The moment of inertia for a rod that rotates about the axis perpendicular to the rod and passing through one end is: . If the axis of rotation passes through the center of the rod, then the moment of inertia is: . Give a physical explanation for this difference in terms of the way the mass of the rod is distributed with respect to the axis in the two cases.

Answers

Answer 1

Answer:

Explanation:

he moment of inertia for a rod that rotates about the axis perpendicular to the rod and passing through one end is:  m L²/ 3  where m is mass and L is length of rod

If the axis of rotation passes through the center of the rod, then the moment of inertia is:   m L² / 12

So for the former case , moment of inertia is higher that that in the later case .

In the former case , the axis is at one extreme end . Hence range of distance of any point on the rod from axis is from zero to L .

In the second case , as axis passes through middle point , this range of distance of any point on the rod from axis is from zero to L / 2 .

Since range of distance from axis is less , moment of inertia too will be less because

Moment of inertia = Σ m r² where r is distance of mass m from axis .


Related Questions

A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2

Answers

Answer:

650W/m²

Explanation:

Intensity of the sunlight is expressed as I  = Power/cross sectional area. It is measured in W/m²

Given parameters

Power rating = 6.50Watts

Cross sectional area = 100cm²

Before we calculate the intensity, we need to convert the area to m² first.

100cm² = 10cm * 10cm

SInce 100cm = 1m

10cm = (10/100)m

10cm = 0.1m

100cm² = 0.1m * 0.1m = 0.01m²

Area (in m²) = 0.01m²

Required

Intensity of the sunlight I

I = P/A

I = 6.5/0.01

I = 650W/m²

Hence, the intensity of the sunlight in W/m² is 650W/m²

An apple falls from a tree and hits your head with a force of 9J. The apple weighs 0.22kg. How far did the apple fall?

Answers

Answer:

The apple fell at a distance of 4.17 m.

Explanation:

Work is defined as the force that is applied on a body to move it from one point to another. When a force is applied, an energy transfer occurs. Then it can be said that work is energy in motion.

When a net force is applied to the body or a system and this produces displacement, then that force is said to perform mechanical work.

In the International System of Units, work is measured in Joule. Joule is equivalent to Newton per meter.  

The work is equal to the product of the force by the distance and by the cosine of the angle that exists between the direction of the force and the direction that travels the point or the object that moves.  

Work=Force*distance* cosine(angle)

On the other hand, Newton's second law says that the acceleration of a body is proportional to the resultant of forces on it acting and inversely proportional to its mass. This is represented by:

F=m*a

where F is Force [N], m is Mass [kg] and a Acceleration [m / s²]

In this case, the acceleration corresponds to the acceleration of gravity, whose value is 9.81 m / s². So you have:

Work= 9 JF=m*a=0.22 kg*9.81 m/s²= 2.1582 Ndistance= ?angle=0 → cosine(angle)= 1

Replacing:

9 J= 2.1582 N* distante* 1

Solving:

[tex]distance=\frac{9J}{2.1582 N*1}[/tex]

distance= 4.17 m

The apple fell at a distance of 4.17 m.

Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diameter and 6 meters long is carried on the back of a truck and is used to fuel tractors. The axis of the tank is horizontal. The opening on the tractor tank is 5 meters above the top of the tank in the truck. Find the work done in pumping the entire contents of the fuel tank into the tractor.

Answers

Answer:

work done in pumping the entire fuel is 1399761 J

Explanation:

weight per volume of the gasoline = 6600 N/m^3

diameter of the tank = 3 m

length of the tank = 6 m

The height of the tractor tank above the top of the tank = 5 m

The total volume of the fuel is gotten below

we know that the tank is cylindrical.

we assume that the fuel completely fills the tank.

therefore, the volume of a cylinder =  

where r = radius = diameter ÷ 2 = 3/2 = 1.5 m

volume of the cylinder = 3.142 x  x 6 = 42.417 m^3

we then proceed to find the total weight of the fuel in Newton

total weight = (weight per volume) x volume

total weight = 6600 x 42.417 = 279952.2 N

therefore,

the work done to pump the fuel through to the 5 m height = (total weight of the fuel) x (height through which the fuel is pumped)

work done in pumping = 279952.2 x 5 = 1399761 J

A particle with mass m = 700 g is found to be moving with velocity v vector (-3.50i cap + 2.90j cap) m/s. From the definition of the scalar product, v^2 = v vector. v vector.
a. What is the particle's kinetic energy at this time? J If the particle's velocity changes to v vector = (6.00i cap - 5.00j cap) m/s,
b. What is the net work done on the particle? J

Answers

Answer:

Explanation:

v₁² = v₁ . v₁

= ( - 3.5 i + 2.9 j ).( - 3.5 i + 2.9 j )

= 12.25 + 8.41

= 20.66 m /s

a ) kinetic energy = 1/2 m v₁²

= 1/2 x .7 x 20.66

= 7.23 J

b )

changed velocity v₂ = v₂.v₂

= (6i - 5 j ) . (6i - 5 j )

= 36 + 25

= 61 m /s

kinetic energy = 1/2 m v₂²

= 1/2 x .7 x 61

= 21.35 J

Work done = change in energy

= 21.35 - 7.23

= 14.12 J .

What explains why a prism separates white light into a light spectrum?
A. The white light, on encountering the prism, undergoes both reflection and refraction; some of the reflected rays re-enter the prism merging with refracted rays changing their frequencies.
B. The white light, on entering a prism, undergoes several internal reflections, forming different colors.
C. The different colors that make up a white light have different refractive indexes in glass.
D. The different colors that make up a white light are wavelengths that are invisible to the human eye until they pass through the prism.
E. The different rays of white light interfere in the prism, forming various colors.

Answers

Answer:

I think the answer probably be B

Answer :QUESTION①)

What explains why a prism separates white light into a light spectrum ?

C. The different colors that make up a white light have different refractive indexes in glass.

✔ Indeed, depending on the radiation (and therefore colors), which each have different wavelengths, the refraction index varies: the larger the wavelength (red) the less the reflection index is important and vice versa (purple).

✔ That's why purple is more deflected so is lower than red radiation.  

Two cars are moving towards each other and sound emitted by first car with real frequency of 3000 hertz is detected by a person in second with apparent frequency of 3400 Hertz what was the speed of cars

Answers

Answer:

 v ’= 21.44 m / s

Explanation:

This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s

           f ’= f (v + v₀) / (v-[tex]v_{s}[/tex])

where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer

in this exercise both the source and the observer are moving, we will assume that both have the same speed,

                v₀ = v_{s} = v ’

we substitute

               f ’= f (v + v’) / (v - v ’)

               f ’/ f (v-v’) = v + v ’

               v (f ’/ f -1) = v’ (1 + f ’/ f)

               v ’= (f’ / f-1) / (1 + f ’/ f) v

               v ’= (f’-f) / (f + f’) v

let's calculate

                v ’= (3400 -3000) / (3000 +3400) 343

                v ’= 400/6400 343

                v ’= 21.44 m / s

An electron initially at rest is accelerated over a distance of 0.210 m in 33.3 ns. Assuming its acceleration is constant, what voltage was used to accelerate it

Answers

Answer:

V = 451.47 volts

Explanation:

Given that,

Distance, d = 0.21 m

Initial speed, u = 0

Time, t = 33.3 ns

Let v is the final velocity. Using second equation of motion as :

[tex]d=ut+\dfrac{1}{2}at^2[/tex]

a is acceleration, [tex]a=\dfrac{v-u}{t}[/tex] and u = 0

So,

[tex]d=\dfrac{1}{2}(v-u)t[/tex]

[tex]v=\dfrac{2d}{t}\\\\v=\dfrac{2\times 0.21}{33.3\times 10^{-9}}\\\\v=1.26\times 10^7\ m/s[/tex]

Now applying the conservation of energy i.e.

[tex]\dfrac{1}{2}mv^2=qV[/tex]

V is voltage

[tex]V=\dfrac{mv^2}{2q}\\\\V=\dfrac{9.1\times 10^{-31}\times (1.26\times 10^7)^2}{2\times 1.6\times 10^{-19}}\\\\V=451.47\ V[/tex]

So, the voltage is 451.47 V.

A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be

Answers

Answer:

The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.

Explanation:

Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:

[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]

Where:

[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.

[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.

Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:

[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]

And final speed is now calculated after clearing it:

[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]

[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]

The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.

6. How would the measurements for potential difference and current change if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor? Explain your answer.

Answers

Answer:

Explanation:

Resistance is defined as the opposition to the flow of an electric current in a circuit. This means that a higher amount of resistance tends to reduce the amount of current flowing through the resistance. The lower the current, the greater the possibility for the resistor to allow current to pass through it.  if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor, then the current in the circuit will tends to increase since we are replacing the load with a lesser resistor and a smaller resistance tends to allow more current to flow through it

For the potential difference, a decrease in the resistance value will onl decrease the potential difference flowing in the circuit according to ohm's law. According to the law the pd in a circuit is directly proportional to the current which means an increase in the resistance value will cause an increase in the corresponding pd and vice versa.

An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct?
a) The capacitor charges to its maximum value in one time constant and the current is zero at that time.
b) The potential difference across the resistor and the potential difference across the capacitor are always equal.
c) The potential difference across the resistor is always greater than the potential difference across the capacitor.
d) The potential difference across the capacitor is always greater than the potential difference across the resistor
e) Once the capacitor is essentially fully charged, There is no appreciable current in the circuit.

Answers

Answer:

e)

Explanation:

In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.

At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.

A ball is thrown at 23.2 m/s inside a boxcar moving along the tracks at 34.9 m/s. What is the speed of the ball relative to the ground if the ball is thrown forward

Answers

Answer:

The speed of the ball relative to the ground if the ball is thrown forward is 58.1 m/s

Explanation:

Given;

speed of the ball thrown inside boxcar, [tex]V_B[/tex] = 23.2 m/s

speed of the boxcar moving along the tracks, [tex]V_T[/tex] = 34.9 m/s

Determine the speed of the ball relative to the ground if the ball is thrown forward.

If the ball is thrown forward, the speed of the ball relative to the ground will be sum of the ball's speed plus speed of the boxcar.

[tex]V_{relative \ speed} = V_B + V_T\\\\V_{relative \ speed} = 23.2 + 34.9\\\\V_{relative \ speed} = 58.1 \ m/s[/tex]

Therefore,  the speed of the ball relative to the ground if the ball is thrown forward is 58.1 m/s.

Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.

Answers

Answer:

The 1/2 inch barrel will burst at the same height of 20 ft

Explanation:

The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.

From the equation of fluid pressure,

P = ρgh

where

P is the pressure at the bottom of the fluid due to its height

ρ is the density of the fluid in question

h is the height to which the water stand.

You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.

We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.

That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.

NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.

A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed.

Answers

Answer:

4.9x10^-6T

Explanation:

See attached file

In a single-slit diffraction experiment, the width of the slit through which light passes is reduced. What happens to the width of the central bright fringe

Answers

Answer:

It becomes wider

Explanation:

Because The bigger the object the wave interacts with, the more spread there is in the interference pattern. Decreasing the size of the opening increases the spread in the pattern.

A sailor strikes the side of his ship just below the surface of the sea. He hears the echo of the wave reflected from the ocean floor directly below 2.5 ss later.
How deep is the ocean at this point? (Note: Use the bulk modulus method to determine the speed of sound in this fluid, rather than using a tabluated value.)
_____ m

Answers

Answer:

1248m

The time that wave moves from the wave source to the ocean floor is half the total travel time: t = 2.5/2 = 1.25s

The speed of sound in seawater is 1560 m/s

Therefore, s = vt = (1560 m/s)(1.25s) =1248 m = 1.2km

A long solenoid (1500 turns/m) carries a current of 20 mA and has an inside diameter of 4.0 cm. A long wire carries a current of 2.0 A along the axis of the solenoid. What is the magnitude of the magnetic field at a point that is inside the solenoid and 1.0 cm from the wire

Answers

Answer:

The magnitude of the magnetic field is 55μT

Explanation:

Given;

number of turns of the solenoid per length, n = N/L = 1500 turns/m

current in the solenoid, I = 20 mA = 20 x 10⁻³ A

diameter of the solenoid, d = 4 cm = 0.04 m

The magnetic field at a point that is inside the solenoid;

B₁ = μ₀nI

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

B₁ = 4π x 10⁻⁷ x 1500 x 20 x 10⁻³

B₁ = 3.77 x 10⁻⁵ T

Given;

current in the wire, I = 2 A

distance of magnetic field from the wire, r = 1 cm = 0.01 m

The magnetic field at 1.0 cm from the wire;

[tex]B_2 = \frac{\mu_0I}{2\pi r} \\\\B_2 = \frac{4\pi*10^{-7}*2}{2\pi *0.01}\\\\B_2 = 4 *10^{-5} \ T[/tex]

The magnitude of the magnetic field;

[tex]B = \sqrt{B_1^2 +B_2^2} \\\\B = \sqrt{(3.77*10^{-5})^2 + (4*10^{-5})^2} \\\\B = 5.5 *10^{-5} \ T\\\\B = 55 \mu T[/tex]

Therefore, the magnitude of the magnetic field is 55μT

The magnitude of the magnetic field at a point that is inside the solenoid and 1.0 cm from the wire is [tex]5.5 \times 10^{-5}T[/tex]

Given the following parameters from the question  

Number of turns of the solenoid per length, n = N/L = 1500 turns/m  current in the solenoid, I = 20 mA = 20 x 10⁻³ A  Diameter of the solenoid, d = 4 cm = 0.04 m

The magnetic field at a point that is inside the solenoid is expressed according to the formula;  

B₁ = μ₀nI  

Where;  

μ₀ is the permeability of free space = 4π x 10⁻⁷ m/A  

B₁ = 4π x 10⁻⁷ x 1500 x 20 x 10⁻³  

B₁ = 3.77 x 10⁻⁵ T

Next is to get the magnetic field strength in the second wire.

Current in the wire, I = 2 A  Distance of magnetic field from the wire, r = 1 cm = 0.01 mThe magnetic field at 1.0 cm from the wire

Substitute into the formula:

[tex]B_2=\dfrac{\mu_0 I}{2 \pi r} \\B_2=\frac{4\pi \times 10^{-7}\times 2}{2 \times 3.14\times 0.01} \\B_2 =4.0 \times 10^{-5}T[/tex]

Get the resultant magnetic field:

[tex]B = \sqrt{(0.00003771)^2+(0.00004)^2} \\B =5.5 \times 10^{-7}T[/tex]

Therefore the magnitude of the magnetic field at a point that is inside the solenoid and 1.0 cm from the wire is [tex]5.5 \times 10^{-5}T[/tex]

Learn more on the magnetic field here: https://brainly.com/question/15277459

A motorcycle travels up one side of a hill over the top and down the other side. The crest of the hill can be considered to be a circular arc with radius of 45.0 m. Determine the maximum speed that the cycle can have while moving over the crest without losing contact with the road.

Answers

Answer:

The maximum speed of the motorcycle should be 21 m/s

Explanation:

Since the hill is considered to be a circular arc, the motorcycle will experience centripetal force that tends to flip it away from the center of the hill.

Since the motorcycle does not lose contact with the ground, it means that the weight of the motorcycle downwards just balances the centripetal force on the motorcycle.

we know that the centripetal force on the motorcycle is equal to

centripetal force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the motorcycle,

v is the velocity of the motorcycle,

and r is the radius of the hill = 45.0 m

Also we now that the weight of the motorcycle is equal to

weight = mg

where m is still the mass of the motorcycle,

and g is the acceleration due to gravity = 9.81 m/s

Equating the both forces since they are equal, we'll have

[tex]\frac{mv^{2} }{r}[/tex] = mg

the mass of the motorcycle will cancel out, and we'll be left with

[tex]v^{2} = gr[/tex]

[tex]v = \sqrt{gr}[/tex]

[tex]v = \sqrt{9.81*45}[/tex]

[tex]v = \sqrt{441.45}[/tex]

[tex]v[/tex] = 21 m/s

A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe

Answers

Answer:

0.0127m

Explanation:

Using

Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m

If a system has 4.50×102 kcal of work done to it, and releases 5.00×102 kJ of heat into its surroundings, what is the change in internal energy (ΔE or Δ????) of the system?

Answers

The change in internal energy (ΔE) of the system is equal to -18823 Kilojoules.

Given the following data:

Quantity of heat = [tex]5.00 \times 10^2 \;kJ[/tex]Work done = [tex]4.50 \times 10^2 \;kcal[/tex]

Conversion:

1 kcal = 4.184 kJ

[tex]4.50 \times 10^2 \;kcal[/tex] = [tex]4.50 \times 10^2 \times 4.184 = 18828 \; kJ[/tex]

To determine the change in internal energy (ΔE) of the system, we would apply the first law of thermodynamics.​

Mathematically, the first law of thermodynamics is given by the formula:

[tex]\Delta E = Q - W[/tex]

Where;

[tex]\Delta E[/tex] is the change in internal energy.Q is the quantity of heat released.W is the work done.

Substituting the given parameters into the formula, we have;

[tex]\Delta E = 5 - 18828\\\\\Delta E = -18823[/tex]

Change in internal energy, E = -18823 Kilojoules

Read more: https://brainly.com/question/20599052

What are the approximate dimensions of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 275 km above the Earth

Answers

Answer:

   s_400 = 16.5 m , s_700 = 29.4 m

Explanation:

The limit of the human eye's solution is determined by the diffraction limit that is given by the expression

                   θ = 1.22 λ / D

where you lick the wavelength and D the mediator of the circular aperture.

In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.

by introducing these values ​​into the formula

                 

λ = 400 nm      θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad

λ = 700 nm     θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad

Now we can use the definition radians

          θ= s / R

where s is the supported arc and R is the radius. Let's find the sarcos for each case

λ = 400 nm       s_400 = θ R

                         S_400 = 6 10⁻⁵ 275 10³

                         s_400 = 16.5 m

λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³

                          s_700 = 29.4 m

soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.

Answers

Answer:

Since their wings and body develop the drag. When there is warm air then they expand their wings. Since,soaring birds and glider pilots have no engine, they always maintain their high speed to lift their weight in air for hours without expending power by convection

Explanation:

a uniform rod of 30cm is pivoted at its center.a 40N weight is hung 5cm from left.from where 50N weight be hung to maintain equilibrium?

Answers

Answer:

The 50N weight be hung  at 23 cm to maintain equilibrium

Explanation:

Given;

length of the uniform rod = 30 cm

center of the uniform rod = 15 cm

weight of 40N is hung at 5 cm mark

weight of 50 N will be hung at ?

     0------5cm-----------------15cm-------------P---------30cm

              ↓             10cm      Δ       xcm    ↓

             40N                                             50N

Take moment about the pivot point and apply the principle of moment

50N (x cm) = 40N (10 cm)

x = (400) / 50

x = 8cm

P = x cm + 15 cm

P = 8 cm + 15 cm

P = 23 cm

Therefore, the 50N weight be hung  at 23 cm to maintain equilibrium

An electron, moving toward the west, enters a uniform magnetic field. Because of this field the electron curves upward. The direction of the magnetic field is

Answers

Answer:

The magnetic field's direction is towards the north

Explanation:

The force on a positive charge in a uniform magnetic field is represented by the right hand rule. To determine the direction of the force, place your right hand with your palm up, and your thumb at 90° to the other fingers. If the fingers represent the magnetic field, and the thumb the direction of the positive charge, then the palm will push up in the direction of the force. But a negative charge like an electron pushes in exactly the opposite direction. So if you follow this rule, you will find that the magnetic field points towards the north.

The direction of the magnetic field is towards the North. This can be

determined using the right hand rule by Fleming.

The right hand rule states that to determine the direction of the magnetic

force, the right thumb should be pointed in in the direction of the velocity,

index finger in the direction of the magnetic field and middle finger in the

direction of magnetic force.

When this is applied, we will discover that the index finger will point towards

the north region.

Read more on https://brainly.com/question/19904974

If 50 km thick crust having an average density of 3.0 g/cm3 has a surface elevation of 2.5 km above sea level, what would you predict about the surface elevation for 50 km thick crust with an average density of 2.8 g/cm3

Answers

Answer:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

Explanation:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

If a bicycle starts from rest and is pedaled normally until the bike is moving at 6 meters per second across level ground, what kinds of energy have its tires been given? (Select all that apply) g

Answers

Answer: Translational Kinetic Energy

Rotational Kinetic Energy

Explanation:

An object has translational kinetic energy when it is undergoing through a linear displacement.

Rotational energy is kinetic energy due to the rotation of an object .

Here the wheel of bicycle undergoes both translational and rotational kinetic energy has it moves with linear displacement with rotation in it.

Hence, the tires have been two kinds of energy : translational and rotational kinetic energy

A spaceship is moving past Earth at 0.99c. The spaceship fires two lasers. Laser A is in the same direction it is traveling, and Laser B is in the opposite direction. How fast will the light from each laser be traveling according to an observer on Earth?

Answers

Answer:

Vx' = (Vx - u) / (1 - Vx *u / c^2)      velocity transformation formula

In both cases we wish to measure the velocity in the frame of the earth which is moving at speed u = -.99 c relative to the spaceship

VA' = (c + .99c) / (1 - (-.99 c * c) / c^2) = 1.99c / 1.99 = c

VB' = (-c + .99c) / (1 - (-c * -.99c) / c^2) = .01 c / .01 = c

In both cases an observer on earth will observe the light traveling at speed c.

Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?

Answers

Answer:

 x = 0.006 m

Explanation:

The potential at one point is given by

          V = k ∑ [tex]q_{i} / r_{i}[/tex]

remember that the potential is to scale, let's apply to our case

          V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)

in this case they indicate that the potential is zero

          0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + ​​3 10⁻⁶ / x)

         3 / x = + 2 / 10⁻² + ​​3 / 10⁻²

         3 / x = 500

          x = 3/500

          x = 0.006 m

An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron

Answers

Answer:

acting force is the answer

The direction of the magnetic force on the moving electron is upward.

The direction of the magnetic force on the electron can be determined by applying right hand rule.

This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.

Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.

Learn more here:https://brainly.com/question/14434299

What is the distance in m between lines on a diffraction grating that produces a second-order maximum for 775-nm red light at an angle of 62.5°?

Answers

Answer:

The distance is [tex]d = 1.747 *10^{-6} \ m[/tex]  

Explanation:

From the question we are told that  

       The order of maximum diffraction is  m =  2

         The wavelength is   [tex]\lambda = 775 nm = 775 * 10^{-9} \ m[/tex]

         The angle is  [tex]\theta = 62.5^o[/tex]

Generally the   condition for  constructive  interference for diffraction grating  is mathematically represented as

          [tex]dsin \theta = m * \lambda[/tex]

where  d is  the distance between the lines on a  diffraction grating

     So  

            [tex]d = \frac{m * \lambda }{sin (\theta )}[/tex]

substituting values  

           [tex]d = \frac{2 * 775 *1^{-9} }{sin ( 62.5 )}[/tex]

          [tex]d = 1.747 *10^{-6} \ m[/tex]

   

A long straight wire carries a conventional current of 0.7 A. What is the approximate magnitude of the magnetic field at a location a perpendicular distance of 0.053 m from the wire due to the current in the wire

Answers

Answer:

2.64 x 10⁻⁶T

Explanation:

The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;

B = (μ₀ I) / (2π r)                ----------------(i)

B is magnetic field

I is current through the wire

r is the distance from the wire

μ₀  is the magnetic constant = 4π x 10⁻⁷Hm⁻¹

From the question;

I = 0.7A

r = 0.053m

Substitute these values into equation (i) as follows;

B =  (4π x 10⁻⁷ x 0.7) / (2π x 0.053)

B = 2.64 x 10⁻⁶T

Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T

Other Questions
the efficiency of a carnot cycle is 1/6.If on reducing the temperature of the sink 75 degrees celcius ,the efficiency becomes 1/3,determine he initial and final temperatures between which the cycle is working. How long is the arc formed by a 300 degree central angle in a circle with a radius of 7 cm.? Convert cm/S^2 to km/h^2 this is 69 points if you answer please help Which program offers nutrition screenings at no cost? A. food distribution centers B. Meals on Wheels C. SNAP D. workplace wellness programs Determine the value of x. which of the following demonstrates how the first 21 on the left side of the triangle is calculated using the combination pattern? The noun consternation comes from the Latin verb consternare, meaning "to throw into confusion." Based on this and any context clues you find, explain whether consternation has a positive or negative connotation as it is used in the text. A 75 lb boy and a 65 lb girl play on a seesaw. The seesaw is 14 ft long and is pivoted exactly in the middle. If the girl sits on the end of her side, where must the boy sit to make the seesaw balance? A cell phone company offers a plan that costs $35 per month plus an additional cost of $0.08 per text message.Write an equation to represent this problem. A teacher wants to perform a classroom demonstration that illustrates both chemical and physical changes. Whichwould be the best demonstration that she could use?O bending a piece of aluminumO breaking a matchstickO dissolving sugar in waterO burning a candleMark this and returnSave and ExitNextSubrnit a car is driving at a speed of 40mi/h.what is the speed of the car in feet per minute Exit polling is a popular technique used to determine the outcome of an election prior to results being tallied. Suppose a referendum to increase funding for education is on the ballot in a large town (voting population over 100,000). An exit poll of 200 voters finds that 94 voted for the referendum. How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections. What role do you think an organizations culture plays in how its leaders lead? Relate this to the story told above. What NFL team did Buff Donelli coach after he left soccer?- Miami Dolphins-Pittsburgh Steelers-Baltimore Colts-Oakland Raiders On October 1, 2017, Waterway, Inc. assigns $1,160,700 of its accounts receivable to Wildhorse National Bank as collateral for a $747,900 note. The bank assesses a finance charge of 3% of the receivables assigned and interest on the note of 9%. Prepare the October 1 journal entries for both Waterway and Wildhorse. Richie and his brother have a paper route. Together they can deliver all of the papers in 40 minutes, and Richie can do it alone in 90 minutes. Richies brother slept in one day, leaving Richie to deliver alone for 30 minutes. How long must the two of them work together to finish delivering the newspapers? a) Name the structures that: i) Carry water and mineral salts to the leaf ii) Prevents too much water loss from the upper surface of the leaf iii) Opens to allow gases to pass into and out of the leaf iv) Is the site for most of the photosynthesis taking place v) Is the layer where light is able to pass through directly b) How does a leaf protect itself from unwanted intruders like bacteria from getting in and stopping important reactants from going out? PLEASE ANSWERR Susan purchased 9/10 of a pound of shrimp for a dinner party. Her plan is to serve 1/6 of a pound of shrimp to herself and each guest. Including herself, how many people can Susan serve at her dinner party? (Remember that you can't have a fraction of a person.) On a ski lift, the distance between chairs is inversely proportional to the number of chairs. At aski resort, one lift has 80 chairs spaced 16 meters apart. What is the constant of variation.A.1280 B.5 C.1/5 D.1/1280