Answer:
The total amount is $2250.
Step-by-step explanation:
Given that each person pays $5 and there is 450 people so you have to multiply :
$5 × 450 = $2250
Fill in the blanks.
(x+_)^2=x^2+14x+_
Step-by-step explanation:
(ax + b)² = a²x² + 2abx + b²
In this case, a = 1, so:
14 = 2b
b = 7
(x + 7)² = x² + 14x + 49
It is a well-known fact that Dr. Barnes rides a skateboard, sometimes even on campus. Suppose that Dr. Barnes selects a skateboard by first picking one of two skateboard shops at random and selecting a skateboard from that shop at random. The first shop contains two "rad" skateboards and three "gnarly" skateboards, and the second shop contains four "rad" skateboards and one "gnarly" skateboard. What is the probability that Dr. Barnes picked a skateboard from the first shop if he has selected a "gnarly" skateboard?
Answer:
75%.
Step-by-step explanation:
In total, there are 3 gnarly boards in the first shop and 1 gnarly board in the second. We know that he has selected one gnarly board out of the 3 + 1 = 4 existing boards.
The probability the board came from the first shop is 3 / 4 = 0.75 = 75%.
Hope this helps!
Justin's hot water tank quits working and the landlord purchases a new one. He is concerned about its size and whether or not it can hold about 700 gallons. To do
so, it must have a volume of around 94 cubic feet.
What is the volume of a cylindrical water tank with a diameter of 4 and a height of 7 feet?
Answer:
87.92 ft³
Step-by-step explanation:
The formula for the volume of a cylinder is πr² · h
1. Set up the equation
π2² · 7
2. Solve
(3.14)(4)(7) = 87.92
The volume of a cylindrical water tank with a diameter of 4 feet and a height of 7 feet is 87.92 cubic feet.
Given that, a cylindrical water tank with a diameter of 4 feet and a height of 7 feet.
What is the volume?Volume is the measure of the capacity that an object holds.
Formula to find the volume of the object is Volume = Area of a base × Height.
We know that, the volume of a cylinder πr²h
Here, radius =4/2 = 2 feet
The volume of a cylinder = 3.14×2²×7
= 3.14×4×7
= 87.92 cubic feet
Therefore, the volume of a cylindrical water tank with a diameter of 4 feet and a height of 7 feet is 87.92 cubic feet.
To learn more about the volume visit:
https://brainly.com/question/13338592.
#SPJ2
please help me, i will give you brainliest
Answer:
3rd
Step-by-step explanation:
i got it right on khan academy
What single transformation maps Triangle ABC onto A’B’C’
Answer:
Your answer is B
Step-by-step explanation:
rotating about/around the origin taking a shape and rotating it with the same values but around the point (0,0). so rotating your shape ABC around (0,0) with the same value would give you the shape A'B'C'
Solve the equation 2x^2-3x-6=0 give your answer correct to two decimal places
Answer:
x = - 1.14 or x = 2.64Step-by-step explanation:
2x² - 3x - 6 = 0
Using the quadratic formula
[tex]x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
a = 2 , b = - 3 , c = 6
Substituting the values into the above formula
We have
[tex]x = \frac{ - - 3± \sqrt{ { - 3}^{2} - 4(2)( - 6)} }{2(2)} [/tex]
[tex]x = \frac{3± \sqrt{9 +48 } }{4} [/tex]
[tex]x = \frac{3± \sqrt{57} }{4} [/tex]
[tex]x = \frac{3 - \sqrt{57} }{4} \: \: \: \: or \: \: \: \: \: x = \frac{3 + \sqrt{57} }{4} [/tex]
We have the final answer as
x = - 1.14 or x = 2.64Hope this helps you
What is 36/100 added with 4/10
Answer:
0.76 or 19/25
Step-by-step explanation:
Convert 4/10 so that it has a common denominator with 36/100.
4/10 x 10/10 = 40/100
Now that the denominator is the same, just add the top values.
40/100 + 36/100 = 76/100
We can also simplify the answer to be 19/25 by dividing the top and bottom by 4.
Answer:
19/25Step-by-step explanation:
[tex]\frac{36}{100}+\frac{4}{10}\\Let\: first\: deal\: with\: ;\frac{36}{100}\\\mathrm{Cancel\:the\:common\:factor:}\:4\\=\frac{9}{25}\\\\=\frac{9}{25}+\frac{4}{10}\\Now \:lets \:deal \:with ; \frac{4}{10}\\\mathrm{Cancel\:the\:common\:factor:}\:2\\=\frac{2}{5}\\=\frac{9}{25}+\frac{2}{5}\\\mathrm{Prime\:factorization\:of\:}25:\quad 5\times\:5\\\mathrm{Prime\:factorization\:of\:}5:\quad 5\\\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}25\mathrm{\:or\:}5\\[/tex]
[tex]\lim_{n \to \infty} a_n =5\cdot \:5\\\\\mathrm{Multiply\:the\:numbers:}\:5\cdot \:5=25\\=25\\\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its}\\\mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:25\\\mathrm{For}\:\frac{2}{5}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}5\\\frac{2}{5}=\frac{2\times \:5}{5\times \:5}=\frac{10}{25}\\=\frac{9}{25}+\frac{10}{25}\\[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\=\frac{9+10}{25}\\\\=\frac{19}{25}[/tex]
-5/2x-3 is less than or equal to 2 what is the solution.
Answer: 1/4≤x
Step-by-step explanation:
-5/(2x-3)≤2
Multiply by (2x-3)
-5≤4x-6
Add 6
1≤4x
1/4≤x
Hope it helps <3
Answer:
[tex]x \geq 1/4[/tex]
Step-by-step explanation:
=> [tex]\frac{-5}{2x-3} \leq 2[/tex]
Multiplying both sides by (2x-3)
=> [tex]-5 \leq 2(2x-3)[/tex]
=> [tex]-5 \leq 4x-6[/tex]
Adding 6 to both sides
=> [tex]-5+6 \leq 4x[/tex]
=> [tex]4x\geq 1[/tex]
Dividing both sides by 4
=> [tex]x \geq 1/4[/tex]
Find (f•g)(x) for the given functions: f(x) = 5/x and g(x) = 3 + x/5.
A que hora después de las 3 las agujas de un reloj determinan un ángulo que mide 54 por primera vez
Answer:
3:06
Step-by-step explanation:
primero debemos calcular a cuántos minutos equivale un ángulo de 54°. Para hacer esto utilizamos una regla de 3 simple donde 60 minutos equivale a 360° grados, entonces:
60 minutos ----- 360°
x minutos -------- 54°
Resolviendo para x, tenemos:
[tex]x=\frac{54*60}{360}=9[/tex]
Entonces si las manecillas están a 9 minutos de diferencia, el ángulo será 54°. Si la hora es después de las 3, significa que la manecilla de la hora estará en el minuto 15 y la otra debe estar 9 minutos antes, es decir en el minuto 6.
Por lo tanto, la hora después de las 3 en la cual se forma un ángulo de 54° por primera vez es a las 3:06
what is the slop of y= -5+4x
Hey there! :)
Answer:
m = 4.
Step-by-step explanation:
We are given the formula y = -5 + 4x. Rearrange the equation to be in proper slope-intercept form (y = mx + b)
Where 'm' is the slope and 'b' is the y-intercept. Therefore:
y = -5 + 4x becomes y = 4x - 5
The 'm' value is equivalent to 4, so the slope of the equation is 4.
Answer:
4
Step-by-step explanation:
because of y= mx + b where m is the slope
m= 4 in the equation
Last week Holly took a math test. She got 98 out of 123 question correct. What percentage did Holly get correct? Round to the nearest hundredth.
Answer:
79.67%
Step-by-step explanation:
To find the percentage correct, take the number correct over the total
98/123
.796747967
Change to a percent by multiplying by 100 %
79.6747967%
Round to the nearest hundredth
79.67%
Answer:
79.67%
Step-by-step explanation:
percent = part/whole * 100%
percent = 98/123 * 100%
percent = 79.67%
Given the diagram below, what is cos(45*)?
A.
B.
C.
D.
Answer:
The answer is option B
Step-by-step explanation:
To find cos 45° we must first find the adjacent and the hypotenuse
Let the adjacent be x
Let the hypotenuse be h
To find the adjacent we use tan
tan ∅ = opposite / adjacent
From the question
the opposite is 9
So we have
tan 45 = 9 / x
x tan 45 = 9
but tan 45 = 1
x = 9
Since we have the adjacent we use Pythagoras theorem to find the hypotenuse
That's
h² = 9² + 9²
h² = 81 + 81
h² = 162
h = √162
h = 9√2
Now use the formula for cosine
cos∅ = adjacent / hypotenuse
The adjacent is 9
The hypotenuse is 9√2
So we have
cos 45 = 9/9√2
We have the final answer as
cos 45 = 1 / √2Hope this helps you
Find a formula for an for the arithmetic sequence.
Answer:
a(n)= a(n+1)+4
Step-by-step explanation:
The first terms of this sequence are: 4,0, -4, -8, -12
Let 4 be a0 and 0 a1.
● a1-a0 = 0-4
●a1-a0 = -4
●a1 = -4+a0
So this relation links the first term with the second one.
replace 1 in a1 with n.
0 in a0 will be n-1
● an = -4+a(n-1)
Add one in n
● a(n+1) = a(n)-4
● a(n) = a(n+1)+4
the endpoints of GH are g(-7,3) and h(1,-2) what’s the midpoint of GH
Answer: [tex]\bigg(-3,\dfrac{1}{2}\bigg)[/tex]
Step-by-step explanation:
G = (-7, 3) H = (1, -2)
[tex]M_{GH}=\bigg(\dfrac{X_G+X_H}{2},\dfrac{Y_G+Y_H}{2}\bigg)\\\\\\.\qquad = \bigg(\dfrac{-7+1}{2},\dfrac{3+(-2)}{2}\bigg)\\\\\\.\qquad = \bigg(\dfrac{-6}{2},\dfrac{1}{2}\bigg)\\\\\\.\qquad = \large\boxed{\bigg(-3,\dfrac{1}{2}\bigg)}[/tex]
The mid point of the line GH whose end points are (-7,3) and (1,-2) is (-3,1/2).
What is the mid point of a line?The mid point is a line which divides the line into two equal parts. The formula to calculate the mid point of line whose end points are (x1,y1) and (x2,y2) is {(x1+x2)/2,(y1+y2)/2}.
How to calculate mid point of a line?To calculate the mid point of the line GH we have to put x1=-7, x2=1,y1=3 and y2=-2 so,
the mid point is {(-7+1)/2,(3-2)/2}
=(-3,1/2)
Hence the mid points of a line GH whose end points are g(-7,3) and h(1,-2) is (-3/1/2).
Learn more about mid point of a line at https://brainly.com/question/18315903
#SPJ2
PLEASE HELP ASAP!!!!Write the ratio as a fraction in lowest terms. 9 pounds to 36 pounds.(50 points!!)
Answer:
1/4
Step-by-step explanation:
9 lbs
---------
36 lbs
We can write this because the units are the same
Divide the top and bottom by 9
9/9
----------
36 /9
1/4
Answer:
1/4
Step-by-step explanation:
9 pounds
36 pounds
Ratios are written as x:y, fractions are written as x/y.
9:36 as a fraction will be 9/36
Simplify the fraction.
1/4
write the statement for 6x-3=9
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
The statement for [tex]6x - 3 = 9[/tex] is :
[tex]\boxed{Six (x) .minus. Three .equals. Nine.}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
may someone assist me ?
Answer:
x = 6
Step-by-step explanation:
I will use some symbols, please refer to the image I attach to understand my answer.
Since BC = 2 using Thales theorem we get that
3/x = 2/4 then 3/x = 1/2 and 6 = x
There are 42 students in an elementary statistics class. On the basis of years of experience, the instructor knows that the time needed to grade a randomly chosen first examination paper is a random variable with an expected value of 5 min and a standard deviation of 6 min. (Give answers accurate to 3 decimal places.)
(a) If grading times are independent and the instructor begins grading at 6:50 P.M. and grades continuously, what is the (approximate) probability that he is through grading before the 11:00 P.M. TV news begins?
1
(b) If the sports report begins at 11:10, what is the probability that he misses part of the report if he waits until grading is done before turning on the TV?
2
Answer:
A) 0.99413
B) 0.00022
Step-by-step explanation:
A) First of all let's find the total grading time from 6:50 P.M to 11:00 P.M.:
Total grading time; X = 11:00 - 6:50 = 4hours 10minutes = 250 minutes
Now since we are given an expected value of 5 minutes, the mean grading time for the whole population would be:
μ = n*μ_s ample = 42 × 5 = 210 minutes
While the standard deviation for the population would be:
σ = √nσ_sample = √(42 × 6) = 15.8745 minutes
To find the z-score, we will use the formula;
z = (x - μ)/σ
Thus;
z = (250 - 210)/15.8745
z = 2.52
From the z-distribution table attached, we have;
P(Z < 2.52) ≈ 0.99413
B) solving this is almost the same as in A above, the only difference is an additional 10 minutes to the time.
Thus, total time is now 250 + 10 = 260 minutes
Similar to the z-formula in A above, we have;
z = (260 - 210)/15.8745
z = 3.15
P(Z > 3.15) = 0.00022
A researcher compares the effectiveness of two different instructional methods for teaching anatomy. A sample of 146 students using Method 1 produces a testing average of 51.6. A sample of 180 students using Method 2 produces a testing average of 62.7. Assume the standard deviation is known to be 9.42 for Method 1 and 14.5 for Method 2. Determine the 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval.
Answer:
The confidence interval is [tex]-11.34 < \mu_1 -\mu_2 < -10.86[/tex]
Step-by-step explanation:
From the question we are told that
The first sample size is [tex]n_1 = 146[/tex]
The second sample size is [tex]n_2 = 180[/tex]
The first sample mean is [tex]\= x_1 = 51.6[/tex]
The second sample mean is [tex]\= x_2 = 62.7[/tex]
The first standard deviation is [tex]\sigma _1 = 9.42[/tex]
The second standard deviation is [tex]\sigma _2 = 14.5[/tex]
Given that the confidence level is 98% then the significance level is mathematically evaluated as
[tex]\alpha = (100 -98 )\%[/tex]
[tex]\alpha = 2 \%[/tex]
[tex]\alpha = 0.02[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the z-table , the value is [tex]Z_{\frac{\alpha }{2} } = 2.33[/tex]
The reason we are obtaining critical value of
[tex]\frac{\alpha }{2}[/tex]
instead of
[tex]\alpha[/tex]
is because
[tex]\alpha[/tex]
represents the area under the normal curve where the confidence level interval (
[tex]1-\alpha[/tex]
) did not cover which include both the left and right tail while
[tex]\frac{\alpha }{2}[/tex]
is just the area of one tail which what we required to calculate the margin of error
NOTE: We can also obtain the value using critical value calculator (math dot armstrong dot edu)
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2} }[/tex]
substituting values
[tex]E = 2.33 * \sqrt{ \frac{9.42^2}{146^2} + \frac{14.5^2}{180^2} }[/tex]
substituting values
[tex]E = 2.33 * \sqrt{ \frac{9.42^2}{146^2} + \frac{14.5^2}{180^2} }[/tex]
[tex]E = 0.2405[/tex]
The 98% confidence interval is mathematically represented as
[tex](\= x _ 1 - \= x_2 ) - E < \mu_1 -\mu_2 < (\= x _ 1 - \= x_2 ) + E[/tex]
substituting values
[tex](51.6 - 62.7) - 0.2405 < \mu_1 -\mu_2 < (51.6 - 62.7) + 0.2405[/tex]
[tex]-11.34 < \mu_1 -\mu_2 < -10.86[/tex]
Write the point slope equation of the line with the given slope that passes through the given point
M= -3, (3,5)
Answer:
y - 5 = -3(x - 3).
Step-by-step explanation:
The point-slope form is y - y1 = m(x - x1).
In this case, y1 = 5, x1 = 3, and m = -3.
y - 5 = -3(x - 3).
Hope this helps!
Answer:
[tex]\boxed{y-5= -3(x-3)}[/tex]
Step-by-step explanation:
Point-slope is in the general form:
[tex]y-y_1 = m(x-x_1)[/tex]
The values are given.
[tex]m=-3\\x_1=3\\y_1=5[/tex]
Plug in the values,
[tex]y-5= -3(x-3)[/tex]
Lily is 14 years older than her little brother Ezekiel. In 8 years, Lily will be twice as old as Ezekiel will be then. What is Lily and Ezekiel's combined age?
Answer:
30 years
Step-by-step explanation:
let the age of Ezekiel be x years
Given
Lily is 14 years older than her little brother Ezekiel
Age of Lily = x + 14 years
Next condition
after 8 years\
age of Ezekiel = x+8
age of Lily = x + 8 +14 = x + 22 years
Given
. In 8 years, Lily will be twice as old as Ezekiel will be then.
Thus,
x + 22 = 2(x+8)
=> x + 22 = 2x + 16
=> 22-16 = 2x -x
=> x = 6
Thus, age of Ezekiel = 8 years
age of lily = 8+14 = 22 years
sum of their age = 22 + 8 = 30 years answer.
Albert's Cafe uses 5 bags of coffee every day. How many days will 5/8 of a bag of coffee last?
Answer:
1 day.
Step-by-step explanation:
Given:
Albert's cafe uses 5 bags of coffee every day.
Required:
How many days will 5/8 bag of coffee last?
'How many days will 5/8 bag of coffee last?'
In this sentence we can see that there are 8 bags of coffee. The question in other words is Albert's Cafe is using 5 bags of coffee out of the 8 bags of coffee, and how many days will these last.
In the given we can see that the Cafe uses 5 bags of coffee per day, so the answer is 1 day.
Hope this helps ;) ❤❤❤
Two functions can be linked together by using the output of the first function
as the input of the second function. Which term describes this process?
A. Input/output
B. Relation
C. Domain
D. Composition
Answer: Option D, composition.
Step-by-step explanation:
In a function f(x) = y
x is the input, and the set of the possible values of x is called the domain.
y is the output, and the possible values of y is called the range.
Now, if we have two functions:
f(x) = y
g(x) = y.
we can define the composition of functions as: using the output of one function as the input of the other function, we can write this as:
f( g(x)) or fog(x)
In words, first we evaluate the function g in the point x, and the output of that is used as the input for the function f.
Then, the correct option here is D, composition.
(08.05 LC)The histogram shows the number of prizes won by different numbers of students at a quiz competition. Which of the following statements is correct regarding the number of students and the number of prizes won? A histogram titled Prizes Won is shown. The horizontal axis is labeled Number of Prizes with bins 0 to 5, 6 to 11, 12 to 17, and 18 to 23. The vertical axis labeled Students with values from 0 to 10 at intervals of 1. The first bin goes to 2, the second goes to 7, the third goes to 4, and the last goes to 10. A) A total of 10 students won all the prizes. B) Four students won 12, 13, 14, 15, 16, or 17 prizes. C) A total of 10 prizes were won by all the students. D) Four prizes were won by 12, 13, 14, 15, 16, or 17 students.
Answer: B.
Four students won 12, 13, 14, 15, 16, or 17 prizes
Answer:
Four students won 12, 13, 14, 15, 16, or 17 prizes!
Step-by-step explanation:
Solve the system using multiplication for the linear combination method. 6x – 3y = 3 –2x + 6y = 14 What is the solution to the system
Answer:
work is shown and pictured
Correct Answer would be
D: (2,3)
What is the slope of the line described by the equation y-1=3x
Answer:
Hey there!
The line can be expressed into y intercept form, y=3x+1.
Thus, in y=mx+b form, m is the slope, and we see that 3 is the slope of the line.
Let me know if this helps :)
n = 9
H0 : 50 = 47
Ha : 50 s = 3
Assume data are from normal population. The p-value is equal to:______.
a. 0.0171.
b. 0.0805.
c. 0.2705.
d. 0.2304.
Answer:
The p-value is 0.809.
Step-by-step explanation:
In this case we need to perform a significance test for the standard deviation.
The hypothesis is defined as follows:
H₀: σ₀ = 4 vs. Hₐ: σ₀ ≤ 4
The information provided is:
n = 9
s = 3
Compute the Chi-square test statistic as follows:
[tex]\chi^{2}=\frac{(n-1)s^{2}}{\sigma_{0}^{2}}[/tex]
[tex]=\frac{(9-1)\cdot (3)^{2}}{(4)^{2}}\\\\=\frac{8\times 9}{16}\\\\=4.5[/tex]
The test statistic value is 4.5.
The degrees of freedom is:
df = n - 1
= 9 - 1
= 8
Compute the p-value as follows:
[tex]p-value=P(\chi^{2}_{9}>4.5)=0.809[/tex]
*Use a Chi-square table.
Thus, the p-value is 0.809.
This afternoon, Vivek noticed that the temperature was above zero when the temperature was 17 5/8 degrees. Its evening now, and the temperature is -8 1/2 degrees. What does this mean?
Answer:
The temperature droped from 17 5/8° C to - 8 1/2° C = 26 1/8° C, simply add the 2 mixed fractions together and you'll get the temperture change.
Step-by-step explanation:
Convert to a mixed number:
209/8
Divide 209 by 8:
8 | 2 | 0 | 9
8 goes into 20 at most 2 times:
| | 2 | |
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
8 goes into 49 at most 6 times:
| | 2 | 6 |
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
| - | 4 | 8 |
| | | 1 |
Read off the results. The quotient is the number at the top and the remainder is the number at the bottom:
| | 2 | 6 | (quotient)
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
| - | 4 | 8 |
| | | 1 | (remainder)
The quotient of 209/8 is 26 with remainder 1, so:
Answer: 26 1/8° C
Find the absolute maximum and absolute minimum values of f on the given interval. f(x) = 6x3 − 9x2 − 216x + 3, [−4, 5]
Answer:
absolute minimum = -749 and
absolute maximum = 467
Step-by-step explanation:
To get the absolute maximum and minimum of the function, the following steps must be followed.
First, we need to find the values of the function at the given interval [-4, 5].
Given the function f(x) = 6x³ − 9x² − 216x + 3
at x = -4;
f(-4) = 6(-4)³ − 9(-4)² − 216(-4) + 3
f(-4) = 6(-64) - 9(16)+864+3
f(-4) = -256- 144+864+3
f(-4) = 467
at x = 5;
f(5) = 6(5)³ − 9(5)² − 216(5) + 3
f(5) = 6(125) - 9(25)-1080+3
f(5) = 750- 225-1080+3
f(5) = -552
Then we will get the values of the function at the crirical points.
The critical points are the value of x when df/dx = 0
df/dx = 18x²-18x-216 = 0
18x²-18x-216 = 0
Dividing through by 18 will give;
x²-x-12 = 0
On factorizing the resulting quadratic equation;
(x²-4x)+(3x-12) = 0
x(x-4)+3(x-4) = 0
(x+3)(x-4) = 0
x+3 = 0 and x-4 = 0
x = -3 and x = 4 (critical points)
at x = -3;
f(-3) = 6(-3)³ − 9(-3)² − 216(-3) + 3
f(-3) = 6(-27) - 9(9)+648+3
f(-3) = -162-81+648+3
f(-3) = 408
at x = 4
f(4) = 6(4)³ − 9(4)² − 216(4) + 3
f(4) = 6(64) - 9(16)-864+3
f(4) = 256- 144-864+3
f(4) = -749
Based on the values gotten, it can be seen that the absolute minimum and maximum are -749 and 467 respectively