Answer:
29 ft x 58 ft
Step-by-step explanation:
Let x be the length of each side perpendicular to the wall, and y be the length of the side parallel to the wall.
The amount of wire available is:
[tex]116 = 2x+y\\y=116-2x[/tex]
The area of the region is:
[tex]A=xy=x(116-2x)\\A(x)=116x-2x^2[/tex]
The value of 'x' for which the derivate of the area function is zero will yield the maximum area:
[tex]A(x)=116x-2x^2\\A'(x) = 116-4x=0\\x=29\ ft[/tex]
The value of y is:
[tex]y=116-2*29\\y=58\ ft[/tex]
The dimensions of the region with the largest area are 29 ft x 58 ft.
Of the cartons produced by a company, % have a puncture, % have a smashed corner, and % have both a puncture and a smashed corner. Find the probability that a randomly selected carton has a puncture or a smashed corner. The probability that a randomly selected carton has a puncture or a smashed corner nothing%. (Type an integer or a decimal. Do not round.)
Full Question
Of the cartons produced by a company, 10% have a puncture, 6% have a smashed corner, and 0.4% have both a puncture and a smashed corner. Find the probability that a randomly selected carton has a puncture or a smashed corner. The probability that a randomly selected carton has a puncture or a smashed corner nothing ____%. (Type an integer or a decimal. Do not round.)
Answer:
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Step-by-step explanation:
Given
[tex]Puncture\ Corner = 10\%[/tex]
[tex]Smashed\ Corner = 6\%[/tex]
[tex]Punctured\ and\ Smashed\ Corner = 0.4\%[/tex]
Required
[tex]P(Punctured\ or\ Smashed\ Corner)[/tex]
For non-mutually exclusive event described above, P(Punctured or Smashed Corner) can be calculated as thus;
[tex]P(Punctured\ or\ Smashed\ Corner) = P(Punctured\ Corner) + P(Smashed\ Corner) - P(Punctured\ and\ Smashed\ Corner)[/tex]
Substitute:
10% for P(Puncture Corner),
6% for P(Smashed Corner) and
0.4% for P(Punctured and Smashed Corner)
[tex]P(Punctured\ or\ Smashed\ Corner) = 10\% + 6\% - 0.4\%[/tex]
[tex]P(Punctured\ or\ Smashed\ Corner) = 15.6\%[/tex]
Convert % to fraction
[tex]P(Punctured\ or\ Smashed\ Corner) = \frac{15.6}{100}[/tex]
Convert to decimal
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Using Venn probabilities, it is found that:
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.In this problem, the events are:
Event A: Puncture.Event B: Smashed corner.The "or" probability is given by:
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]
10% have a puncture, hence [tex]P(A) = 0.1[/tex]6% have a smashed corner, hence [tex]P(B) = 0.06[/tex].0.4% have both a puncture and a smashed corner, hence [tex]P(A \cup B) = 0.004[/tex].Then:
[tex]P(A \cup B) = 0.1 + 0.06 - 0.004 = 0.156[/tex]
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.
To learn more about Venn probabilities, you can check https://brainly.com/question/25698611
The linear combination method is applied to a system of equations as shown. 4(.25x + .5y = 3.75) → x + 2y = 15 (4x – 8y = 12) → x – 2y = 3 2x = 18
Answer:
x+2y=12-------(1)
x-2y=3---------(2)
Adding equations 1 and 2
we get
2x=18
x=9
Equation 1
9+2y=15
2y=15-9
2y=6
y=3
The solution of the given system is x=9, y=3
Step-by-step explanation
The population of fruit flies in a laboratory grows geometrically and is checked everyday at noon. If the population began with 80 fruit flies and reached 125 in two days, what is the population after 4 days?
Answer:
[tex]\boxed{195}[/tex]
Step-by-step explanation:
The fruit flies grows geometrically.
[tex]125=80k^2[/tex]
Find the value of k.
[tex]\sqrt{\frac{125}{80} } =k[/tex]
[tex]1.25=k[/tex]
[tex]P=80(1.25)^t[/tex]
[tex]t[/tex] is number of days.
[tex]P=80(1.25)^4[/tex]
[tex]P=195[/tex]
You visit a farm and notice that white chickens lay white eggs and colored chickens lay colored eggs, so you decide that only white chickens lay white eggs. What type of reasoning is this?
Answer:
This is called an Inductive reasoning.
Step-by-step explanation:
It is a logical process in which a number of premises all believed true combine to come up with specific conclusions. This is a generalisation based on observations.
Hope it helps.
Winston and Alice are taking a trip. Winston left at 8 am and traveled an average of 50 miles per hour. Alice left at 10 am and traveled an average of 70 miles per hour. At what time are they at the same place at the same time? Write a system of equation to represent this situation. Then use the substitution method with that system to determine at the time they will be in the same location. How many miles away from home will they be at that time?
Answer:
3 PM
350 miles
Step-by-step explanation:
Let's say t is the number of hours since 8 AM.
The distance traveled by Winston is:
w = 50t
The distance traveled by Alice is:
a = 70(t−2)
When w = a:
50t = 70(t−2)
50t = 70t − 140
140 = 20t
t = 7
Winston and Alice will be at the same place 7 hours after 8 AM, or 3 PM.
The distance they travel is 350 miles.
An anchor lowered at a constant rate into the ocean takes 5 seconds to move -17.5 meters. What is the rate of the anchor in meters per second?
Answer:
-3.5 meters per second
Step-by-step explanation:
Take the distance and divide by the time
-17.5 meters/ 5 seconds
-3.5 meters per second
Answer:
-3.5 m/s
Step-by-step explanation:
Rate of the anchor = [tex]\frac{distance}{time}[/tex]
[tex]\frac{-17.5}{5}[/tex]
-3.5 meters per second.
Suppose a car depreciates linearly the second you drive it off the lot. If you purchased the car for $31,500 and after 5 years the car is worth $20,500, find the slope of the depreciation line.
Answer: m = - 2200
Step-by-step explanation: Slope of a line is a number which describes the steepness and direction of a linear graph. It is represented by the letter m.
The year a car is bought and its price means:
f(0) = 31,500
Five years later, the price is $20,500, i.e.:
f(5) = 20,500
With these two pairs of value, slope is calculated as:
[tex]m = \frac{y-y_{0}}{x-x_{0}}[/tex]
[tex]m = \frac{20500-31500}{5-0}[/tex]
[tex]m = \frac{- 1100}{5}[/tex]
m = - 2200
The slope of the depreciation line is m = -2200 and it is negative because the line decreases along time.
what is that is the derivative of
x^2-x+3 at the point
x=5
What value of x where
x²-x+3
a minimum?
Answer:
see explanation
Step-by-step explanation:
differentiate using the power rule.
[tex]\frac{d}{dx}[/tex]( a[tex]x^{n}[/tex] ) = na[tex]x^{n-1}[/tex] , thus
[tex]\frac{d}{dx}[/tex](x² - x + 3 ) = 2x - 1
x = 5 → 2(5) - 1 = 10 - 1 = 9
To find the value of x for minimum , equate [tex]\frac{d}{dx}[/tex] to zero
2x - 1 = 0 , then
2x = 1 and
x = [tex]\frac{1}{2}[/tex]
what is the value of this expression when a = 2 and b = -3 ? a^3 - b^3 / 5
Answer:
13 2/5
Step-by-step explanation:
a = 2 and b = -3
so the question asks whats.... a^3 - b^3/5
First we plug in the values of a and b
(2)^3 - (-3)^3 /5
Now we solve the ones in paranthesis first
(2)^3 = 8 because 2×2×2 and
-(-3)^3 forget about the - outside the parenthesis so
(-3)^3 = (-27) because (-3)×(-3)×(-3)
now we put it back together
8 -(-27)/5
the two minus become plus so
8 + 27/5
Now we solve it like fractions
8 and 27/5
simplify
13 and 2/5
Hope that helps!
plzzzz solve the second one
Answer:
x=10/3
Step-by-step explanation:
isolate the variable
Answer:
1. x = 4
2. x = 10/3
Step-by-step explanation:
1. 3x - 5 = 3 + x
3x - x = 3 + 5
2x = 8
x = 4
2. x/2 + 5/9 = 2x/3
(x/2 + 5/9) * 18 = (2x/3) * 18
9x + 10 = 12x
10 = 12x - 9x
10 = 3x
x = 10/3
Which group of plants were the first to adapt to life on land? flowering pine mosses conifers
Answer:
mosses
Step-by-step explanation:
use socratic
Mosses are also known as the amphibian of the plant kingdom. The mosses were the first plant that can even survive on the land.
Bryophytes:It is the group of small plants that complete its life cycle in both land and water. They were the first plants to adapt to live on the land.For example- mosses.Conifers, pines, and flowering plants developed much later after the evolution of bryophytes.
Therefore, the mosses were the first plant that can even survive on the land.
Learn more about Bryophytes:
https://brainly.com/question/841138
Marie is saving money for home repairs. So far, she has saved $1,558. She needs at least $2,158 for the repairs. She plans to
add $60 per week to her current savings until she can afford the repairs.
In this activity, you will algebraically model and solve an inequality based on this situation and interpret the solutions within
realistic guidelines
Part A
Question
Given the situation, which inequality models the number of additional weeks Marie needs to continue saving to afford the
home repairs?
Select the correct answer.
1,558 + 60x 22,158
60x + 1,558 5 2,158
1,558 - 60x s 2,158
2,158 - 60x 2 1,558
Answer:
Inequality: [tex]1558 + 60 x \geq 2158[/tex]
Number of Weeks: [tex]x \geq 10[/tex]
Step-by-step explanation:
Given
[tex]Initial\ Savings = \$1558[/tex]
[tex]Amount\ Needed = \$2158[/tex]
[tex]Additional\ Savings = \$60\ weekly[/tex]
Required
Represent this using an inequality
Represent the number of weeks as x;
This implies that, She'll save $60 * x in x weeks
Her total savings after x weeks would be
[tex]Initial\ Savings + 60 * x[/tex]
From the question, we understand that she needs at least 2158;
Mathematically, this can be represented as (greater than or equal to 2158)
[tex]\geq 2158[/tex]
Bringing the two expressions together;
[tex]Initial\ Savings + 60 * x \geq 2158[/tex]
Substitute 1558 for Initial Savings
[tex]1558 + 60 * x \geq 2158[/tex]
[tex]1558 + 60 x \geq 2158[/tex]
Hence, the inequality that represents the situation is [tex]1558 + 60 x \geq 2158[/tex]
Solving further for x (number of weeks)
[tex]1558 + 60 x \geq 2158[/tex]
Subtract 1558 from both sides
[tex]1558- 1558 + 60 x \geq 2158 - 1558[/tex]
[tex]60x \geq 600[/tex]
Divide both sides by 60
[tex]\frac{60x}{60} \geq \frac{600}{60}[/tex]
[tex]x \geq 10[/tex]
This means that she needs to save $60 for at least 10 weeks
Answer:
Its the first one
Step-by-step explanation:
I just did it lol
Find the sum of 1342, -295, -456,89.
Answer:
680
Step-by-step explanation:
add 1342+89 to get 1431
then add -295+-456 to get -751
then subtract 751 from 1431 to get 680
Step-by-step explanation:
Hope this is correct and helpful
HAVE A GOOD DAY!
A manager receives 8 applications for a specific position. She wants to narrow it down to 5. In how many ways can she rank 5 applications?
Answer:
56 number of ways
Step-by-step explanation:
This question is a combination question since it involves selection.
Generally, if r objects are to be selected from n pool of objects, this can be done in nCr number of ways.
nCr = n!/(n-r)!r!
If a manager receives 8 applications for a specific position and wants to narrow it down to 5, the number of ways he can do this is 8C5
8C5 = 8!/(8-5)!5!
= 8!/3!5!
= 8*7*6*5!/3*2*5!
= 8*7*6/3*2
= 8*7
= 56 number of ways.
This means that the manager can rank 5 applications in 56 number of ways
The number of ways that can she rank 5 applications should be 6720.
Calculation of the number of ways:Since A manager receives 8 applications for a specific position. She wants to narrow it down to 5.
So here we do apply the permutation here:
[tex]= 8!\div 5!3! \times 5!\div 0!\\\\= 8\times 7\times 6\times 5\times 4[/tex]
= 6720
Hence, The number of ways that can she rank 5 applications should be 6720.
Learn more about ways here: https://brainly.com/question/18988173
BRAINLIEST ANSWER GIVEN Without actually solving the problem, choose the correct solution by deciding which choice satisfies the given conditions. The length of a rectangle is 2 feet longer than the width. The perimeter is 20 feet. Find the dimensions of the rectangle. Length= ?; width=?
Answer:
length = 6 feetwidth = 4 feetStep-by-step explanation:
Perimeter of a rectangle = 2l + 2w
where l is the length
w is the width
The length of the rectangle is 2 feet longer than the width is written as
l = 2 + w
Perimeter = 20feet
So we have
20 = 2( 2 + w ) + 2w
20 = 4 + 2w + 2w
4w = 16
Divide both sides by 4
w = 4
Substitute w = 4 into l = 2 + w
That's
l = 2 + 4
l = 6
length = 6 feetwidth = 4 feetHope this helps you
Answer:
w = 4 and L = 10
Step-by-step explanation:
perimeter of a rectangle = 2(l+w)
p = 20
L = 2 + w
w = ?
20 = 2(2 + w + w)
20 = 2(2 + 2w)
20/2 = 2 + 2w
10 = 2 + 2w
10 - 2 = 2w
8 = 2w
w = 8/2 = 4
L = w + 2
L = 4 +2 = 6
w = 4 and L = 10
There are 6 brooms and 4 mops in a janitor's closet. What is the fraction of the number of brooms to the number of mops?
Answer:
6/4
Step-by-step explanation:
Answer:
6/4
Step-by-step explanation:
There are 6 brooms to 4 mops.
So you would write it that way as a fraction, but you could also write it like 6:4 or 6 to 4.
taking a test- Which expression represents the surface area of the cone? A cone with diameter 12 inches, height 8 inches, and slant height 10 inches. S A = pi r l + pi r squared (pi) (6) (10) + (pi) (6 squared) (pi) (8) (10) + (pi) (8 squared) (pi) (12) (10) + (pi) (12 squared) (pi) (10) (12) + (pi) (10 squared)
Answer:
[tex]SA = \pi (6) * 10+\pi ( 6)^2[/tex]
Step-by-step explanation:
The surface area of a cone is given by
[tex]SA = \pi rl +\pi r^2[/tex]
r is the radius and l is the slant height.
The diameter is 12 inches, the radius is 12/2 = 6 inches.
The slant height is 10 inches.
[tex]SA = \pi (6) * 10+\pi ( 6)^2[/tex]
Answer:
SA of cone = [tex](\pi )(6)(8) + (\pi )(6)^2[/tex]
Step-by-step explanation:
Surface Area of cone = [tex]\pi rh+\pi r^2[/tex]
Where r = 6 inches (Diameter = 12 inches) , h = 8 inches (We'll not consider the slant height)
SA of cone = [tex](\pi )(6)(8) + (\pi )(6)^2[/tex]
what other numbers can you square that result in 9 ?
Step-by-step explanation:
I'm not sure what your answers are, but you can only square 3 and -3 to get 9.
Answer:
3, -3
Step-by-step explanation:
3*3 = 9
-3 * -3 = 9
These are the only two numbers that square to 9
HELP PLEASEEE!!!!!!!!!!
Answer:
100
Step-by-step explanation:
height = constant/ width
Taking the point (5,20)
where 5 is the width and 20 is the height
20 = constant/ 5
Multiply each side by 5
5*20 = constant
100 = constant
Hey, the question is with the image. Pls help
Answer:
8
Step-by-step explanation:
An accountant receives a salary of $262,000 per year. During the year, he plans to spend $99,000 on his mortgage, $54,000 on food, $32,000 on clothing, $41,000 on household expenses, and $28,000 on other expenses. With the money that is left, he expects to buy as many shares of stock at $250 per share as possible. Using the equation below, determine how many shares will he be able to buy? What was the sum of the accountant's expenses?
Answer:
Number of shares = 32 shares
Accountant total expenses= $254000
Step by step explanation:
The accountant salary is $262000
He spends $99000 on mortage
Spends $54000 on foods
Spends $32000 on clothing
Spends $41000 on household
Spends $28000 on others
Total expenses= 99000+54000+32000+41000+28000
Total expenses =$254000
Remaining money = 262000-254000
Remaining money= $8000
If shares = $250 for one
To know the amount he buys with the remaining money
We divide remaining money by shares cost
= $8000/$250
= 32 shares
pleassssssssssssssssssssssssseeeeeeeeeeeeeeeeeeeeeeee helpppppppppppppp meeeeeeeee i giveeeee you bralienstttttt
Answer:
487 divide by 14
Step-by-step explanation:
have a nice day
Use z scores to compare the given values. The tallest living man at one time had a height of 249 cm. The shortest living man at that time had a height of 120.2 cm. Heights of men at that time had a mean of 176.55 cm and a standard deviation of 7.23 cm. Which of these two men had the height that was more extreme?
Answer:
Step-by-step explanation:
Average height = 176.55 cm
Height of tallest man = 249 cm
Standard deviation = 7.23
z score of tallest man
= (249 - 176.55) / 7.23
= 10.02
Average height = 176.55 cm
Height of shortest man = 120.2 cm
Standard deviation = 7.23
z score of smallest man
= ( 176.55 - 120.2 ) / 7.23
= 7.79
Since Z - score of tallest man is more , his height was more extreme .
Malik collects rare stamps and has a total of 212 stamps. He has 34 more domestic stamps than foreign stamps. Let x represent the number of domestic stamps and let y represent the number of foreign stamps
Answer:
123 domestic stamps
89 foreign stamps
Step-by-step explanation:
Answer:
Malik collects rare stamps and has a total of 212 stamps. He has 34 more domestic stamps than foreign stamps. Let x represent the number of domestic stamps and let y represent the number of foreign stamps.
Which equation represents the total number of stamps Malik collected?
✔ x + y = 212
Which equation represents the difference in the number of foreign and domestic stamps Malik collected?
✔ x – y = 34
Which system of linear equations represents the situation?
✔ x – y = 34 and x + y = 212
Malik collects rare stamps and has a total of 212 stamps. He has 34 more domestic stamps than foreign stamps. Let x represent the number of domestic stamps and let y represent the number of foreign stamps.
This system of equations models the given information for both stamp types.
x – y = 34
x + y = 212
Solve the system of equations.
How many foreign stamps does Malik have?
✔ 89 foreign stamps
How many domestic stamps does Malik have?
✔ 123 domestic stamps
Step-by-step explanation:
its right on 2021 edge! :) hope this helps
Which equation shows y-5=x converted to slope intercept form.
Answer:
C) y = x + 5
Step-by-step explanation
Add 5 to both sides
Samantha has 5 granola bars. She wants to give 1/3 of a granola bar to each friend. Which expression can she use to find the number of friends to whom she can give granola bars?
Answer:
5/(1/3)
Step-by-step explanation:
She has 5 granola bars and gives 1/3 of one to each of her friends. To find how many friends she can give it to, divide 5 by 1/3. You would get a total of 15 friends that you can give granola bars to. The question is asking for an expression so the expression would be 5/(1/3) or 5*3
Answer:
1/3 x = 5
x=15
Step-by-step explanation:
You’re multiplying 1/3 times the number of friends (x), and then multiplying both sides by the reciprocal to solve for x
The chart below lists the original and sale prices of items at a clothing store.
Clothing Prices
Original price Sale price
$7.99
$5.59
$10.99
$7.69
$12.99
$9.09
$15.99
$11.19
$24.99
$17.49
$29.99
$20.99
Which statement best describes why the sale price is a function of the original price?
As the original price increases, the sale price also increases.
The sale price is always less than the original price.
For every original price, there is exactly one sale price.
The sales price is never less than zero.
Answer: C) For every original price, there is exactly one sale price.
For any function, we always have any input go to exactly one output. The original price is the input while the output is the sale price. If we had an original price of say $100, and two sale prices of $90 and $80, then the question would be "which is the true sale price?" and it would be ambiguous. This is one example of how useful it is to have one output for any input. The input in question must be in the domain.
As the table shows, we do not have any repeated original prices leading to different sale prices.
Answer:
C STAY SAFE!!!
Step-by-step explanation:
Ok we know this cant be A the reason is It says tha the original price is increasing so thats FALSE... its trying to trick you so no
The second choice says The sale price is always less than the original price. well take a look at the sale prices are they? Obiously not so False
Ok the third option For every original price, there is exactly one sale price. well this is true ask yourself each it helps.
Last option The sales price is never less than zero. erm FALSE OBIOUSLY THIS IS TRUE JUST NOT TRUE ITS WRONG
THE ANSER IS C
Olivia, a golfer, claims that her drive distance is more than 174 meters, on average. Several of her friends do not believe her, so she decides to do a hypothesis test, at a 10% significance level, to persuade them. She hits 15 drives. The mean distance of the sample drives is 188 meters. Olivia knows from experience that the standard deviation for her drive distance is 14 meters. H0: μ=174; Ha: μ>174 α=0.1 (significance level) What is the test statistic (z-score) of this one-mean hypothesis test, rounded to two decimal places?
Answer:
3.87
Step-by-step explanation:
The computation is shown below:
Data provided in the question
mean distance = [tex]\bar x[/tex] = 188 meters
Standard deviaton = [tex]\sigma = 14[/tex]
Hits drivers = 15
The distance = 174 meters
H_0: μ≤174;
H_a: μ>174
Based on the above information, the test statistic z-score is
[tex]z = \frac{\bar x - \mu }{\sigma / \sqrt{n} } \\\\ = \frac{188 - 174}{\ 14 / \sqrt{15} }[/tex]
= 3.87
Hence, the test statistic is 3.87
Note:
We take the μ≤174 instead of μ=174;
Transformations of exponential functions
Answer:
Since the transformation is made by shifting the function right, it is a horizontal transformation.
What is the answer for x? (3x-3)° [6(x-10)]
Answer:
x = 19
Step-by-step explanation:
The angles are vertical angles which means they are equal
3x-3 = 6(x-10)
Distribute
3x-3 = 6x-60
Subtract 3x from each side
3x-3 -3x = 6x-60-3x
-3 =3x-60
Add 60 to each side
-3+60 =3x-60+60
57 = 3x
Divide by 3
57/3 = 3x/3
19 =x