Answer:
[tex]f(x) = (x+1)^2 +2[/tex]
Step-by-step explanation:
Well you complete the square and get,
[tex]x^2 + 2x + 1 ^2 - 1^2 +3[/tex]
Then you use the binomial formula to get,
(x + 1)^2 + 2
Thus,
f(x) = x^2 + 2x + 3 is f(x) = (x + 1)^2 + 2.
Hope this helps :)
Please answer this in two minutes
Answer:
20/29
Step-by-step explanation:
SOH CAH TOA
so its opposite/hyp...
20/29
is the answer
Jane exchanged £100 for 216 Swiss francs. After buying a meal and a present to take home,she had 70 francs left.How much is this in £?
Answer:
£32.4
Step-by-step explanation:
£100 = 216 Swiss francs
x = 70 francs
70 x 100=7000/216=32.4
the diagrams shows a right-angled triangle. find the size of angle x. give your answer correct to 1 decimal place.
Answer:
1. 40.8 degrees
2. 65.6 degrees
Step-by-step explanation:
1.
sin(x) = opposite / hypotenuse = 17/26
x = arcsin(17/26) = 40.83 degrees
2. tan(x) = opposite / adjacent = 11/5 = 2.2
x = arctan(11/5) = 65.56 degrees
Simplify (2^3)^–2. PLEASE I NEED HELP U WILL GET 10 POINTS
Answer:
I won't give you the answer straight away so you take the time to read my answer and understand
Step-by-step explanation:
We knoe that 2 to the third is 8. when you square to a negative power, you do squaring normally, and then take the reciprocal of that number. so 8 to the second power is 64, and we flip it over, sp the answer is 1/64
Points A(-l, y) and B(5,7) lie on a circle with centre 0(2, -3y). Find the values of y. Hence, find the radius of the circle
Answer:
The answer is below
Step-by-step explanation:
Points A(-l, y) and B(5,7) lie on a circle with centre O(2, -3y). This means that AB is the diameter of the circle and OA = OB = radius.
For two points X([tex]x_1,y_1[/tex]) and Y([tex]x_2, y_2[/tex]), the coordinates of the midpoint (x, y) between the two points is given as:
[tex]x=\frac{x_1+x_2}{2},y=\frac{y_1+y_2}{2}[/tex].
For A(-l, y) and B(5,7) with center O(2, -3y), the value of y can be gotten by:
[tex]For\ x\ coordinate:\\2=\frac{-1+5}{2}\\ 2=2.\\For\ y\ coordinate:\\-3y=\frac{y+7}{2}\\ -6y=y+7.\\-6y-y=7\\-7y=y\\y=-1[/tex]
The value of y is -1. Therefore A is at (-1, -1) and O is at (2, -3(-1))= (2, 3)
The radius of the circle = OA. The distance between two points X([tex]x_1,y_1[/tex]) and Y([tex]x_2, y_2[/tex]) is given as:
[tex]|OX|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\\\Therefore\ the\ radius \ |OA|\ is :\\|OA|=\sqrt{(2-(-1))^2+(3-(-1))^2}=\sqrt{25}=5[/tex]
The radius of the circle is 5 units
Solve by the quadratic formula: x^2= 6x-4
Answer:
3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Step-by-step explanation:
x^2 = 6x - 4
x^2 - 6x + 4 = 0
Now, we can use the quadratic formula to solve.
[tex]\frac{-b\pm\sqrt{b^2 - 4ac} }{2a}[/tex], where a = 1, b = -6, and c = 4.
[tex]\frac{-(-6)\pm\sqrt{(-6)^2 - 4 * 1 * 4} }{2 * 1}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 4 * 4} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 16} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{20} }{2}[/tex]
= [tex]\frac{6\pm2\sqrt{5} }{2}[/tex]
= 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex]
x = 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Hope this helps!
HELP MEEEEEEE please
Answer:
scale factor = [tex]\frac{1}{3}[/tex]
Step-by-step explanation:
Consider the ratio of corresponding sides, image to original, that is
scale factor = [tex]\frac{T'V'}{TV}[/tex] = [tex]\frac{2}{6}[/tex] = [tex]\frac{1}{3}[/tex]
abby owns a square plot of land. she knows that the area of the plot is between 2200 and 2400 square meters. which of the following answers is a possible value for the side length of the plot of land?
Answer:
48
Step-by-step explanation:
The formula for the area of a square is A = s². Plug in each value and see if is in between 2200 and 2400.
A = s²
A = (46)²
A = 2116
A = s²
A = (48)²
A = 2304
A = s²
A = (50)²
A = 2500
A = s²
A = (44)²
A = 1936
The only value that fits in between 220 and 2400 is 48.
Calcule o valor dos produtos a) (-4). (-7/8) b) (-4). (-7/8) n sei pq tá repetido tá aqui na folha ;-; c) (-4).(+ 3,5) d) (-2).(-3/4). (-1/7) PRA HOJEE
Answer:
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
Step-by-step explanation:
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
É repetido talvez com sinal alterado para mostrar a diferença na resposta. Se o sinal for alterado, a resposta também se tornará negativa. Seria - 28/8.
Quando um número negativo é multiplicado por um número negativo, obtém um número positivo. Mas quando um número positivo é multiplicado por um número negativo, dá uma resposta negativa.
Sempre se lembre
negativo * negativo = positivo
positivo * negativo = negativo
negativo * positivo = negativo
positivo * positivo = positivo
Em palavras simples, dois sinais diferentes dão um sinal negativo e dois sinais semelhantes dão um sinal positivo na multiplicação.
English
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
Its repeated maybe with a changed sign to show the difference in the answer. If the sign is changed the answer would also become negative . It would become - 28/8.
When a negative number is multiplied with a negative number it gives a positive number. But when a positive number is multiplied with a negative number it gives a negative answer.
Always remember
negative * negative= positive
positive *negative=negative
negative *positive =negative
positive * positive = positive
In simple words two unlike signs give a negative sign and two similar signs give a positive sign in multiplication.
THE LANDSCAPER IS PLANTING A TREE THAT IS NOW 55 CM TALL. THE TREE WILL GROW 4 CM PER MONTH FOR X MONTHS. THE TREE WILL GROW TO BE AT MOST Y CM TALL. WRITE AN INEQUALITY SHOWING THIS RELATIONSHIP.
Answer: 55cm + X*4cm < Y.
Step-by-step explanation:
The initial height of the tree is 55cm
The tree will grow 4cm per month, for X months.
then the height of the tree is the initial height, plus X times 4cm
H = 55cm + X*4cm
If Y is the maximum height that this tree can grow, then we can write the inequality as:
H < Y.
55cm + X*4cm < Y.
48 - 8x equivalent expression
Answer:
8(6-x)
Step-by-step explanation:
Both 48 and 8 can be divisible by 8.
48 ÷ 8 = 6
8 ÷ 8 = 1
Therefore you get the answer 8(6-x)
as the simplest form.
Hope this helps.
Helppppppppppppppppp
Answer/Step-by-step explanation:
Surface area of cylinder = 2πrh + 2πr²
Surface area of the cylinder with,
height (h) = 4 ft
radius (r) = 5 ft
Surface area = 2*3.14*5*4 + 2*3.14*5²
= 125.6 + 157
= 282.6 ft²
Surface area of the cylinder with,
height (h) = 12 yd
radius (r) = 3 yd
Surface area = 2*3.14*3*12 + 2*3.14*3²
= 282.74 yd²
What is the following product?
Answer:
[tex]\boxed{6\sqrt{6} }[/tex]
Step-by-step explanation:
[tex]\sqrt{12} \sqrt{18}[/tex]
Multiply square roots.
[tex]\sqrt{12 \times 18}[/tex]
[tex]\sqrt{216}[/tex]
Simplify square root.
[tex]\sqrt{36} \sqrt{6}[/tex]
[tex]6\sqrt{6}[/tex]
What fraction is equal to six-sevenths times eight-fifths?
Answer:
1 13/35 (mixed number) or 48/35 (simplified)
Step-by-step explanation:
6/7 times 8/5
= (6 times 8) / (7 times 5)
= 48/35 or 1 13/35
hope this helped :)
Answer:
48/35
Step-by-step explanation:
6/7*8/5=48/35
Please help i will mark brainliest
Answer:
See below.
Step-by-step explanation:
To find the equation, we need to find the slope and the y-intercept. Afterwards, we can put the numbers into the slope-intercept form:
[tex]y=mx+b[/tex]
From the graph, we can see that the line crosses the y-intercept at y=-6. Thus, the y-intercept (b) is -6.
Now we need to find the slope. Pick any two points where the line crosses. I'm going to pick (0,-6) and (4,-7).
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-7-(-6)}{4-0}= -1/4[/tex]
Therefore, the equation of the line would be:
[tex]y=mx+b\\y=-1/4x-6[/tex]
Find the area ratio of a regular octahedron and a tetrahedron regular, knowing that the diagonal of the octahedron is equal to height of the tetrahedron.
Answer:
[tex]\frac{4}{3}[/tex]
Step-by-step explanation:
The area of a regular octahedron is given by:
area = [tex]2\sqrt{3}\ *edge^2[/tex]. Let a is the length of the edge (diagonal).
area = [tex]2\sqrt{3}\ *a^2[/tex]
Given that the diagonal of the octahedron is equal to height (h) of the tetrahedron i.e.
a = h, where h is the height of the tetrahedron and a is the diagonal of the octahedron. Let the edge of the tetrrahedron be e. To find the edge of the tetrahedron, we use:
[tex]h=\sqrt{\frac{2}{3} } e\\but\ h=a\\a=\sqrt{\frac{2}{3} } e\\e=\sqrt{\frac{3}{2} }a[/tex]
The area of a tetrahedron is given by:
area = [tex]\sqrt{3}\ *edge^2[/tex] = [tex]\sqrt{3} *(\sqrt{\frac{3}{2} }a)^2=\frac{3}{2}\sqrt{3} *a^2[/tex]
The ratio of area of regular octahedron to area tetrahedron regular is given as:
Ratio = [tex]\frac{2\sqrt{3}\ *a^2}{\frac{3}{2} \sqrt{3}*a^2} =\frac{4}{3}[/tex]
first correct answer gets best marks
Answer:
the answer would be x is less than 6.
Step-by-step explanation:
the reason why it would not be x is less than or equal to 6 is that the circle is not filled in.
Answer:
B
Step-by-step explanation:
x≤6
We can see from the graph that it starts from 6 and goes to 5, 4, 3, 2.
Hope this helps ;) ❤❤❤
The following box plot shows the number of years during which 40 schools have participated in an interschool swimming meet: A box and whisker plot is drawn using a number line from 0 to 10 with primary markings and labels at 0, 5, 10. In between two primary markings are 4 secondary markings. The box extends from 1 to 6 on the number line. There is a vertical line at 3.5. The whiskers end at 0 and 8. Above the plot is written Duration of Participation. Below the plot is written Years. At least how many schools have participated for more than 1 year and less than 6 years?
Answer:
Step-by-step explanation:
The box encloses data between the two quartiles, namely at least half of the data. If there are 40 schools, then half of them would be in the box, between 1 and 6.
see attached plot.
Answer:
really hard to tell what the box plot is like without an attachment so im gonna help u find it out anyway
Step-by-step explanation:
basically when u look at a box plot and the range the line in the middle is the median and then the max the lowest range the lower quartile and then the higher quartile you can find ur anser, simply find the median first, find where the lower quartile is and then the lowest number in the group thats in betweeen 1 and 6
The table shows the number of flowers in four bouquets and the total cost of each bouquet. A 2-column table with 4 rows. The first column is labeled number of flowers in the bouquet with entries 8, 12, 6, 20. The second column is labeled total cost (in dollars) with entries 12, 40, 15, 20. What is the correlation coefficient for the data in the table? –0.57 –0.28 0.28 0.57
Answer:
The correct option is;
0.28
Step-by-step explanation:
The given data values are;
x, f(x)
8, 12
12, 40
6, 15
20, 20
Where;
x = The number of flowers in the bouquet
f(x) = The total cost (in dollars)
The equation for linear regression is of the form, Y = a + bX
The formula for the intercept, a, and the slope, b, are;
[tex]b = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{N\sum X^{2} - \left (\sum X \right )^{2}}[/tex]
[tex]a = \dfrac{\sum Y - b\sum X}{N}[/tex]
Where:
N = 4
∑XY = 1066
∑X = 46
∑Y = 87
∑X² = 644
(∑X)² = 2116
b = (4*1066 - 46*87)/(4*644 - 2116) = 0.5696
a = (87 - 0.5696*46)/4 = 15.1996
The standard deviation of the x- values
[tex]S_X = \sqrt{\dfrac{\sum (x_i - \mu)^2}{N} }[/tex]
[tex]\sum (x_i - \mu)^2}[/tex] = 115
N = 4
Sx =√(115/4)
Sx = 5.36
[tex]S_Y = \sqrt{\dfrac{\sum (y_i - \mu_y)^2}{N} }[/tex]
[tex]\sum (y_i - \mu_y)^2}[/tex] = 476.75
N = 4
Sy =√(476.75/4)
Sy= 10.92
b = r × Sy/Sx
Where:
r = The correlation coefficient
r = b × Sx/Sy = 0.5696*5.36/10.92 = 0.2796 ≈ 0.28
The correct option is 0.28.
Answer:
C on edge
Step-by-step explanation:
Pls help I need help with 12
Answer:
B. 14
Step-by-step explanation:
22/x = 11/(21-x)
462 - 22x = 11x
462 = 33x
x = 14
Answer: The value of x is 14, answer choice B
Let y be the other line segment connected to x
Using proportions:
[tex]\dfrac{11}{22}=\dfrac{y}{x}[/tex]
Cross multiply and simplify
[tex]22y=11x[/tex]
[tex]y=\dfrac{1}{2}x[/tex]
We know that x and y add to 21, so we can create the following equation:
[tex]x+y=21[/tex]
Substitute y=(1/2)x
[tex]x+\dfrac{1}{2}x=21[/tex]
Simplify by adding like terms
[tex]\dfrac{3}{2}x=21[/tex]
Divide both sides by 3/2
[tex]x=14[/tex]
Let me know if you need any clarifications, thanks!
Help please!!!!!thxxxx
Answer:
144
Step-by-step explanation:
An angle of a regular pentagon is of 180(5-2)/5=108°
and that all the sides are equal so angle MNL=108/3=36
then MNK=180-MNL=180-36=144
I don't know if you understand this but it's hard to work without more points :)
When deriving the quadratic formula by completing the square, what expression can be added to both sides of the equation to create a perfect square trinomial?
Answer:
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Step-by-step explanation:
Let consider a second-order polynomial of the form [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex], [tex]\forall \,x \in\mathbb{R}[/tex]. The procedure is presented below:
1) [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex] (Given)
2) [tex]a\cdot x^{2} + b \cdot x = -c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
3) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x = -4\cdot a \cdot c[/tex] (Compatibility with multiplication)
4) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x + b^{2} = b^{2}-4\cdot a \cdot c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
5) [tex](2\cdot a \cdot x + b)^{2} = b^{2}-4\cdot a \cdot c[/tex] (Perfect square trinomial)
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Answer: D
Step-by-step explanation:
EDGE 2023
An umbrella has 8 ribs which are equally spaced (see fig.). Assuming umbrellato
be a flat circle of radius 45 cm, find the area between the two consecutive ribs of
the umbrella.
Answer:
Yes.
Step-by-step explanation:
You are correct except to the nearest hundredth it is 795.54 cm^2.
At the shop near the beach, ice cream is offered in a cone or in a cylindrical cup as shown
below. The ice cream fills the entire cone and has a hemisphere on top. The ice cream
levelly fills the cylindrical cup.
radius of cone= 3 cm
radius of cylinder= 4.5 cm
height of cone = 10 cm
height of cylinder = 5 cm
Determine how much more ice cream the larger option has. Show your work. ( 19)
Answer:
B
Step-by-step explanation:
Miriam is setting up a fishing game in a kiddie pool for her niece's birthday party. The pool has a circular base with a diameter of 4 feet and a height of 0.75 feet. She wants to fill the pool halfway so there is plenty of space left for the plastic fish. Approximately how many cubic feet of water does she need? 9.4 1.5 2.4 4.7
Answer:
4.7 feet³ of water
Step-by-step explanation:
Diameter of 4 feet
Radius = 2 feet
Height = 0.75 feet
Formula for Volume = 2·[tex]\pi[/tex]·radius·height
But she only wants to fill half, so divide by 2, cancels the 2 in the formula for volume, giving us: [tex]\pi[/tex]·radius·height
[tex]\pi[/tex]·2·0.75 = 4.71 feet³
Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions: 2ab-6a+5b+___ Please include an explanation too!
Answer:
[tex]2ab - 6a + 5b - 15[/tex]
Step-by-step explanation:
Given
[tex]2ab - 6a + 5b + \_[/tex]
Required
Fill in the gap to produce the product of linear expressions
[tex]2ab - 6a + 5b + \_[/tex]
Split to 2
[tex](2ab - 6a) + (5b + \_)[/tex]
Factorize the first bracket
[tex]2a(b - 3) + (5b + \_)[/tex]
Represent the _ with X
[tex]2a(b - 3) + (5b + X)[/tex]
Factorize the second bracket
[tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
To result in a linear expression, then the following condition must be satisfied;
[tex]b - 3 = b + \frac{X}{5}[/tex]
Subtract b from both sides
[tex]b - b- 3 = b - b+ \frac{X}{5}[/tex]
[tex]- 3 = \frac{X}{5}[/tex]
Multiply both sides by 5
[tex]- 3 * 5 = \frac{X}{5} * 5[/tex]
[tex]X = -15[/tex]
Substitute -15 for X in [tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
[tex]2a(b - 3) + 5(b + \frac{-15}{5})[/tex]
[tex]2a(b - 3) + 5(b - \frac{15}{5})[/tex]
[tex]2a(b - 3) + 5(b - 3)[/tex]
[tex](2a + 5)(b - 3)[/tex]
The two linear expressions are [tex](2a+ 5)[/tex] and [tex](b - 3)[/tex]
Their product will result in [tex]2ab - 6a + 5b - 15[/tex]
Hence, the constant is -15
Help please thanks don’t know how to do this
Answer:
a = 11.71 ; b = 15.56
Step-by-step explanation:
For this problem, we need two things. The law of sines, and the sum of the interior angles of a triangle.
The law of sines is simply:
sin(A)/a = sin(B)/b = sin(C)/c
And the sum of interior angles of a triangle is 180.
45 + 110 + <C = 180
<C = 25
We can find the sides by simply applying the law of sines.
length b
7/sin(25) = b/sin(110)
b = 7sin(110)/sin(25)
b = 15.56
length a
7/sin(25) = a/sin(45)
a = 7sin(45)/sin(25)
a = 11.71
I NEED HELP WITH THIS! I need to pass...
Answer: A) The log parent function has negative values in the range.
Step-by-step explanation:
The domain of y = ln (x) is D: x > 0
The domain of y = [tex]\sqrtx[/tex][tex]\sqrt x[/tex] is D: x ≥ 0
The range of y = ln (x) is: R: -∞ < y < ∞
So the only valid option is A because the range of a log function contains negative y-values when 0 < x < 1.
If the m1 = 40, what is the m 3
Answer:
Your Answer is 120Step-by-step explanation:
m1=40
Taking m3
m3=40 ×3
m3= 120
Hope It helps UFind the area of the shape shown below
Answer: 28
Step-by-step explanation:
I can't really think of a way to explain this well without visuals and idk how to add images on my answer. But, what I normally do is draw out the shape on paper divide the shape into different sections. Solve the area of the separate sections. It simplifies the more complex figure and turns them into basic shapes. After solving each shape, add all of them together and that leaves you with the area. Hopefully you understand what I mean. I hope this sort of helped:)