The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass p=7.95 kg and radius p=0.89 m. The hanging masses are L=32.0 kg and R=17.8 kg. Calculate the magnitude of the masses' acceleration and the tension in the left and right ends of the rope, L and R , respectively.

Answers

Answer 1

Answer:

Acceleration(a) = 2.588 m/s²

TL = 230.784 N

TR = 220.5 N

Explanation:

Given:

M = 7.95 kg

mL = 32 kg

mR = 17.8 kg

g = 9.8 m/s²

Find:

Acceleration(a)

TL

TR

Computation:

Acceleration(a) = [(mL - mR)g] / [mL + mR + M/2]

Acceleration(a) = [(32 - 17.8)9.8] / [32 + 17.8 + 7.95/2]

Acceleration(a) = [139.16] / [53.775]

Acceleration(a) = 2.588 m/s²

TL = mL(g-a)

TL = 32(9.8-2.588)

TL = 230.784 N

TR = mR(g+a)

TR = 17.8(9.8+2.588)

TR = 220.5 N


Related Questions

A conventional current of 3 A runs clockwise in a circular loop of wire in the plane, with center at the origin and with radius 0.093 m. Another circular loop of wire lies in the same plane, with its center at the origin and with radius 0.03 m. How much conventional current must run counterclockwise in this smaller loop in order for the magnetic field at the origin to be zero

Answers

Answer:

The current in the small radius loop must be 0.9677 A

Explanation:

Recall that the formula for the magnetic field at the center of a loop of radius R which runs a current I, is given by:

[tex]B=\mu_0\,\frac{I}{2\,R}[/tex]

therefore for the first loop in the problem, that magnetic field strength is:

[tex]B=\mu_0\,\frac{I}{2\,R} =\mu_0\,\frac{3}{2\,(0.093)} =16.129\,\mu_{0}\,[/tex]

with the direction of the magnetic field towards the plane.

For the second smaller loop of wire, since the current goes counterclockwise, the magnetic field will be pointing coming out of the plane, and will subtract from the othe field. In order to the addition of these two magnetic fields to be zero, the magnitudes of them have to be equal, that is:

[tex]16.129\,\,\mu_{0}=\mu_0\,\frac{I'}{2\,R'} =\mu_{0}\,\frac{I'}{2\,(0.03)} \\I'=16.129\,(2)\,(0.03)=0.9677\,\,Amps[/tex]

A bowling ball of mass 5 kg rolls off the edge of a building 20 meters tall. What is the work done by gravity during the fall, in Joules

Answers

Answer:

1000j

Explanation:

work done = force x distance

w = 5 x 10 x 20 = 1000joules

Equal charges, one at rest, the other having a velocity of 104 m/s, are released in a uniform magnetic field. Which charge has the largest force exerted on it by the magnetic field

Answers

Answer:

case 1 of physics is the answer

You are given two infinite, parallel wires, each carrying current.The wires are separated by a distance, and the current in the two wires is flowing in the same direction. This problem concerns the force per unit length between the wires.
A. Is the force between the wires attractive orrepulsive?
B. What is the force per unit length between the two wires?

Answers

Answer:

A. Attractive

B. ( μ₀I² ) / ( 2πd )

Explanation:

A. We know that currents in the same direction attract, and currents in the opposite direction repel, according to ampere's law. In this case the current in the two wires are flowing in the same direction, and hence the force between the two wires are attractive.

B. Suppose that two wires of length [tex]l_1[/tex] and [tex]l_2[/tex] both carry the current [tex]I[/tex] in the same direction ( given ). In the presence of a magnetic field produced by wire 1, a force of magnitude m say, is experienced by wire 2. The magnitude of the magnetic field produced by wire 1 at distance say d, from it's axis, should thus be the following -

[tex]B_1[/tex] = μ₀I / 2πd

The force experienced by wire 2 should thus be -

[tex]F_2[/tex] = I( [tex]l_2[/tex] [tex]*[/tex] [tex]B_1[/tex] )

= I [tex]*[/tex] [tex]l_2 * B_1 *[/tex] Sin( 90 )

= I [tex]*[/tex] [tex]l_2[/tex] ( μ₀I / 2πd )

Therefore the force per unit length experienced by wire 2 toward wire 1 should be ...

( [tex]F_2[/tex] / [tex]l_2[/tex] ) = ( μ₀I² ) / ( 2πd ) ... which is our solution

The number of neutrons in the nucleus of zinc 65 Zn 30 is:
35
Need more data to answer
65
30

Answers

Explanation:

proton number + neutron number = atomic mass

30 + 35 = 65

a figures skater rotating at 5 rads with arms extended has a moment of inertia of 2.25 kg. if the arms are pulled in so the moment of inertia decrease to 1.8 what is the final angular speed

Answers

Answer:

The final angular speed is 6.25 rad/s

Explanation:

Given;

initial angular speed, ω₁ = 5 rad/s

initial moment of inertia, I₁ = 2.25 kg.m²

Final moment of inertia, I₂ = 1.8 kg.m²

final angular speed, ω₂ = ?

Based on conservation of angular momentum, we will have the following expression;

ω₁I₁ = ω₂I₂

ω₂ = (ω₁I₁ ) / I₂

ω₂ = (5 x 2.25) / 1.8

ω₂ = 6.25 rad/s

Therefore, the final angular speed is 6.25 rad/s

Find the rms (a) electric and (b)magnetic fields at a point 2.00 m from a lightbulb that radiates 90.0 W of light uniformly in all directions.

Answers

Answer:

a) rms of electric field =

[tex]E_{rms}[/tex]= 25.97 V/m

b) rms of magnetic field

[tex]B_{rms}[/tex] = 8.655 × 10⁻⁸

[tex]B_{rms}[/tex] = 86.55nT

Explanation:

given

power p = 90.0W

distance d = 2.00m

Intensity = [tex]\frac{power}{area}[/tex]

I = [tex]\frac{p}{A}[/tex]

A = [tex]4\pi d^{2}[/tex]

I = [tex]\frac{p}{4\pi d^{2} }[/tex]

I = [tex]\frac{90}{4\pi(2^{2}) }[/tex]

I = 1.79 W/m²

a) [tex]I_{ave}[/tex] = ε₀ × [tex]E^{2} _{rms}[/tex] × c

where ε₀ is permittivity of free space = 8.85×10⁻¹²,  [tex]E^{2} _{rms}[/tex] is the root mean value and c is speed of light = 3×10⁸m/s

1.79 = 8.85×10⁻¹² × [tex]E^{2} _{rms}[/tex] × 3×10⁸

[tex]E^{2} _{rms}[/tex] = [tex]\frac{1.79}{8.85x10^{-12} x 3x10^{8} }[/tex]

[tex]E^{2} _{rms}[/tex]= 674.1996

[tex]E_{rms}[/tex]= 25.97 V/m

b)for rems magnetic field

[tex]E_{rms}[/tex]= c [tex]B_{rms}[/tex]

[tex]B_{rms}[/tex] = [tex]\frac{E_{rms} }{c}[/tex]

[tex]B_{rms}[/tex] = [tex]\frac{25.97 V/m}{3x10^{8} }[/tex]

[tex]B_{rms}[/tex] = 8.655 × 10⁻⁸

[tex]B_{rms}[/tex] = 86.55nT

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will

Answers

Assuming that the voltage is constant, and the resistance was doubled, since I=V/R, the current through the circuit will be halved. As P=IV, with the same voltage and halved current, the power dissipated by the circuit will be halved

In a polar coordinate system, the velocity vector can be written as . The term theta with dot on top is called _______________________ angular velocity transverse velocity radial velocity angular acceleration

Answers

Answer:

I believe it's called rapid growth

Explanation:

that is my answer no matter what

The phenomenon of magnetism is best understood in terms ofA) the existence of magnetic poles.B)the magnetic fields associated with the movement of charged particles.C)gravitational forces between nuclei and orbital electrons.D) electrical fluid

Answers

Answer:

A) the existence of magnetic poles.

Explanation:

Magnetism is defined as the ability of a magnet to attract magnetic substance to itself. Such magnet has the ability of being magnetized. A magnet is known to possess poles which are the north poles and south poles. The presence of this poles is what makes them possess the properties of a magnet. An ordinary steel bar doesn't have the properties of a magnet unless it is magnetized and when you are trying to magnetize a steel bar, you are invariably introducing the magnetic poles.

According to the law of magnetism, like poles repel but unlike poles attract. From the above explanation, it can be concluded that the phenomenon of magnetism is best understood interns of existence of magnetic poles. This poles are called the north and the south poles.

Two people, one of mass 85 kg and the other of mass 50 kg, sit in a rowboat of mass 90 kg. With the boat initially at rest, the two people, who have been sitting at opposite ends of the boat, 3.5 m apart from each other, now exchange seats. How far does the boat move?

Answers

Answer:

0.11m

Explanation:

let's assume the boat is of uniform construction

Ignoring friction losses

Also assume the origin is at the end of the boat originally with the heavier person

the center of mass of the whole system will not change relative to the water when the two swap ends

Originally, the center of mass is

85[0] + 90[3.5/2] + 50[3.5] / (85 + 90 + 50) = 1.14m from the origin

after the swap, the center of mass is

50[0] + 90[3.5/2] + 85[3.5] / (85 + 90+ 50) = 1.030m from the origin

The center of mass has shifted

1.14-1.030 = 0.11m

as no external force acted on the system, the center of mass relative to the water will not change. The boat will therefore shift towards the end where the heavier person originally sat

If radio waves were used to communicate with an alien spaceship approaching Earth at 10% of the speed of light c, Earth would receive their signals at a speed of

Answers

Answer:

Explanation:

speed of alien spaceship = .1 c

We shall apply formula of relativistic mechanics to solve the problem

relative velocity =

[tex]\frac{v+v_1}{1 -\frac{v\times v }{c^2} }[/tex]

Here v = v₁ = .1 c

relative velocity  = .1c + .1 c / 1 - .1²

= .2 c / .99

= .202 c

The earth would receive the signal at the speed of .202 c .

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.

Answers

Answer:

Option A

Explanation:

From the graph, we came to know that Force and acceleration are in direct relationship.

Also,

Force = 0 when Acceleration = 0

Because Both are 0 at the origin.

Answer:

A. It will be 0 meters per second per second.

Explanation:

The force and acceleration is in a proportional relationship, that means the line goes through the origin.

On the graph, when the force is at 0, the acceleration is 0. The line passes through the origin.

Two parallel wires run in a north-south direction. The eastern wire carries 15.0 A northward while the western wire carries 6.0 A northward. If the wires are separated by 30 cm, what is the magnetic field magnitude and direction at a point between the wires at a distance of 10 cm from the western wire?

Answers

Answer:

The magnitude  and direction of the  magnetic field is 2.7 x 10⁻⁵ T upwards

Explanation:

Given;

current in the eastern wire, [tex]I_e[/tex] = 15 A

current in the western wire, [tex]I_w[/tex] = 6 A

distance between the wires, d = 30 cm = 0.3 m

The magnetic field at a distance R from a line current I, is given as;

[tex]B = \frac{\mu_o I }{2 \pi R}[/tex]

The magnetic field between the wires, are in opposite directions, and since the currents are also in opposite directions, the magnetic fields of the wires will be added.

The total field = magnetic field (east) + magnetic field (west);

[tex]B = \frac{\mu_o I_e}{2 \pi R_e} + \frac{\mu_0 I_w}{2 \pi R_w} \\\\B = \frac{\mu_o}{2\pi} (\frac{I_e}{R_e} + \frac{I_w}{R_w})[/tex]

where;

[tex]R_w[/tex] is the distance of the field from west = 10cm = 0.1 m

[tex]R_e[/tex] is the distance of the field on east from west = d - 10cm = 30cm - 10cm = 20cm = 0.2 m

The total magnetic field is;

[tex]B = \frac{\mu_o}{2\pi} (\frac{I_e}{R_e} + \frac{I_w}{R_w})\\\\B = \frac{4\pi *10^{-7}}{2\pi} (\frac{15}{0.2} + \frac{6}{0.1})\\\\B = 2*10^{-7}(75 + 60)\\\\B = 2*10^{-7}(135)\\\\B = 2.7*10^{-5} \ T[/tex]

Since total magnetic field is positive, the direction of the field is upwards (positive y direction)

Therefore, the magnitude  and direction of the  magnetic field is 2.7 x 10⁻⁵ T upwards

An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels for a time t0 along a half-circle of radius R before leaving the magnetic field traveling opposite the direction it initially entered the field. Which of the following quantities would change if the electron had entered the field with a speed 2v? (There may be more than one correct answer.)
a. The radius of the circular path the electron travels
b. The magnitude of the electron's acceleration inside the field
c. The time the electron is in the magnetic field
d. The magnitude of the net force acting on the electron inside the field

Answers

Answer:

Explanation:

For circular path in magnetic field

mv² / R = Bqv ,

m is mass , v is velocity , R is radius of circular path , B is magnetic field , q is charge on the particle .

a )

R = mv / Bq

If v is changed  to 2v , keeping other factors unchanged , R will be doubled

b )

magnitude of acceleration inside field

= v² / R

= Bqv / m

As v is doubled , acceleration will also be doubled

c )

If T be the time inside the magnetic field

T = π R / v

=  π  / v x  mv / Bq

= π m / Bq

As is does not contain v that means T  remains unchanged .

d )

Net force acting on electron

= m v² / R = Bqv

Net force = Bqv

As v becomes twice force too becomes twice .

So a . b , d are correct answer.

A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm light from a He-Ne laser. Because the lecture hall is very large, the interference pattern will be projected on a wall that is 4.0 m from the slits. For easy viewing by all students in the class, the professor wants the distance between the m
What slit separation is required in order to produce the desired interference pattern?
d=________m

Answers

Note: if the professor wants the distance between the m = 0 and m = 1 maxima to be 25 cm

Answer:

d = 1.0128×10⁻⁵m

Explanation:

given:

length L = 4.0m

maximum distance between m = 0 and m = 1 , y = 25cm = 0.25m

wavelength λ = 633nm = 633×10⁻⁹m

note:

dsinθ = mλ (constructive interference)

where d is slit seperation, θ is angle of seperation , m is order of interference , and λ is wavelength

for small angle

sinθ ≈ tanθ

[tex]d (\frac{y}{L}) =[/tex] mλ

[tex]d (\frac{y}{L}) = (1)(633nm)[/tex]

[tex]d(\frac{0.25}{4} ) = (1)(633nm)[/tex]

d = 1.0128×10⁻⁵m

A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70

Answers

Answer:

The  induced current is [tex]I = 6.25*10^{-4} \ A[/tex]

Explanation:

From the question we are told that  

    The number of turns is  [tex]N = 1[/tex]

     The  cross-sectional area is  [tex]A = 8.20 cm^2 = 8.20 * 10^{-4} \ m^2[/tex]

    The  initial magnetic field is  [tex]B_i = 0.500 \ T[/tex]

     The  magnetic field at time =  1.02 s  is  [tex]B_t = 2.60 \ T[/tex]

     The  resistance is  [tex]R = 2.70\ \Omega[/tex]

The  induced emf is mathematically represented as

       [tex]\epsilon = - N * \frac{ d\phi }{dt}[/tex]

The  negative sign tells us that the induced emf is moving opposite to the change in magnetic flux

      Here  [tex]d\phi[/tex] is the change in magnetic flux which is mathematically represented as

        [tex]d \phi = dB * A[/tex]

Where  dB  is the change in magnetic field which is mathematically represented as

        [tex]dB = B_t - B_i[/tex]

substituting values

        [tex]dB = 2.60 - 0.500[/tex]

        [tex]dB = 2.1 \ T[/tex]

Thus  

      [tex]d \phi = 2.1 * 8.20 *10^{-4}[/tex]

     [tex]d \phi = 1.722*10^{-3} \ weber[/tex]

So  

     [tex]|\epsilon| = 1 * \frac{ 1.722*10^{-3}}{1.02}[/tex]

     [tex]|\epsilon| = 1.69 *10^{-3} \ V[/tex]

The  induced current i mathematically represented as

      [tex]I = \frac{\epsilon}{ R }[/tex]

  substituting values

       [tex]I = \frac{1.69*10^{-3}}{ 2.70 }[/tex]

       [tex]I = 6.25*10^{-4} \ A[/tex]

g A particle (charge = +40 mC) is located on the x axis at the point x = -20 cm, and a second particle (charge = -50 mC) is placed on the x axis at x = +30 cm. What is the magnitude of the total electrostatic force on a third particle (charge = -4.0 mC) placed at the origin (x = 0)? Group of answer choices

Answers

Answer:

Explanation:

We shall find electric field at origin due to two given charges sitting   on the either side of origin .

Total field will add up due to their same direction .

Field due to a charge Q

= 9 x 10⁹ x Q / R²  ;  R is distance of point , Q is charge

Field due to first charge

= 9 x 10⁹ x 40 x 10⁻³ / 2² x 10⁻⁴

= 90 x 10¹⁰ N/C

Field due to second  charge

= 9 x 10⁹ x 50 x 10⁻³ / 2² x 10⁻⁴

= 112.5 x 10¹⁰ N/C

Total field

= 202.5 x 10¹⁰ N/C

Force on given charge at origin

= charge x field

= 4 x 10⁻³ x 202.5 x 10¹⁰

= 810 x 10⁷ N .

A department store expects to have 225 customers and 20 employees at peak times in summer. Determine the contribution of people to the total cooling load of the store. The average rate of heat generation from people doing light work is 115 W, and 70% of it is in sensible form.

Answers

Answer:

The  contribution of people to the cooling load of the store is 19722.5 W

Explanation:

Total amount of customers = 225

Total amount of employees = 20

Total amount of people in the store at that instant n = 245 people

Average rate of heat generation Q = 115 W

percentage of these heat generated that is sensible heat = 70%

Sensible heat raises the surrounding temperature. Latent heat only causes a change of state.

The total heat generated by all the people in the store = n x Q

==> 245 x 115 = 28175 W

but only 70% of this heat is sensible heat that raises the temperature of the store, therefore, the contribution of people to the cooling load of the store = 70% of 28175 W

==> 0.7 x 28175 = 19722.5 W

Sergio has made the hypothesis that "the more time that passes, the farther away a person riding a bike will be." Do the data in the table below support his hypothesis? A. Yes, the data support the hypothesis. B. No, the data support the opposite of the hypothesis. C. The data show no relationship between the time passed and the distance.

Answers

Answer:

Option A

Explanation:

Given that

Distance = Speed / Time

So, they are in inverse relation.

Such that when the time passes, the distance from the reacing point will become less and vice versa.

So, Yes! The more time that passes, the farther away a person riding a bike will be.

Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation.

Answers

Answer:

The object with the twice the area of the other object, will have the larger drag coefficient.

Explanation:

The equation for drag force is given as

[tex]F_{D} = \frac{1}{2}pu^{2} C_{D} A[/tex]

where [tex]F_{D}[/tex] IS the drag force on the object

p = density of the fluid through which the object moves

u = relative velocity of the object through the fluid

p = density of the fluid

[tex]C_{D}[/tex] = coefficient of drag

A = area of the object

Note that [tex]C_{D}[/tex] is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid

The above equation can also be broken down as

[tex]F_{D}[/tex] ∝ [tex]P_{D}[/tex] A

where [tex]P_{D}[/tex] is the pressure exerted by the fluid on the area A

Also note that [tex]P_{D}[/tex] = [tex]\frac{1}{2}pu^{2}[/tex]

which also clarifies that the drag force is approximately proportional to the abject's area.

In this case, the object with the twice the area of the other object, will have the larger drag coefficient.

A 1.8 kg microphone is connected to a spring and is oscillating in simple harmonic motion up and down with a period of 3s. Below the microphone is 1.8 hz, calculate the spring constant

Answers

Answer:

230N/m

Explanation:

Pls see attached file

Red light is bent the least of all colors as it passes through a prism. What does this tell you about red light? It has a short wavelength. It has a long wavelength. It has a high intensity. It has a low intensity.

Answers

Answer:

Longest wavelength, lowest intensity

Explanation:

Answer:

It has a long wavelength

Explanation:

GRADPOINT

g Question 11 pts Consider two masses connected by a string hanging over a pulley. The pulley is a uniform cylinder of mass 3.0 kg. Initially m1 is on the ground and m2 rests 2.9 m above the ground. After the system is released, what is the speed of m2 just before it hits the ground? m1= 30 kg and m2= 35 kg Group of answer choices 2.1 m/s 1.4 m/s 9.8 m/s 4.3 m/s 1.9 m/s

Answers

Answer:

The speed of m2 just before it hits the ground is 2.1 m/s

Explanation:

mass on the ground m1 = 30 kg

mass oat rest at the above the ground m2 = 35 kg

height of m2 above the ground =2.9 m

Let the tension on the string be taken as T

for the mass m2 to reach the ground, its force equation is given as

[tex]m_{2} g - T = m_{2}a[/tex]    ....equ 1

where g is acceleration due to gravity = 9.81 m/s^2

and a is the acceleration with which it moves down

For mass m1 to move up, its force equation is

[tex]T - m_{1} g = m_{1} a[/tex]

[tex]T = m_{1}a + m_{1}g[/tex]

[tex]T = m_{1}(a + g)[/tex]    ....equ 2

substituting T in equ 1, we have

[tex]m_{2} g - m_{1}(a+g) = m_{2}a[/tex]

imputing values, we have

 [tex](35*9.81) - 30(a+9.81) = 35a[/tex]

 [tex]343.35 - 30a-294.3 = 35a[/tex]

[tex]343.35 -294.3 = 35a+ 30a[/tex]

[tex]49.05 = 65a[/tex]

a = 49.05/65 = 0.755 m/s^2

The initial velocity of mass m2 = u = 0

acceleration of mass m2 = a = 0.755 m/s^2

distance to the ground = d = 2.9 m

final velocity = v = ?

using Newton's equation of motion

[tex]v^{2}= u^{2} + 2ad[/tex]

substituting values, we have

[tex]v^{2}= 0^{2} + 2*0.755*2.9[/tex]

[tex]v^{2}= 2*0.755*2.9 = 4.379\\v = \sqrt{4.379}[/tex]

v = 2.1 m/s

The rotor of a gas turbine is rotating at a speed of 7000 rpm when the turbine is shut down. It is observed that 3.5 minutes is required for the rotor to coast to rest. Assuming uniformly accelerated motion, determine the number of revolutions that the rotor executes before coming to rest. Hint: there will be a large number of rotations.

Answers

Answer:

The rotor of the gas turbine rotates 12250 revolutions before coming to rest.

Explanation:

Given that rotor of gas turbine is decelerating at constant rate, it is required to obtained the value of angular acceleration as a function of time, as well as initial and final angular speeds. That is:

[tex]\dot n = \dot n_{o} + \ddot n \cdot t[/tex]

Where:

[tex]\dot n_{o}[/tex] - Initial angular speed, measured in revolutions per minute.

[tex]\dot n[/tex] - Final angular speed, measured in revolutions per minute.

[tex]t[/tex] - Time, measured in minutes.

[tex]\ddot n[/tex] - Angular acceleration, measured in revoiutions per square minute.

The angular acceleration is now cleared:

[tex]\ddot n = \frac{\dot n - \dot n_{o}}{t}[/tex]

If [tex]\dot n_{o} = 7000\,\frac{rev}{min}[/tex], [tex]\dot n = 0\,\frac{rev}{min}[/tex] and [tex]t = 3.5\,min[/tex], the angular acceleration is:

[tex]\ddot n = \frac{0\,\frac{rev}{min}-7000\,\frac{rev}{min} }{3.5\,min}[/tex]

[tex]\ddot n = -2000\,\frac{rev}{min^{2}}[/tex]

Now, the final angular speed as a function of initial angular speed, angular acceleration and the change in angular position is represented by this kinematic equation:

[tex]\dot n^{2} = \dot n_{o}^{2} + 2\cdot \ddot n \cdot (n-n_{o})[/tex]

Where [tex]n[/tex] and [tex]n_{o}[/tex] are the initial and final angular position, respectively.

The change in angular position is cleared herein:

[tex]n-n_{o} = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \ddot n}[/tex]

If [tex]\dot n_{o} = 7000\,\frac{rev}{min}[/tex], [tex]\dot n = 0\,\frac{rev}{min}[/tex] and [tex]\ddot n = -2000\,\frac{rev}{min^{2}}[/tex], the change in angular position is:

[tex]n-n_{o} = \frac{\left(0\,\frac{rev}{min} \right)^{2}-\left(7000\,\frac{rev}{min} \right)^{2}}{2\cdot \left(-2000\,\frac{rev}{min^{2}} \right)}[/tex]

[tex]n-n_{o} = 12250\,rev[/tex]

The rotor of the gas turbine rotates 12250 revolutions before coming to rest.

Suppose you have a lens system that is to be used primarily for 775-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength?

Answers

Answer:

406 nm

Explanation:

We are given;

Wavelength; λ = 775 nm

Refractive index of Calcium fluoride with wavelength of 775 nm as seen in the graph attached is approximately 1.4308.

n = 1.4308

Formula for the thickness of the film that would destruct the light is;

t = (m + 0.5)(λ/2n)

Where m is the order of the thickness.

The first smallest thickness is at m = 0 while the second smallest thickness is at m = 1.

Thus;

t = (1 + 0.5)(775/(2 × 1.4308))

t ≈ 406 nm

. A 24-V battery is attached to a 3.0-mF capacitor and a 100-ohm resistor. If the capacitor is initially uncharged, what is the voltage across the capacitor 0.16 seconds after the circuit is connected to the battery

Answers

Answer:

The  voltage is [tex]V_c = 9.92 \ V[/tex]

Explanation:

From the question we are told that

     The voltage of the battery is  [tex]V_b = 24 \ V[/tex]

     The capacitance of the capacitor is  [tex]C = 3.0 mF = 3.0 *10^{-3} \ F[/tex]

     The  resistance of the resistor is [tex]R = 100\ \Omega[/tex]

     The time taken is  [tex]t = 0.16 \ s[/tex]  

Generally the voltage of a charging charging capacitor after time t is mathematically represented as

       [tex]V_c = V_o (1 - e^{- \frac{t}{RC} })[/tex]

Here [tex]V_o[/tex] is the voltage of the capacitor when it is fully charged which in the case of this question is equivalent to the voltage of the battery so  

      [tex]V_c = 24 (1 - e^{- \frac{0.16}{100 * 3.0 *10^{-1}} })[/tex]

      [tex]V_c = 9.92 \ V[/tex]

A thin film with an index of refraction of 1.60 is placed in one of the beams of a Michelson interferometer. If this causes a shift of 8 bright fringes in the pattern produced by light of wavelength 580 nm, what is the thickness of the film

Answers

Answer:

3.867 μm

Explanation:

The index of refraction, μ = 1.6

Wavelength of the light, λ = 580 nm

N2 - N1 = (2L / λ) (n2 - n1), Making L subject of formula, we have

(N2 - N1) λ = 2L (n2 - n1)

L = [(N2 - N1) * λ] / 2(n2 - n1)

L = (8 * 580) / 2(1.6 - 1.0)

L = 4640 nm / 1.2

L = 3867 nm or 3.867 μm

Therefore we can come to the conclusion that the thickness of the film is 3.867 nm

A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns through an angle of 80 radians. Assuming the wheel started from rest, how long had it been in motion at the start of the 4.0-s interval

Answers

Answer:

The  time interval is  [tex]t = 3 \ s[/tex]

Explanation:

From the question we are told that

    The angular acceleration is  [tex]\alpha = 4.0 \ rad/s^2[/tex]

     The  time taken is  [tex]t = 4.0 \ s[/tex]

      The angular displacement is  [tex]\theta = 80 \ radians[/tex]

     

The angular displacement can be represented by the second equation of motion as shown below

          [tex]\theta = w_i t + \frac{1}{2} \alpha t^2[/tex]

where  [tex]w_i[/tex] is the initial velocity at the start of the 4 second interval

So substituting values

        [tex]80 = w_i * 4 + 0.5 * 4.0 * (4^2)[/tex]

=>    [tex]w_i = 12 \ rad/s[/tex]

Now considering this motion starting from the start point (that is rest ) we have

       [tex]w__{4.0 }} = w__{0}} + \alpha * t[/tex]

Where  [tex]w__{0}}[/tex] is the angular velocity at rest which is zero  and  [tex]w__{4}}[/tex] is the angular velocity after 4.0 second which is calculated as 12 rad/s s

        [tex]12 = 0 + 4 t[/tex]

=>       [tex]t = 3 \ s[/tex]

Following are the response to the given question:

Given:

[tex]\to \alpha = 4.0 \ \frac{rad}{s^2}\\\\[/tex]

[tex]\to \theta= 80\ radians\\\\\to t= 4.0 \ s\\\\ \to \theta_0=0\\[/tex]

To find:

[tex]\to \omega=?\\\\\to t=?\\\\[/tex]

Solution:

Using formula:

[tex]\to \theta- \theta_0 = w_{0} t+ \frac{1}{2} \alpha t^2\\\\ \to 80-0= \omega_{0}(4) + \frac{1}{2} (4)(4^2)\\\\ \to 80= \omega_{0}(4) + \frac{1}{2} (4)(16)\\\\\\to 80= \omega_{0}(4) + (4)(8)\\\\\to 80= \omega_{0}(4) + 32\\\\\to 80-32 = \omega_{0}(4) \\\\\to \omega_{0}(4)= 48 \\\\\to \omega_{0}= \frac{48}{4} \\\\ \to \omega_{0} = 12 \frac{rad}{ s} \\\\[/tex]  

It would be the angle for rotation at the start of the 4-second interval.

This duration can be estimated by leveraging the fact that the wheel begins from rest.  

[tex]\to \omega = \omega_{0} + \alpha t\\\\\to 12 = 0 +4(t) \\\\\to 12 = 4(t) \\\\ \to t=\frac{12}{4}\\\\\to t= 3\ s[/tex]

Therefore, the answer is "[tex]12\ \frac{rad}{s}[/tex] and [tex]3 \ s[/tex]".

Learn more:

brainly.com/question/7464119

water and air are both fluids. why is it easier to lift a rock in water rather thatn lifting a rock in air? a the force of gravity. b the bouyant force is greater on the rock in water. c the bouyant force is greater on the rock in air. d the force of gravity on the rock is less in water.

Answers

Answer:

The answer is option b.the buoyant force is greater on the rock in water.

Other Questions
According to the narrator, what advantage do the impoverished children of Ireland have?1.They can become servants for wealthy families2.They can get an education to rise out of their lifestyle3.They can get jobs and give money to their parents to help out4.They can live as beggars Does this categoryinclude producers?Does this categoryinclude consumers?Archaea, bacteria, protists, viruses HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP A common way of measuring the thermal conductivity of a material is to sandwich an electric thermofoil heater between two identical samples of the material. The thickness of the resistance heater, including its cover, which is made of thin silicon rubber, is usually less than 0.5 mm. A circulating fluid such as tap water keeps the exposed ends of the samples at constant temperature. The lateral surfaces of the samples are well insulated to ensure that heat transfer through the samples is one- dimensional. Two thermocouples are embedded in each sample some distance (L) apart, and a differential thermometer reads the temperature drop (Delta T) across this distance along each sample. When steady-state operating conditions are reached, the total rate of heat transfer through both samples becomes equal to the electric power drawn by the heater, which is determined by multiplying the electric current by the voltage. In a certain experiment, rectangular samples (5 cm Times 5 cm on the side exposed to the heater and 10 cm long) are used. The two thermocouples in each sample are placed 3 cm apart. After initial transients, the electric heater is observed to draw 0.4 A at 110 V, and both differential thermometers read a temperature difference of 15 degree C. Determine the thermal conductivity of the sample. There are typically two reactions to the Hippie Aesthetic of either extending on it's values or rejecting them. What are the artistic values you attribute to the Hippie Aesthetic of the late 60's? Marie Curie's theory of radioactivity and discovery of radium were critical to the development of: A: the polio vaccine B: x-rays C: penicillin D: the discovery of DNA Haver Company currently produces component RX5 for its sole product. The current cost per unit to manufacture the required 70,000 units of RX5 follows.Direct materials $ 4.00Direct labor 8.00Overhead 9.00 Total costs per unit 21.00 Direct materials and direct labor are 100% variable. Overhead is 80% fixed. An outside supplier has offered to supply the 70,000 units of RX5 for $20.00 per unit. Required: 1. Calculate the incremental costs of making and buying component RX5. Total incremental costs of: Making the units Buying the units Total direct materials $ 244,000 $ 0Total direct labor 488,000 0Variable overhead costs 122,000 0Cost to buy the units 1,159,000Total costs $ 854,000 $ 1,159,000Should the company continue to manufacture the part, or should it buy the part from the outside supplier? Make the units 2.4.6.8. 10.... geometrical,arithmetic or neither? Find the indicated functional value for the ceiling function: f(1.5)? The tee for the fourth hole on a golf course is 300 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marshas ball and the hole to the nearest tenth of a yard.A. 195.4 ydB. 123.7 ydC. 97.5 ydD. 105.1 yd in a certain town there are 30000 registered voters, of whom 12000 are Democrats. A survey organization is about to take a simple random sample of 1000 registered voters. a) the expected value for the percentage of Democrats in the sample is What the answer question Which word phrase could represent the algebraic expression 2p + 3 where p represents Sam's age? What best describes immigrant neighborhoods?A. They benefited from the American System.B. They were usually poor and crowded.C. They relied on government aid.D. They were in rural areas. OceanGate sells external hard drives for $200 each. Its total fixed costs are $30 million, and its variable costs per unit are $140. The corporate tax rate is 30%. If the economy is strong, the firm will sell 2 million drives, but if there is a recession, it will sell only half as many. a. What is the firm's degree of operating leverage in going from a recession to a strong economy? b. If the economy enters a recession, what will be the firm's after-tax profit? How many pounds of candy that sells for $0.81 per Ib must be mixed with candy that sells for $1.27 per Ib to obtain 8 lb of a mixture that should sell for $0.92 per lb?1. $0.81-per-lb candy: _____ lb? Box A contains 5 dark chocolates and10 milk chocolates. Box B contains 12dark chocolates and 12 milk chocolates.Craig picks a box at random and thentakes out one chocolate at random.What is the probability that he gets a darkchocolate?% (1 d.p.) Arrange the following kinds of electromagnetic radiation in order of increasing wavelength: infrared, green light, red light, radio waves, X rays, ultraviolet light.Rank from shortest to longest. To rank items as equivalent, overlap them.infraredgreen lightred lightradio wavesX raysultraviolet Why do political leaders look at the unemployment rates of other countries?A. Because the unemployment rate is an indicator of the deflationrates of currencyO B. Because the unemployment rate can determine whether thecountry is in a period of inflationO C. Because the unemployment rate can predict whether the price ofstocks will increaseO D. Because the unemployment rate is a measure of the condition ofthe economy what is the best phone company that sells long lasting battery life phones?