The value of Ksp for PbI2 is 4.05 × 10^-8 if the molar solubility of PBI 2 is 1.5 × 10 −3 m.
The molar solubility of PBI 2 = 1.5 × 10 −3 m
The solubility product constant = 2 .4.5 x 10 -6
The solubility product constant (Ksp) for PbI2 can be estimated using the molar solubility of PbI2, the stoichiometry of the equilibrium equation is:
[tex]PbI2(s) = Pb2+(aq) + 2I-(aq)[/tex]
The equation for Ksp is:
Ksp = [tex][Pb2+][I-]^2[/tex]
[Pb2+] = S = 1.5 × 10−3 M,
[I-] = 2S = 3 × 10−3 M
The stoichiometric coefficient of I- is 2. Substituting these values into the Ksp equation we get:
Ksp =[tex](1.5 × 10^-3) × (3 × 10^-3)^2[/tex]
Ksp = 4.05 × 10^-8
Therefore, we can conclude that the value of Ksp for PbI2 is 4.05 × 10^-8.
To learn more about Molar Solubility
https://brainly.com/question/31479331
#SPJ4
The value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6. The expression for the solubility product constant (Ksp) of a sparingly soluble salt such as PbI2 is: Ksp = [Pb2+][I-]^2
where [Pb2+] and [I-] are the molar concentrations of the lead ion and iodide ion, respectively, in a saturated solution of PbI2.
Given that the molar solubility of PbI2 is 1.5 × 10^-3 M, we can assume that [Pb2+] and [I-] in the saturated solution are also equal to 1.5 × 10^-3 M. Therefore, we can substitute these values into the Ksp expression and solve for Ksp:
Ksp = (1.5 × 10^-3 M)(1.5 × 10^-3 M)^2
Ksp = 3.375 × 10^-9
So the value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6 (if that was a typo in the question).
Learn more about soluble salt here: brainly.com/question/9537918
#SPJ11
The cloud droplets in a cloud are formed by water vapor molecules and: A) protons. B) ions. C) molecules of air. D) condensation nuclei.
Answer:
condensation nuclei
Explanation:
a sample of nobr was placed on a 1.00l flask containing no no or br 2 at equilibrium the flask contained
At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine.
.Based on the provided information, it seems that a sample of NOBr was placed in a 1.00 L flask at equilibrium, which means that the NOBr has decomposed into NO and Br2.
At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine the exact concentrations of these substances in the flask.
Visit here to learn more about equilibrium : https://brainly.com/question/4289021
#SPJ11
A sample of NOBr being placed in a 1.00 L flask containing no NO or Br2 at equilibrium, I'll first provide the balanced chemical equation for the reaction:
[tex]2 NOBr (g) ⇌ 2 NO (g) + Br2 (g)[/tex]
At equilibrium, the concentrations of the reactants and products remain constant. To determine the concentrations of NOBr, NO, and Br2 at equilibrium, we need to follow these steps:
1. Write the expression for the equilibrium constant (Kc) based on the balanced chemical equation:
[tex]Kc = [NO]^2 [Br2] / [NOBr]^2[/tex]
2. Set up an ICE (Initial, Change, Equilibrium) table to determine the equilibrium concentrations of the species involved in the reaction. The initial concentrations of NO and Br2 are 0 since they are not initially present in the flask.
NOBr NO Br2
I C0 0 0
C -2x +2x +x
E C0-2x 2x x
3. Substitute the equilibrium concentrations from the ICE table into the Kc expression:
[tex]Kc = (2x)^2 * x / (C0-2x)^2[/tex]
4. To solve for x, you need the value of Kc for the reaction. Look up the Kc value for this reaction in a reference or use provided information. Once you have Kc, substitute it into the equation and solve for x.
5. Calculate the equilibrium concentrations of NOBr, NO, and Br2 by substituting the value of x back into the ICE table:
[NOBr] = C0-2x
[NO] = 2x
[Br2] = x
By following these steps, you can determine the concentrations of NOBr, NO, and Br2 in the 1.00 L flask at equilibrium.
To know more about equilibrium constant (Kc):
https://brainly.com/question/29260433
#SPJ11
a 1.25 g sample of co2 is contained in a 750. ml flask at 22.5 c. what is the pressure of the gas, in atm?
The pressure of gas is 1.05 atm when a 1.25 g sample of CO₂ is contained in a 750ml flask at 22.5°C.
Molecular weight of CO₂ is 1.25g ,Volume of CO₂ is 750ml,Temperature of CO₂ is 22.5°C and the gas constant is 0.08206 L atm/mol K.
Using the ideal gas law equation the pressure is found to be 1.05 atm.
To calculate the pressure of the gas, we can use the ideal gas law equation: [tex]PV=nRT[/tex]
Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
First, we need to convert the volume to liters by dividing by 1000: 750 ml = 0.75 L.
Next, we need to calculate the number of moles of CO₂ present in the flask. We can use the molecular weight of CO₂ to convert from grams to moles:
[tex]1.25 * (1 /44.01 ) = 0.0284 mol[/tex]
Now we can plug in the values into the ideal gas law equation:
[tex]PV=nRT[/tex]
[tex]P * 0.75 L = 0.0284 mol * 0.08206 L*atm/mol*K * (22.5 + 273.15) K[/tex]
Simplifying and solving for P, we get:
[tex]P = (0.0284 * 0.08206 * 295.65) / 0.75 = 1.05 atm[/tex]
Therefore, the pressure of the gas in the flask is 1.05 atm.
Learn more about ideal gas law equation here:
https://brainly.com/question/15379358
#SPJ11
how many moles of naf must be dissolved in 1.00 liter of a saturated solution of pbf2 at 25˚c to reduce the [pb2 ] to 1 x 10–6 molar? (ksp pbf2 at 25˚c = 4.0 x 10–8)
The moles of NaF that must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25˚C to reduce the [Pb²⁺] to 1 x 10⁻⁶ molar is 2.0 x 10⁻⁵.
The solubility product expression for PbF₂ is given by:
Ksp = [Pb²⁻][F-]²At equilibrium, the product of the ion concentrations must be equal to the solubility product constant. We are given that the [Pb²⁺] in the saturated solution is 1 x 10⁻⁶ M. Therefore, we can use the Ksp expression to calculate the concentration of F- in the solution:
Ksp = [Pb²⁺][F⁻]²4.0 x 10⁻⁸ = (1 x 10⁻⁶)([F⁻]²)[F⁻]² = 4.0 x 10⁻²[F⁻] = 2.0 x 10⁻¹Now, we can calculate the amount of NaF needed to reduce the [F⁻] concentration to 2.0 x 10⁻¹ M. Since NaF is a 1:1 electrolyte, the concentration of F- will be equal to the concentration of NaF added.
Number of moles of NaF = (2.0 x 10⁻¹) mol/L x 1.00 L = 2.0 x 10⁻¹ molesHowever, we need to dissolve this amount of NaF in a saturated solution of PbF₂. Therefore, we need to check that the amount of NaF we added will not exceed the maximum amount that can dissolve in the solution at 25˚C.
To learn more about solubility, here
https://brainly.com/question/29661360
#SPJ4
PLEASE ANSWER ASAP
1. How many atoms are present in 8.500 mole of chlorine atoms?
2. Determine the mass (g) of 15.50 mole of oxygen.
3. Determine the number of moles of helium in 1.953 x 108 g of helium.
4. Calculate the number of atoms in 147.82 g of sulfur.
5. Determine the molar mass of Co.
6. Determine the formula mass of Ca3(PO4)2.
IT WOULD BE HELPFUL
1) 5.1167 x 10²⁴atoms of chlorine. 2) 248.00 g. 3) 4.8825 x 10⁷ moles of helium. 4) 2.7757 x 10²⁴ atoms of sulfur. 5) Molar mass of Co (cobalt) is 58.93 g/mol. 6) Formula mass = 310.18 g/mol.
What is meant by formula mass?Sum of the atomic masses of all the atoms in chemical formula is called formula mass
1.) Number of atoms = 8.500 moles x 6.022 x 10²³ atoms/mole = 5.1167 x 10²⁴ atoms of chlorine.
2.) Molar mass of oxygen is 16.00 g/mol. Therefore:
Mass of 15.50 moles of oxygen = 15.50 moles x 16.00 g/mol = 248.00 g.
3.) Molar mass of helium is 4.00 g/mol. Therefore, the number of moles of helium in 1.953 x 10⁸ g is:
Number of moles = 1.953 x 10⁸ g / 4.00 g/mol = 4.8825 x 10⁷ moles of helium.
4.) Molar mass of sulfur is 32.06 g/mol. Therefore, the number of moles of sulfur in 147.82 g is:
Number of moles = 147.82 g / 32.06 g/mol = 4.6084 moles of sulfur.
To find the number of atoms, we can use Avogadro's number again:
Number of atoms = 4.6084 moles x 6.022 x 10²³ atoms/mole = 2.7757 x 10²⁴ atoms of sulfur.
5.) Molar mass of Co (cobalt) is 58.93 g/mol.
6.) Ca₃(PO₄)₂ contains 3 calcium atoms, 2 phosphorus atoms, and 8 oxygen atoms.
Atomic masses of these elements are:
Calcium (Ca) = 40.08 g/mol
Phosphorus (P) = 30.97 g/mol
Oxygen (O) = 16.00 g/mol
Therefore, formula mass of Ca₃(PO₄)₂ is:
Formula mass = (3 x 40.08 g/mol) + (2 x 30.97 g/mol) + (8 x 16.00 g/mol)
= 120.24 g/mol + 61.94 g/mol + 128.00 g/mol
= 310.18 g/mol.
To know more about formula mass, refer
https://brainly.com/question/21334167
#SPJ1
determine the standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide.
The standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide is -98.2 kJ/mol.
when 1 mole of hydrogen peroxide (H2O2) ( H 2 O 2 ) undergoes decomposition, the heat evolved (ΔH) is −98.2kJ. − 98.2 k J . The molar mass of H2O2 H 2 O 2 is 34.015 g/mol. This means that the mass of 1 mole of H2O2 H 2 O 2 is 34.015 g.
This value is obtained from the standard enthalpy of formation of the products (H2 and O2) and the standard enthalpy of formation of the reactant (H2O2). Enthalpy of formation is the energy change that occurs when a compound is formed from its elements, in their standard states.
The difference between the enthalpies of formation of the products and the reactant is the enthalpy change for the reaction. In this case, the enthalpy change for the decomposition of hydrogen peroxide is -98.2 kJ/mol. This indicates that the decomposition of hydrogen peroxide is an exothermic reaction and it releases 98.2 kJ/mole of energy.
Know more about Hydrogen peroxide here
https://brainly.com/question/29102186#
#SPJ11
consider the reaction performed in the sn1 lab. what would be the effect on the rate of the reaction if 2-propanol (isopropanol) was used instead of 2-methyl-2-propanol (t-butanol) assuming only an sn1 reaction occurs? group of answer choices the rate of the reaction would decrease, because the secondary carbocation is more difficult to form. the rate of the reaction would increase, because the secondary carbocation is easier to form. there would be no difference in reaction rate. the reaction would not proceed at all.
The rate of the reaction is directly proportional to the stability of the carbocation intermediate, and any changes in the solvent will affect the rate of the reaction.
In an SN1 reaction, the rate-determining step is the formation of a carbocation intermediate. The stability of the carbocation intermediate affects the rate of the reaction.
In this case, if 2-propanol (isopropanol) was used instead of 2-methyl-2-propanol (t-butanol), the rate of the reaction would decrease. This is because the carbocation intermediate formed in 2-propanol is less stable compared to the one formed in t-butanol.
The carbocation intermediate formed in t-butanol is tertiary, which is more stable than the one formed in isopropanol, which is secondary. This means that the reaction will be slower in isopropanol due to the less stable carbocation intermediate.
To learn more about : reaction
https://brainly.com/question/29470602
#SPJ11
What is the concentration (in molality) of an aqueous solution of NaCl made by adding
4.56 g of NaCl to enough water to give 20.0 mL of solution. Assume the density of the
solution is 1.03 g/mL
Answer:
data given
mass of NaCl 4.56
dissolved volume 20ml(0.02l)
density of solution 1.03g/ml
Required molality
Explanation:
molarity=m/mr×v
where
m is mass
mr molar mass
v is volume
now,
molarity=4.56/58.5×0.02
molarity =3.9
: .molarity is 3.9mol/dm^3
According to molal concentration, the concentration (in molality) of an aqueous solution of NaCl is 0.0047 mole/kg.
What is molal concentration?Molal concentration is defined as a measure by which concentration of chemical substances present in a solution are determined. It is defined in particular reference to solute concentration in a solution . Most commonly used unit for molal concentration is moles/kg.
The molal concentration depends on change in volume of the solution which is mainly due to thermal expansion. Molal concentration is calculated by the formula, molal concentration=mass/ molar mass ×1/mass of solvent in kg.
In terms of moles, it's formula is given as molal concentration= number of moles /mass of solvent in kg.
Substitution in formula gives the answer but first mass of solution is determined which is density×volume= 1.03×20=20.6 g , mass of solvent= 20.6-4.56=16.05, thus molal concentration=4.56/58.5×1/16.05=0.0047 moles/kg.
Learn more about molal concentration,here:
https://brainly.com/question/4580605
#SPJ2