binomial distribution scenario. A basketball player has a 0.479 probability of
making a free throw and a 0.521 probability of missing. If the player shoots 17 free throws, we want to know the probability
that he makes more than 9 of them. (Consider made free throws as successes in the binomial distribution.)
Answer:
n = 17
Step-by-step explanation:
Assuming
- probability of success (making free throw) does not vary
We have
n = 17 (trials)
p = 0.479
x > 9
The answer is "[tex]\bold{p(x>9)=0.2550319}[/tex]"
[tex]\to X:[/tex] Number of creating free throws in a set [tex]\bold{17\ \ x \sim bin(17,0.479)}[/tex]
Know we calculating the P(makes more than 9 of them)
[tex]=\bold{9(X>9)=1-P(Z<=9)}[/tex]
Using the R-code:
[tex]\to \bold{1-p\ binom(9,17,0.479)}\\\\\to \bold{[1]0.2550319}\\\\\bold{\therefore}\\\\ \to \bold{p(x>9)=0.2550319}[/tex]
Learn more:
binomial distribution: brainly.com/question/9065292
Write in expanded form
3
(-a)
Answer:
-3a
Step-by-step explanation:
3(-a)
Expand brackets.
3 × -1a
-3a
Solve application problems using radical equations. A hang glider dropped his cell phone from a height of 450 feet. How many seconds did it take for the cell phone to reach the ground?
Answer:
[tex]\large \boxed{\text{5.29 s}}[/tex]
Step-by-step explanation:
The appropriate free fall equation is
y = v₀t + ½gt²
Data:
v₀ = 0
g = 32.17 ft·s⁻²
Calculation:
[tex]\begin{array}{rcl}450 &=& v_{0}t + \dfrac{1}{2}gt^{2}\\\\& = & 0 \times t + \dfrac{1}{2}\times 32.17t^{2}\\\\& = & 16.08t^2\\t^{2}& = & \dfrac{450}{16.08}\\\\& = & 27.97\\t & = & \textbf{5.29 s}\\\end{array}\\\text{It took $\large \boxed{\textbf{5.29 s}}$ for the phone to reach the ground.}[/tex]
Which statement best explains the relationship between lines PQ and RS? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.
Answer:
They are not parallel because their slopes are not equal
Step-by-step explanation:
From the diagram attached, The line PQ has point P at (-5, 3) and point Q at (5, 1).
For line RS, point R is at (-4, -2) and point S is at (0, -4).
Two lines AB and CD are said to be parallel to each other if they have the same slope, i.e if the slope of AB is m1 and the slope of CD is m2, m1 = m2. When two lines are parallel, they can never intersect.
The slope (m) of of a line given two points on the line is calculated using:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
For line PQ has point P at (-5, 3) and point Q at (5, 1), the slope is given as:
[tex]m_1=\frac{y_2-y_1}{x_2-x_1}=\frac{1-3}{5-(-5)}=-\frac{1}{5}\\[/tex]
For line RS, point R is at (-4, -2) and point S is at (0, -4), the slope is given as:
[tex]m_2=\frac{y_2-y_1}{x_2-x_1}=\frac{-4-(-2)}{0-(-2)}=-1[/tex]
Since the slope of PQ (-1/5) and the slope of line RS (-1) are not equal, therefore the lines are not parallel
Answer:
They are not parallel because their slopes are not equal.
Step-by-step explanation:
The first person to answer this was correct, please mark them brainliest.
What is the sum of the series? ∑j=152j Enter your answer in the box.
Answer:
Hope this is correct
HAVE A GOOD DAY!
A company has five employees on its health insurance plan. Each year, each employee independently has an 80% probability of no hospital admissions. If an employee requires one or more hospital admissions, the number of admissions is modeled by a geometric distribution with a mean of 1.50. The numbers of hospital admissions of different employees are mutually independent. Each hospital admission costs 20,000.
Calculate the probability that the company's total hospital costs in a year are less than 50,000.
Answer:
the probability that the company's total hospital costs in a year are less than 50,000 = 0.7828
Step-by-step explanation:
From the given information:
the probability that the company's total hospital costs in a year are less than 50,000 will be the sum of the probability of the employees admitted.
If anyone is admitted to the hospital, they have [tex]\dfrac{1}{3}[/tex] probability of making at least one more visit, and a [tex]\dfrac{2}{3}[/tex] probability that this is their last visit.
If zero employee was admitted ;
Then:
Probability = (0.80)⁵
Probability = 0.3277
If one employee is admitted once;
Probability = [tex](0.80)^4 \times (0.20)^1 \times (^5_1) \times (\dfrac{2}{3})[/tex]
Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{2}{3})[/tex]
Probability = 0.2731
If one employee is admitted twice
Probability = [tex](0.80)^3 \times (0.20)^2 \times (^5_2) \times (\dfrac{2}{3})^2[/tex]
Probability = [tex](0.80)^3 \times (0.20)^2 \times (\dfrac{5!}{(5-2)!}) \times (\dfrac{2}{3})^2[/tex]
Probability = 0.1820
If two employees are admitted once
Probability = [tex](0.80)^4\times (0.20)^1 \times (^5_1) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]
Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]
Probability = 0.0910
∴
the probability that the company's total hospital costs in a year are less than 50,000 = 0.3277 + 0.2731 + 0.1820
the probability that the company's total hospital costs in a year are less than 50,000 = 0.7828
the mean monthly income of trainees at a local mill is 1100 with a standard deviation of 150. find rthe probability that a trainee earns less than 900 a month g
Answer:
The probability is [tex]P(X < 900 ) = 0.0918[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 1100[/tex]
The standard deviation is [tex]\sigma = 150[/tex]
The random number value is x =900
The probability that a trainee earn less than 900 a month is mathematically represented as
[tex]P(X < x) = P(\frac{X -\= x}{\sigma} < \frac{x -\= x}{\sigma} )[/tex]
Generally the z-value for the normal distribution is mathematically represented as
[tex]z = \frac{x -\mu }{\sigma }[/tex]
So From above we have
[tex]P(X < 900 ) = P(Z < \frac{900 -1100}{150} )[/tex]
[tex]P(X < 900 ) = P( Z <-1.33)[/tex]
Now from the z-table
[tex]P(X < 900 ) = 0.0918[/tex]
Assume production time per unit is normally distributed with a mean 40 minutes and standard deviation 8 minutes. Using the empirical rule, what percent of the units are produced in MORE than 32 minutes?
Answer:
84%
Step-by-step explanation:
We find the z-score here
z= x-mean/SD = 32-40/8 = -1
So the probability we want to find is;
P(z>-1)
This can be obtained using the standard score table
P(z>-1) = 0.84 = 84%
Suppose that the probability distribution below shows the number of colleges that children of celebrities applied to in 2018. Compute the standard deviation for the number of college applications.
x 0 2 4 6
P(x) 0.4 0.3 0.2 0.1
Complete Question
The complete question is shown on the first uploaded image
Answer:
The standard deviation is [tex]\sigma = 2.45[/tex]
Step-by-step explanation:
From the given data we can compute the expected mean for each random values as follows
[tex]E(X) = \sum [ X * P(X = x )]\\\\ X \ \ \ \ \ \ X* P(X =x )\\ 0 \ \ \ \ \ \ \ \ \ \ 0* 0.4 = 0 \\ 2 \ \ \ \ \ \ \ \ \ \ 2 * 0.3 = 0.6 \\ 4 \ \ \ \ \ \ \ \ \ \ 4 * 0.2 = 0.8\\ 6 \ \ \ \ \ \ \ \ \ \ 6* 0.1 = 0.6[/tex]
So
[tex]E(x) = 0 + 0.6 + 0.8 + 0.6[/tex]
[tex]E(x) = 2[/tex]
The
[tex]E(X^2) = \sum [ X^2 * P(X = x )]\\\\ X \ \ \ \ \ \ \ \ \ \ X^2 * P(X=x ) \\ 0 \ \ \ \ \ \ \ \ \ \ 0^2 * 0.4 = 0 \\ 2 \ \ \ \ \ \ \ \ \ \ 2^2 * 0.3 = 12 \\ 4 \ \ \ \ \ \ \ \ \ \ 4^2 * 0.2 = 3.2 \\ 6 \ \ \ \ \ \ \ \ \ \ 6^2 * 0.1 = 3.6[/tex]
So
[tex]E(X^2) = 0 + 1.2 + 3.2 + 3.6[/tex]
[tex]E(X^2) = 8[/tex]
Now the variance is mathematically evaluated as
[tex]Var (X) = E(X^2 ) -[E(X]^2[/tex]
Substituting value
[tex]Var (X) = 8-4[/tex]
[tex]Var (X) = 6[/tex]
The standard deviation is mathematically evaluated as
[tex]\sigma = \sqrt{Var(x)}[/tex]
[tex]\sigma = \sqrt{4}[/tex]
[tex]\sigma = 2[/tex]
4. (a) Two years ago a woman was 7 times as old as her daughter, but in 3 years time
she would be only 4
times as old as the girl. How old are they now?
Answer:
woman is 37, girl is 7
Step-by-step explanation:
7(x-2) = y-2
4(x+3) = y+3
7x - 14 = y - 2
7x - 12 = y
4x + 9 = y
3x - 21 = 0
x = 7
y = 37