Three shoppers are in the elevator of a department store. the anticipated number of stops the lift makes sometime recently the three customers have all cleared out the lift is 21/4, or 5.25 stops on normal.
E(X) = ∑ x P(X = x) where the summation is over all conceivable values of X, and P(X = x) is the likelihood that X takes on the esteem x.
The conceivable values of X are 3, 4, and 5, The likelihood that X = k for k ≥ 3 is the likelihood that the three customers will have all left the lift after k stops, which is 7/8 times the Probability that they have not all cleared out after k - 1 stops. That's, P(X = k) = (7/8) P(X = k-1)
Utilizing this recursive relationship, ready to compute the probabilities of X taking on each conceivable esteem: P(X = 3) = 7/8
P(X = 4) = (7/8)(1/8) = 7/6
P(X = 5) = (7/8)(7/64) = 49/512
P(X = 6) = (7/8)(49/512) = 343/4096
Presently we are able to utilize the equation for anticipated esteem to discover E(X): E(X) = ∑ x P(X = x)
= 3(7/8) + 4(7/64) + 5(49/512) + 6(343/4096) + ...
= ∑ (3/2)[tex]^{k}[/tex] (7/8)[tex]^{k}[/tex]
= (7/8) (3/2) / (1 - 3/2)
= (7/8) (3/2) / (1/2)
= 21/4
To learn about Probability visit:
https://brainly.com/question/30034780
#SPJ4
You are deciding between two cars with different engines and want the bigger
of the two. One engine displaces 350 cubic inches. The other displaces 5,500
cubic centimeters. Check all of the reasonable approaches to solving this
question.
The bigger engine is larger than the smaller one by 235.4724 cubic centimeters.
How is the bigger engine larger than other?We know that 1 inch=2.54 centimeters
Then 1 cubic inches-(2.54)^3 cubic centimeters
We have that:
⇒ 1 cubic inches=(2.54)3 = 16.3870 cubic centimeters
⇒350 cubic inches= 350 x 16.3870 = 5735.4724 cubic centimeters
Since, the other displaces 5,500 cubic centimeters and 5735.4724< 5500. The difference between them is:
= 5735.4724 - 5500
= 235.4724
Hence, the bigger engine larger than the smaller one by 235.4724 cubic centimeters.
Read more about Engine size
brainly.com/question/14439953
#SPJ1
Devon invested $9500 in three different mutual funds. A fund containing large cap stocks made a 4.7% return in 1 yr. A real estate fund lost 12.2% in 1 yr, and a bond fund made 5.4% in 1 yr. The amount invested in the large cap stock fund was twice the amount invested in the real estate fund. If Devon had a net return of $133 across all investments, how much did he invest in each fund?
These investments do indeed produce a net return of $133.
What is algebra?
Algebra is a branch of mathematics that deals with mathematical operations and symbols used to represent numbers and quantities in equations and formulas.
Let's call the amount Devon invested in the real estate fund "x". Then, we know that the amount invested in the large cap stock fund is twice that, or "2x". The total amount invested is $9500, so we can write:
x + 2x + y = 9500
where "y" is the amount invested in the bond fund.
We also know the returns of each fund, so we can calculate the total return on the investments:
0.047(2x) - 0.122x + 0.054y = 133
Simplifying this equation, we get:
0.998x + 0.054y = 133
We have two equations and two unknowns (x and y), so we can solve for them. Let's start by solving the first equation for y:
y = 9500 - 3x
Now we can substitute this expression for y into the second equation:
0.998x + 0.054(9500 - 3x) = 133
Simplifying and solving for x, we get:
0.888x = 459.8
x = 517.57
So Devon invested $517.57 in the real estate fund. The amount invested in the large cap stock fund is twice that, or $1035.14. The amount invested in the bond fund is:
y = 9500 - 3x = 8464.29
To check that these investments produce a net return of $133, we can calculate the total return on each investment and add them up:
0.047(2x) - 0.122x + 0.054y = 0.047(2517.57) - 0.122517.57 + 0.054*8464.29 = 133.00
So these investments do indeed produce a net return of $133.
To learn more about algebra from the given link:
https://brainly.com/question/24875240
#SPJ1
I’ve been trying to solve this for a long time now and I just keep getting it wrong, if anyone could assists me that would be appreciated! :)
The distance between the two points can be found to be, and the number that goes beneath the radical symbol is 80.
How to find the distance ?To find the distance between two points in a plane, you can use the distance formula derived from the Pythagorean theorem. The distance formula is:
d = √[(x₂ - x₁)² + (y₂ - y₁)²]
where (x₁, y₁) and (x₂, y₂) are the coordinates of the two points.
In this case, the coordinates of the two points are (-4, 1) and (4, 5). So, x₁ = -4, y₁ = 1, x₂ = 4, and y₂ = 5.
Now, apply the distance formula:
d = √[(4 - (-4))² + (5 - 1)²]
d = √[(8)² + (4)²]
d = √(64 + 16)
d = √80
Find out more on distance at https://brainly.com/question/7243416
#SPJ1
The table shows the weekly income of 20 randomly selected full-time students. If the student did not work, a zero was entered (a) Check the data set for outliers (b) Draw a histogram of the data (c) Provide an explanation for any outliers
a) Any value outside of Q1 - 1.5(IQR) and Q3 + 1.5(IQR) can be considered a potential outlier.
b) This will give us a visual representation of the distribution of income among the full-time students.
c) It is important to analyze outliers carefully to ensure that they are not artificially skewing the results of our analysis.
(a) To check for outliers in the data set, we can use the box-and-whisker plot or the z-score method. However, since we do not have the exact data, we cannot use these methods. One way to identify potential outliers is to calculate the quartiles (Q1, Q2, and Q3) and the interquartile range (IQR).
(b) To draw a histogram of the data, we can use the frequency distribution table given in the question. The x-axis should represent the income ranges (e.g. $0-$100, $100-$200, etc.) and the y-axis should represent the frequency (i.e. the number of students who earned income within each range).
(c) If there are any outliers in the data set, we need to investigate them further to determine the reason for their unusual values. Possible reasons for outliers could be data entry errors, extreme values due to high- or low-income jobs, or unique situations such as unexpected windfalls or emergencies.
To learn more about frequency distribution visit;
https://brainly.com/question/14926605
#SPJ11
select the correct answer. in a box containing 20 cans, 12 of the cans contain vegetables. in the box, 5 of the cans are dented, with 2 of the dented cans containing vegetables. what is the probability that a randomly selected can in the box is dented or contains vegetables?
The probability that a randomly selected can in the box is dented or contains vegetables is 19/20.
To solve the problem, we need to use the formula for the probability of the union of two events:
P(A or B) = P(A) + P(B) - P(A and B)
where A and B are two events.
In this case, we want to find the probability that a randomly selected can is dented or contains vegetables. Let's call these events D and V, respectively.
We are given that there are 20 cans in total, 12 of which contain vegetables, and 5 of which are dented, with 2 of the dented cans containing vegetables. This information allows us to calculate the probabilities of the individual events
P(D) = 5/20 = 1/4
P(V) = 12/20 = 3/5
P(D and V) = 2/20 = 1/10
To find the probability of the union of these events, we plug these values into the formula
P(D or V) = P(D) + P(V) - P(D and V)
= 1/4 + 3/5 - 1/10
= 19/20
Learn more about probability here
brainly.com/question/11234923
#SPJ4
Round to the nearest 10th a cylinder is 22 inches and 12.5 inches what is the surface area 
for a circle of radius 8 feet, find the length created by a central angle of 18’. Write your answer as a decimal rounded to the hundredths
The length created by a central angle is 0.04 feet.
What is radius of circle?
The radius of a circle is the distance from the center of the circle to any point on the circle's edge. It is typically denoted by the letter "r" and is one of the fundamental measurements used to describe the geometry of a circle.
First, we need to convert the central angle from degrees to radians. Since there are 60 minutes in a degree, we can divide 18 by 60 to get the angle in degrees as a decimal,
18/60 = 0.3 degrees
Next, we convert this to radians by multiplying by π/180,
0.3 × π/180 ≈ 0.00524 radians
To find the length of the arc created by this central angle, we use the formula,
arc length = radius × central angle
So, for a circle of radius 8 feet and a central angle of 0.00524 radians, the arc length is arc length = 8 × 0.00524 ≈ 0.04192 feet
Rounded to the nearest hundredth, the length of the arc is approximately 0.04 feet.
Learn more about radius of the circle here,
https://brainly.com/question/28162977
#SPJ1
Evaluate the expression when x = 7 (4x + 9) - 4(x - 1) + x
Answer:x= -67 over 24
Step-by-step explanation:
Homework 18.1.-trigonometric ratios
Find the 3 trigonometric ratios. If needed, reduce fractions.
Step-by-step explanation:
rotate the triangle in your mind (or as actual picture on your phone or computer), so that the right angle is the bottom right or bottom left, and C being the opposite bottom angle.
then we see
28 = cos(C) × 35
21 = sin(C) × 35
and so,
sin(C) = 21/35 = 3/5
cos(C) = 28/35 = 4/5
tan(C) = sin(C)/cos(C) = 3/5 / 4/5 = 3/4
Assume g and h are whole numbers, and g < h. Which expression has the least
value?
Answer:
[tex] \frac{ {g}^{4} {h}^{2} }{ g{h}^{6} } = \frac{ {g}^{3} }{ {h}^{4} } [/tex]
because other values are 1, and this one is less, because g<h
Find the value of the indicated trigonometry ratio cos in right tringle with side of 6,6*squort 2, 6*squort 3
Answer:√2/2
Step-by-step explanation:
Let's label the sides of the right triangle as follows:
The side adjacent to the angle θ (cosine is adjacent/hypotenuse): 6
The hypotenuse (the longest side): 6√2
The side opposite to the angle θ (sine is opposite/hypotenuse): 6√3
Using the Pythagorean theorem, we can find the length of the missing side:
a² + b² = c²
6² + (6√3)² = (6√2)²
36 + 108 = 72
144 = 72
√144 = √72
12 = 6√2
Now that we know the length of all three sides, we can use the cosine ratio to find the value of cos(θ):
cos(θ) = adjacent/hypotenuse = 6/6√2 = √2/2
Therefore, the value of cos(θ) in the right triangle with sides of 6, 6√2, and 6√3 is √2/2.
Andy has 3.2 x 10³ dollars in his bank account. His brother Dan has 4.7 times that amount in his account. How much does Dan have in his account? Write the amount in scientific notation.
Answer:
1.504 x 10^4
Step-by-step explanation:
compute the residuals. (round your answers to two decimal places.) xi yi residuals 6 6 11 7 15 12 18 20 20 30 (c) develop a plot of the residuals against the independent variable x. do the assumptions about the error terms seem to be satisfied?
The estimated regression equation for the given data is y = -30.7 + 3.409x
To develop an estimated regression equation for the given data, we need to use the method of least squares.
The formula for the slope of the regression line is given by:
b = ∑(xi - x)(yi - y) / ∑(xi - x)²
where xi and yi are the individual values of the two variables, x and y are their respective means.
The formula for the intercept of the regression line is given by:
a = y - b × x
where a is the intercept and b is the slope.
Using the given data, we can calculate the values of x, y, b, and a as follows
x = (6 + 11 + 15 + 18 + 20) / 5 = 14
y = (7 + 9 + 12 + 21 + 30) / 5 = 15.8
∑(xi - x)(yi - y) = (6 - 14)(7 - 15.8) + (11 - 14)(9 - 15.8) + (15 - 14)(12 - 15.8) + (18 - 14)(21 - 15.8) + (20 - 14)(30 - 15.8) = 306.8
∑(xi - x)² = (6 - 14)² + (11 - 14)² + (15 - 14)² + (18 - 14)² + (20 - 14)² = 90
b = ∑(xi - x)(yi - y) / ∑(xi - x)² = 306.8 / 90 = 3.409
a = y - b × x = 15.8 - 3.409 × 14 = -30.7
Learn more about regression equation here
brainly.com/question/14184702
#SPJ4
The given question is incomplete, the complete question is:
Given are data for two variables, x and y. Develop an estimated regression equation for these data.
A $2 coin with a diameter of 25. 75 mm. How many turns does such a piece make if you roll it on the edge for 1. 34 m?
The coin makes approximately 16.53 turns when rolled on its edge for 1.34 m.
How to find the number of turns the coin makes?The circumference of the coin can be calculated as follows to determine the number of turns it makes:
C = πd
where C is the circumference, d is the diameter, and π is the mathematical constant pi (approximately equal to 3.14159).
So, for the given $2 coin with a diameter of 25.75 mm, the circumference is:
C = πd = 3.14159 x 25.75 mm ≈ 80.926 mm
Divide the distance traveled by the coin's circumference to determine the number of turns it makes when rolled on its edge for 1.34 meter:
Number of turns = distance traveled / circumference of the coin
Number of turns = 1.34 m / 0.080926 m
Number of turns ≈ 16.53
Therefore, the coin makes approximately 16.53 turns when rolled on its edge for 1.34 m.
know more about circumference visit :
https://brainly.com/question/28757341
#SPJ1
If the annual interest rate was 8%,
a.
How would you calculate the monthly interest rate?
The monthly interest rate is the annual interest rate divided by 12
Calculating the monthly interest rate?To calculate the monthly interest rate, we need to divide the annual interest rate by 12 (since there are 12 months in a year).
So if the annual interest rate is 8%, the monthly interest rate can be calculated as:
Monthly interest rate = Annual interest rate / 12
Monthly interest rate = 8% / 12
Monthly interest rate = 0.6667%
Therefore, the monthly interest rate would be 0.6667%.
Read more about interest at
https://brainly.com/question/24924853
#SPJ1
Choose is the following are either; likely, unlikely, impossible, certain, or as likely as not:
A. choosing the letter M from a bag that contains magnets for each letter in the alphabet.
B. choosing a consonant from a bag that contains magnets for each letter in the alphabet.
C. Drawing a red card from a deck of cards. ( I'm guessing the cards are number cards)
D. drawing a number between 2 and 20 from a deck of cards.
E. drawing the number 1 from a deck of cards
As likely as not (assuming the bag contains an equal number of magnets for each letter in the alphabet).
What is Probability?Probability is a measure of the likelihood or chance that a particular event will occur. It is expressed as a number between 0 and 1, with 0 indicating that the event is impossible and 1 indicating that the event is certain to occur.
In probability theory, the probability of an event is calculated by dividing the number of ways that the event can occur by the total number of possible outcomes. This is known as the probability formula:
probability = Number of favorable outcomes / Total number of possible outcomes
Probability is used in a wide range of fields, including statistics, finance, physics, and engineering, to model and analyze uncertain situations and make predictions.
B. Likely (assuming the bag contains an equal number of magnets for each letter in the alphabet, and that there are more consonants than vowels in the alphabet).
C. Unlikely (assuming the deck contains an equal number of red and black cards).
D. Impossible (assuming the deck contains only standard playing cards with 52 cards, including 13 cards for each of the four suits).
E. Unlikely (assuming the deck contains only standard playing cards with 52 cards, including 4 cards for each number or face value).
To learn more about probability, visit
https://brainly.com/question/30034780
#SPJ1
Simplify these expressions
5×x
6×x×y
2×x×3×y
Answer:
5x
6xy
2x3y
hope it's helpful
A radioactive substance decays exponentially. A scientist begins with 200 milligrams of a radioactive substance. After 22 hours, 100 mg of the substance remains. How many milligrams will remain after 32 hours?A radioactive substance decays exponentially. A scientist begins with 200 milligrams of a radioactive substance. After 22 hours, 100 mg of the substance remains. How many milligrams will remain after 32 hours?
76.74 milligrams will remain after 32 hours.
What is a radioactive substance?N(t) = N₀e^(-kt)
where:
N(t) is the amount of substance remaining after time t
N₀ is the initial amount of substance
k is the decay constant
To solve for the decay constant, use the information given in the problem:
100 = 200e^(-22k)
Dividing both sides by 200, we get:
0.5 = e^(-22k)
Taking the natural logarithm of both sides, we get:
ln(0.5) = -22k
Solving for k, we get:
k = ln(0.5)/(-22) = 0.0316
Use this value of k to find the amount of substance remaining after 32 hours:
N(32) = 200e^(-0.0316*32) = 76.74 mg
Therefore, approximately 76.74 milligrams of the substance will remain after 32 hours.
Learn more about radioactive decay, here:
https://brainly.com/question/1770619
#SPJ1
76.4 milligrams will remain after 32 hours.
Define the term exponential?Exponential refers to a mathematical function in which a constant base is raised to a variable exponent. The value of the function increases or decreases rapidly as the exponent increases, depending on whether the base is greater than 1 or between 0 and 1. Exponential functions are commonly used to model situations where a quantity grows or decays at a constant percentage rate over time.
What is decay?Decay is the natural process of deterioration or rotting of a substance over time. It can occur in both organic and inorganic materials and is often caused by the activity of microorganisms, exposure to oxygen or other environmental factors.
To determine the amount of radioactive substance that remains after 32 hours, we can use the formula A = A₀ ×[tex]e^{-kt}[/tex], where A is the amount remaining, A₀ is the initial amount, k is the decay constant, and t is the time elapsed.
we can use the same formula for exponential decay to find the value of k:
100 = 200 × [tex]e^{(-k*22)}[/tex]
0.5 = [tex]e^{(-k*22)}[/tex]
ln(0.5) = -k×22
k = ln(2)/(22)
Now we can use this value of k to find the amount of substance remaining after 32 hours:
N(32) = 200 [tex]e^{(-k*32)}[/tex]
N(32) = 200 [tex]e^{(-(ln(2)/(22))32)}[/tex]
N(32) ≈ 76.4 mg
Therefore, approximately 76.4 milligrams of the substance will remain after 32 hours.
Learn more about function here:
https://brainly.com/question/12431044
#SPJ1
Can someone help me asap? It’s due tomorrow. I will give brainiest if it’s correct.
A. 23
B. 61
C. 37
D. 14
Answer: the answer is A. 14.
Step-by-step explanation: In each trial of the reenactment, Scott chooses one card from the stack and records its digit. Based on the given data, a digit of or 1 speaks to a objective scored, and a digit of 2 through 9 speaks to a missed endeavor.
Out of the 5 endeavors per amusement, on the off chance that Scott scores precisely 2 objectives, it implies he missed 3 endeavors. Subsequently, the likelihood of this occasion can be calculated as:
P(exactly 2 objectives) = (0.2)²(0.8)³ = 0.008192
This likelihood can be utilized to discover the anticipated number of diversions in which Scott scores precisely 2 objectives, by duplicating it by the overall number of diversions reenacted:
Anticipated number of recreations = P(exactly 2 objectives) × Add up to number of recreations = 0.008192 × 84 ≈ 0.68
Adjusting to the closest entire number, we get that Scott is anticipated to score precisely 2 objectives in 1 diversion out of the 84 recreated diversions.
the mean number of travel days per year for salespeople employed by three hardware distributors needs to be estimated with a 0.90 degree of confidence. for a small pilot study, the mean was 150 days and the standard deviation was 16 days. if the population mean is estimated within two days, how many salespeople should be sampled
Estimate the mean number of travel days per year for salespeople employed by three hardware distributors with a 0.90 degree of confidence and an error margin of 2 days, a sample size of at least 179 salespeople should be selected.
The sample size needed to estimate the population mean with a 0.90 degree of confidence:
[tex]n = (Z\times\sigma / E)^2[/tex]
where:
Z = the Z-score for the desired level of confidence (0.90 corresponds to a Z-score of 1.645)
σ = the population standard deviation (unknown)
E = the maximum error of the estimate, which is given as 2 days
We can estimate the population standard deviation using the sample standard deviation from the pilot study, which is given as 16 days.
Therefore, plugging in the values, we get:
[tex]n = (1.645 \times 16 / 2)^2 = 178.26[/tex]
Rounding up to the nearest whole number, we get a minimum sample size of 179 salespeople.
For similar questions on Mean
https://brainly.com/question/20118982
#SPJ11
how many non-empty subsets s of {1, 2, 3, . . . , 8} are there such that the product of the elements of s is at most 200?
The total number of non-empty subsets s of[tex]{1, 2, 3, . . . , 8}[/tex] such that the product of the elements of s is at most 200 is:
[tex]255 - (127 + 63 + 31) + 2 = 36.[/tex]
So, there are 36 such subsets.
Number of non-empty subsets s of[tex]{1, 2, 3, . . . , 8}[/tex] such that the product of the elements of s is at most 200, we can use a method called inclusion-exclusion principle.
First, we need to count the total number of non-empty subsets of the given set.
Since each element can either be included or excluded, there are [tex]2^8 - 1 = 255[/tex] non-empty subsets.
Next, we need to count the number of subsets whose product is greater than 200.
We can start by considering the subsets that contain 8, since 8 is the largest element in the set.
There are only two such subsets: {8} and {1, 8}.
Both of these subsets have a product greater than 200. Similarly, we can consider subsets that contain 7, and so on. We find that there are[tex]2^7 - 1 = 127[/tex] subsets that contain 7, and each of these subsets has a product greater than 200. Similarly, there are [tex]2^6 - 1 = 63[/tex] subsets that contain 6, and each of these subsets has a product greater than 200.
Double-counted the subsets that contain both 6 and 7, as well as those that contain both 6 and 8, and those that contain both 7 and 8.
Subtract the number of subsets that contain both 6 and 7, both 6 and 8, and both 7 and 8.
There are [tex]2^5 - 1 = 31[/tex] subsets that contain both 6 and 7, and each of these subsets has a product greater than 200.
Similarly, there are[tex]2^5 - 1 = 31[/tex] subsets that contain both 6 and 8, and each of these subsets has a product greater than 200.
Finally, there are [tex]2^5 - 1 = 31[/tex] subsets that contain both 7 and 8, and each of these subsets has a product greater than 200.
However, we have subtracted too much, since we have now excluded subsets that contain all three of 6, 7, and 8. There are only two such subsets: {6, 7, 8} and {1, 6, 7, 8}. Both of these subsets have a product greater than 200.
For similar questions on subsets
https://brainly.com/question/28705656
#SPJ11
To find the number of non-empty subsets s of {1, 2, 3, . . . , 8} such that the product of the elements of s is at most 200, we can use the concept of power set and combinatorics. By analyzing the pattern, we can determine that there are a total of 120 subsets whose product is at most 200.
Explanation:To find the number of non-empty subsets s of the set {1, 2, 3, . . . , 8} such that the product of the elements of s is at most 200, we can use the concept of power set and combinatorics. The power set of a set is the set of all its subsets. We know that the number of elements in the power set of a set with n elements is 2n. In this case, we have 8 elements in the set, so the power set will have 28 = 256 subsets. However, we need to find the number of subsets with a product at most 200.
We can analyze the products of all subsets to determine the count.
By analyzing the pattern, we can determine that there are a total of 120 subsets whose product is at most 200. This can be calculated by summing the total number of subsets for each number of elements (1-element subsets + 2-element subsets + 3-element subsets + ... + 8-element subsets).
https://brainly.com/question/33319261
#SPJ12
Solving systems by eliminations; finding the coeficients
please write all the problems down, 10 points for each problem, and Brainliest
Therefore, the solution is equation (x, y) = (52/7, -10/7).
To solve the system of equations by elimination, we need to eliminate one of the variables. We can do this by multiplying one or both equations by a constant to create opposite coefficients for one of the variables. Then, we can add or subtract the equations to eliminate that variable and solve for the other variable. Here's how to solve the given system of equations:
Multiply the first equation by 3 and the second equation by 2 to create opposite coefficients for y:
[tex]3(x - 2y = 12) - > 3x - 6y = 36[/tex]
[tex]2(-5x + 3y = -44) - > -10x + 6y = -88[/tex]
Add the equations to eliminate y:
[tex]3x - 6y + (-10x + 6y) = 36 + (-88)[/tex]
[tex]-7x = -52[/tex]
Solve for x by dividing both sides by -7:
[tex]x = 52/7[/tex]
Substitute x = 52/7 into either equation to solve for y. Using the first equation:
[tex]52/7 - 2y = 12[/tex]
[tex]-2y = 12 - 52/7[/tex]
[tex]-2y = 72/7 - 52/7[/tex]
[tex]-2y = 20/7[/tex]
[tex]y = -(10/7)[/tex]
Check the solution by substituting the values of x and y into both equations:
[tex]x - 2y = 12 - > 52/7 - 2(-10/7) = 12 (true)[/tex]
[tex]-5x + 3y = -44 - > -5(52/7) + 3(-10/7) = -44 (true)[/tex]
Therefore, the solution is (x, y) = (52/7, -10/7).
To know more about equation visit:
https://brainly.com/question/10413253
#SPJ1
the department of health plans to test the lead level in a city park. since a high lead level is harmful to children, the park will be closed if the lead level exceeds the allowed limit. the department randomly selects locations in the park, gets soil samples from those locations, and tests the samples for their lead levels. which of the decisions would result from the type i error? (h0: lead levels are ok; ha: lead levels exceed limit) a closing the park when the lead levels are in excess of the allowed limit. b keeping the park open when the lead levels are within the allowed limit. c closing the park when the lead levels are within the allowed limit. d keeping the park open when the lead levels are in excess of the allowed limit. e closing the park because of the increased noise level in the neighborhood.
True.
The decision that would result from a Type I error is:
Closing the park when the lead levels are within the allowed limit. C
In this scenario, the null hypothesis is that the lead levels are okay, and the alternative hypothesis (Ha) is that lead levels exceed the limit.
The decisions that would result from the Type I error are:
Closing the park when the lead levels are in excess of the allowed limit.
This decision would be a false positive, as the park would be closed even though the lead levels are actually within the allowed limit.
This is a Type I error.
Closing the park when the lead levels are within the allowed limit.
This decision would be a correct decision as the park should be closed if the lead levels are not within the allowed limit.
This is not a Type I error.
Keeping the park open when the lead levels are in excess of the allowed limit.
This decision would be a false negative, as the park would remain open even though the lead levels are actually above the allowed limit.
This is a Type II error.
Closing the park because of the increased noise level in the neighborhood.
This decision is not related to the hypothesis testing for lead levels in the park, and therefore, it is not a Type I error.
For similar questions on Error
https://brainly.com/question/28771966
#SPJ11
Dylan bought 3 identical shirts online for a total cost of $71.83 including a flat rate of $7.99 for shipping. Complete an equation to find the cost of each shirt, s, using the numbers below.
Answer:
$21.28
Step-by-step explanation:
We Know
Dylan bought 3 identical shirts online for a total cost of $71.83
$7.99 for shipping
We have the equation:
71.83 = 3s + 7.99
63.84 = 3s
s = $21.28
So, each shirt cost $21.28
Evaluation researchers encounter more logistical problems than other researchers because evaluation researchA. occurs in the context of real life.B. takes longer.C. is more costly.D. has more measurement problems.E. examines more variables.
The answer is A. Evaluation researchers encounter more logistical problems than other researchers because evaluation research occurs in the context of real life.
Evaluation research often takes place in real-world settings, which can present logistical challenges such as accessing participants, coordinating schedules, and dealing with unexpected events. Additionally, evaluation research often involves multiple stakeholders and requires collaboration and communication among various groups, which can further complicate logistical issues. While evaluation research may also involve longer timelines, higher costs, measurement problems, and examination of multiple variables, these factors do not necessarily contribute to greater logistical challenges.
This means that evaluation researchers have to navigate complex, real-world situations, adapt to unforeseen challenges, and work with various stakeholders, making the research process more logistically challenging compared to controlled laboratory settings or theoretical research.
to learn more about theoretical research. click here:
https://brainly.com/question/29220441
#SPJ11
Evaluation research is a type of research that focuses on assessing the effectiveness, efficiency, and impact of programs, policies, or interventions in real-life settings.
The correct answer is A. occurs in the context of real life.
This often involves evaluating the outcomes and impacts of interventions in complex and dynamic environments, such as organizations, communities, or systems. As a result, evaluation researchers may encounter more logistical problems compared to other types of researchers because they need to navigate real-life contexts, deal with multiple stakeholders, collect data from diverse sources, and address issues such as ethics, confidentiality, and validity in the evaluation process. Logistical problems may include challenges related to data collection, measurement, sample selection, data quality, and managing time and resources.
Learn more about “ Logistical problems “ visit here;
https://brainly.com/question/31087596
#SPJ4
the cylinder with the height of 4 M has a volume of 2,827.43 cubic meters find the length of the diameter
[tex]\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=2827.43\\ h=4 \end{cases}\implies 2827.43=\pi r^2(4)\implies \cfrac{2827.43}{4\pi }=r^2 \\\\\\ \sqrt{\cfrac{2827.43}{4\pi }}=r\hspace{5em}\stackrel{\textit{twice that is the \underline{diameter}}}{2\sqrt{\cfrac{2827.43}{4\pi }}} ~~ \approx ~~ \text{\LARGE 30}[/tex]
What are the amplitude, period, and phase shift of the given function ft=-1/2(4t-2pi)
Answer:
The amplitude is 1/2, the period is 2π/4 = π/2, and the phase shift is π/2.
Step-by-step explanation:
The given function is:
f(t) = -1/2(4t - 2π)
We can rewrite this function in the form:
f(t) = A cos(B(t - C)) + D
where A is the amplitude, B is the period, C is the phase shift, and D is the vertical shift.
Comparing this with the given function, we can see that:
A = 1/2
B = 4
C = π/2
D = 0
Therefore, the amplitude is 1/2, the period is 2π/4 = π/2, and the phase shift is π/2.
Note that the negative sign in front of the function does not affect the amplitude, period, or phase shift. It simply reflects the function across the x-axis.
Carla looks from a height of 1515 yards at the top of her apartment building. She lines up the top of a flagpole with the curb of a street 2020 yards away. If the flagpole is 1212 yards from the apartment building, how tall is the flagpole?
Answer: 4545 yards
Step-by-step explanation:
We can use similar triangles to solve this problem. Let's represent the height of the flagpole with the variable "x".
Using the triangle formed by Carla's line of sight, the height of the apartment building, and the top of the flagpole, we can set up the following proportion:
x / (x + 1515) = 15 / 20
Simplifying this proportion, we get:
4x = 3(x + 1515)
4x = 3x + 4545
x = 4545
Therefore, the height of the flagpole is 4545 yards.
Point A = (5,4). If you rotated A 90 degrees about the point (2,-1), what would be the coordinates of A'?
Point A = (5,4). If you rotated A 90 degrees about the point (2,-1), the coordinates of A' is (-1,2).
Describe Rotation?Rotation is the process of rotating an object or a point around a fixed point or axis. In mathematics, rotation refers to a transformation that preserves the size and shape of an object while changing its orientation. It is a basic geometric transformation that is used in various fields, including mathematics, physics, engineering, and computer graphics.
In a two-dimensional space, a rotation is typically described by an angle of rotation and a fixed point, which is known as the center of rotation. The angle of rotation represents the amount by which the object is rotated, while the center of rotation is the point around which the object is rotated. In a three-dimensional space, a rotation is described by an axis of rotation and an angle of rotation.
To rotate point A 90 degrees counterclockwise about the point (2,-1), we can use the following formula:
A' = (x', y') = (a + (x - a) cosθ - (y - b) sinθ, b + (x - a) sinθ + (y - b) cosθ)
where (a,b) is the center of rotation and θ is the angle of rotation (90 degrees in this case).
Substituting the given values, we get:
a = 2, b = -1, x = 5, y = 4, θ = 90 degrees
x' = 2 + (5 - 2) cos(90) - (4 + 1) sin(90) = 2 - 3 = -1
y' = -1 + (5 - 2) sin(90) + (4 + 1) cos(90) = -1 + 3 = 2
Therefore, the coordinates of A' are (-1, 2).
To know more about coordinates visit:
https://brainly.com/question/18596983
#SPJ9
a bank took a sample of 100 of its delinquent credit card accounts and found that the mean owed on these accounts was $2,130. it is known that the standard deviation for all delinquent credit card accounts at this bank is $578. (hint: first write out the values for n, , and ) 1. what is the margin of error for the sample mean at a 95% confidence level? hint: look at the notes given above to see how the margin of error is computed. 2. will the margin of error increase/decrease if 200 delinquent credit cards were sampled instead of 100? why? hint: look at the notes given above to see how the margin of error is computed and how the sample size n impacts its value.
Sampled 200 delinquent credit card accounts instead of 100, the margin of error would decrease.
Sampled 200 delinquent credit card accounts, the margin of error for the sample mean at a 95% confidence level would be $80.164.
Smaller than the margin of error we found earlier for a sample size of 100.
The margin of error for the sample means at a 95% confidence level, we need to use the formula:
[tex]Margin of error = z\times (standard deviation / square root of sample size)[/tex]
[tex]z\times[/tex] is the z-score for the 95% confidence level, which is 1.96.
So, plugging in the given values, we get:
[tex]Margin of error = 1.96 \times (578 / \sqrt 100)[/tex]
[tex]Margin of error = 1.96 \times 57.8[/tex]
Margin of error = 113.008
Therefore, the margin of error for the sample mean at a 95% confidence level is $113.008.
Repeated samples of 100 delinquent credit card accounts and computed the sample mean each time, we would expect the true population mean to be within $113.008 of our sample mean about 95% of the time.
The margin of error is inversely proportional to the square root of the sample size. So, as the sample size increases, the margin of error decreases.
To see this, let's plug in the new sample size into the margin of error formula:
[tex]Margin of error = 1.96 \times (578 / \sqrt 200)[/tex]
[tex]Margin of error = 1.96 \times 40.9[/tex]
Margin of error = 80.164
For similar questions on Margin
https://brainly.com/question/30404882
#SPJ11