Answer:
Step-by-step explanation:
The null hypothesis is an smoothies l that states that there is no difference or association between populations while the alternative hypothesis always aims to prove otherwise.
In this case study, the null hypothesis is that loans from bank 1 are more affordable than loans from bank 2. Bank 1 average loan >= bank 2 average loan.
Alternative hypothesis: loans from bank 1 are less affordable than loans from bank 2
Bank 1 average loan < bank 2 average loan.
A car is traveling on Michigan Street towards Ward Street. The car planes to turn right into Ward Street. what is the angle measure of the turn.
Pls help ASAP
Let f(x) = −4(0.25)^x. The graph of g(x) = f(x)+k is shown below. Identify the value of k. k=
Chloe has a budget of $800 for costumes for the 18 members of her musical theater group. What is the maximum she can spend for each costume?
Answer:
$42.10
Step-by-step explanation:
Assuming that she did not yet buy a costume for herself, 800 dollars divided among 18 people plus herself is equal to $42.10 maximum per person.
Answer:
44.44
Step-by-step explanation:
800 didvided by 18.
6th grade math help me please :))
Answer:
The answer is option D.
3u + 1 + 7y
All the terms here are different and cannot be combined
Hope this helps you
pls help me help me help me
Answer:
C. -3/2
Step-by-step explanation:
Perpendicular lines have negative reciprocal slopes.
We know that line m is perpendicular to line l.
Line l has a slope of 2/3. To find the slope of line m, find the negative reciprocal of 2/3.
Negative: switch the sign
2/3 --> -2/3
Reciprocal: switch the numerator (top number) and denominator (bottom number)
-2/3 --> -3/2
Line m has a slope of -3/2 and C is correct.
Answer:
C
Step-by-step explanation:
perpendicular lines have negative reciprocal slope
The area of this parallelogram is 120 ft2 find the value of h
Answer: 6
Step-by-step explanation:
A=bh plus 120 for A and 20 for B
120=20b
/20 divide by 20 each side
H=6
The oblique pyramid has a square base. What is the volume of the pyramid? 2.5 cm3 5 cm3 6 cm3 7.5 cm3
Take a look at the attachment below. It fills in for the attachment that wasn't provided in the question -
An oblique pyramid is one that has a top not aligned with the base. Due to this, the height of the pyramid connects with two vertices at its ends to form a right angle present outside the pyramid, knowing that it is always perpendicular to the base. There is no difference between the calculations of the volume of an oblique pyramid and a pyramid however -
[tex]\\Base Area = 2 cm * 2 cm = 4 cm^2,\\Volume ( Pyramid ) = 1 / 3 * ( Base Area ) * ( Height ),\\Volume = 1 / 3 * ( 4 ) * ( 3.75 ),\\-------------------------\\Volume = 5 cm^3[/tex]
And thus, you're solution is 5 cm^3, or in other words option b!
Answer:
The answer is B
Step-by-step explanation:
In a random sample, 10 students were asked to compute the distance they travel one way to school to the nearest tenth of a mile. Compute the sample mean, standard mean, standard deviation and variance of the data:1.1 5.2 3.6 5.0 4.8 1.8 2.2 5.2 1.5 0.8 Mean = ???Variance = ???Standard Deviation= ???
Answer:
Mean = 3.12, Variance = 3.324, Standard deviation = 1.8232
Step-by-step explanation:
Total number of students = 10 students.
Given data, 1.1, 5.2, 3.6, 5.0, 4.8, 1.8, 2.2, 5.2, 1.5, 0.8
To find the mean, at first we have to take the sum of all given data and then divide with the number of students.
Let the data is X, = 1.1, + 5.2, + 3.6, + 5.0, + 4.8, + 1.8, + 2.2, + 5.2, + 1.5, + 0.8 = 31.2
Mean = 31.2 / 10 = 3.12
[tex]\text{Standard deviation, S} = \sqrt{\frac{\sum x^{2} - \left [ (\sum x)^{2}/n \right ]}{n-1}} \\S = 1.8232 \\\rm The \ Variance = S^{2} = 3.324[/tex]
c. Find the price of 16 shirts if 5 costs GH¢80
Answer:
16 shirts = GH¢256
Step-by-step explanation:
If 5 shirts cost GH¢80
Let's determine the price of 16 shirts by cross multiplying the values
This method of evaluating answers is one of the essential methods .
It's just Making sure that the values within each side of the wall to symbol crosses each other.
But one shirt = GH¢80/5
one shirt = GH¢16
So
5 shirts= GH¢80
16 shirts = (16 shirts * GH¢80)/5 shirts
16 shirts = GH¢1280/5
16 shirts = GGH256
help with this I don't know how to solve please
Answer:
The right answer is the first one, 6,245.
Step-by-step explanation:
[tex]EG^2=DG*GF \\ EG^2 = ab\\ EG^2 = 3*13\\ EG^2=39\\ EG=\sqrt{39}[/tex]
[tex]\sqrt{39} = 6,2449... = 6,245[/tex]
Find (f - g) (4)
f(x) = 4x - 3
g(x) = x^3+2x
a) 59
b) 85
c)-59
d) 285
Simplify completely, help me:(
Answer:
a.
[tex] \frac{3a}{7 {b}^{2} } [/tex]
b.
[tex] \frac{2}{x} [/tex]
Find the sum. A. 4x2 – x – 5 B. 10x2 + 7x – 5 C. –10x2 + 7x + 11 D. 4x2 + x – 11
Answer:
A
Step-by-step explanation:
7x² - 4x - 8 - [ -3x² - 3x - 3]
In subtraction, flip the sign of all terms in the minuend
7x² - 4x - 8
3x² + 3x + 3
4x² - x - 5
Find all solutions to the equation.
7 sin2x - 14 sin x + 2 = -5
If yall can help me for Pre-Calc, that would be great.
-Thanks.
If the equation is
[tex]7\sin^2x-14\sin x+2=-5[/tex]
then rewrite the equation as
[tex]7\sin^2x-14\sin x+7=0[/tex]
Divide boths sides by 7:
[tex]\sin^2x-2\sin x+1=0[/tex]
Since [tex]x^2-2x+1=(x-1)^2[/tex], we can factorize this as
[tex](\sin x-1)^2=0[/tex]
Now solve for x :
[tex]\sin x-1=0[/tex]
[tex]\sin x=1[/tex]
[tex]\implies\boxed{x=\dfrac\pi2+2n\pi}[/tex]
where n is any integer.
If you meant sin(2x) instead, I'm not sure there's a simple way to get a solution...
The half-life of a certain substance is 5.9 days. How many days will it take for 30g of the substance to decay to 12g?
Answer:
7.8 DAYS
Step-by-step explanation:
The time taken for the substance to reach 12g is 7.8 days
The half-life of a substance is the time taken for it to reach half it's initial value.
I will list some formula and concepts which are of importance to this topic but not necessarily this question.
In solving this problem, we may need the formula to calculate half life of a substance which is given as.
[tex]T_\frac{1}{2}= In2/[/tex]λ
where λ = Disintegration constant.
Disintegration ConstantBut to find this constant, we need to use another formula
[tex]N=N_oe^-yt\\\frac{N}{N_o}= e^-yt\\[/tex]
where the values are
N = Mass of sample at time (t)No = Initial mass of sampleλ = Disintegration constantt = time Time TakenHowever,
[tex]n=\frac{Log_e\frac{No}{N} }{Log_e2}[/tex]
Everything remains the same as above but only a slight change now
n = number of half livesSubstituting the values,
[tex]n = \frac{Log_e(\frac{30}{12}) }{log_e2}\\n = 1.32[/tex]
Since n stands for the half life passed within time (t)
The time taken would be
[tex]t = 1.32 * 5.9\\t =7.8[/tex]
The time taken for the substance to reach 12g is 7.8 days.
Learn more about half-life here;
https://brainly.com/question/2320811
The weights of steers in a herd are distributed normally. The standard deviation is 300lbs and the mean steer weight is 1100lbs. Find the probability that the weight of a randomly selected steer is between 920 and 1730lbs round to four decimal places.
Answer:
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(920≤ x≤1730) = 0.7078
Step-by-step explanation:
Step(i):-
Given mean of the Population = 1100 lbs
Standard deviation of the Population = 300 lbs
Let 'X' be the random variable in Normal distribution
Let x₁ = 920
[tex]Z = \frac{x-mean}{S.D} = \frac{920-1100}{300} = - 0.6[/tex]
Let x₂ = 1730
[tex]Z = \frac{x-mean}{S.D} = \frac{1730-1100}{300} = 2.1[/tex]
Step(ii)
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(x₁≤ x≤x₂) = P(Z₁≤ Z≤ Z₂)
= P(-0.6 ≤Z≤2.1)
= P(Z≤2.1) - P(Z≤-0.6)
= 0.5 + A(2.1) - (0.5 - A(-0.6)
= A(2.1) +A(0.6) (∵A(-0.6) = A(0.6)
= 0.4821 + 0.2257
= 0.7078
Conclusion:-
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(920≤ x≤1730) = 0.7078
Answer:
0.7975
Step-by-step explanation:
Which of the following is a solution of x2 + 5x = −2? (2 points) 5 plus or minus the square root of 33 divided by two. 5 plus or minus the square root of 17 divided by two. negative 5 plus or minus the square root of 33 divided by two. negative 5 plus or minus the square root of 17 divided by two.
Answer:
Solutions to the equation are [tex]=\frac{-5+/-\sqrt{17} }{2}[/tex]
which agrees with the last option listed among the possible answers
Step-by-step explanation:
We solve this quadratic equation via the quadratic formula:
[tex]x^2+5x=-2\\x^2+5x+2=0\\ \\x=\frac{-5+/-\sqrt{25-4(1)(2)} }{2\,(1)} \\x=\frac{-5+/-\sqrt{17} }{2}[/tex]
Scientists want to test a new pair of running shoes. A speed test is performed with two separate groups of participants. The treatment group will wear the new pair of running shoes, while the control group will not. It is believed that age and height may affect speed. Which of the following would be most effective in controlling the confounding variables, such as age and height, in this study?
a. A completely randomized design experiment
b. A longitudinal observational study
c. A retrospective observational study
d. A matched-pair design experiment
Answer:
a. A completely randomized design experiment
Step-by-step Explanation:
An experiment that is completely randomised is practically an effective way of controlling and reducing the influence of the confounding variables in a research study, especially when you have a sample that is large enough.
Randomisation will ensure that both the group that will wear the new shoe (treatment group) and the group that will not wear the new shoe (control group) will have averagely the same values for age and height. This will eliminate the chances of these confounding variables of correlating with the independent variable in the study, as there would be no difference, in terms of characteristics, between both groups.
pleasssssseeeeeeeeeeeeeeeeeeee
━━━━━━━☆☆━━━━━━━
▹ Answer
0.5 = 1/2 and the rectangle with 3 cubes shaded in
0.6 = 60/100 and circle with three parts shaded in
0.8 = Rectangle with 8 cubes shaded and 4/5
▹ Step-by-Step Explanation
You can convert the fractions into decimals, and count the shaded parts for the shaded images.
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
The graph of f(x) = 4x3 – 13x2 + 9x + 2 is shown below. On a coordinate plane, a function is shown. The function starts from the bottom of quadrant 3 and goes up through the x-axis at (0, negative 0.25) and then through the y-axis at (0, 2). It then starts to curve down at (0.5, 4) until it reaches (1.75, negative 0.5). It then curves up and crosses the x-axis at (2, 0) and goes up approaching x = 3. How many roots of f(x) are rational numbers? 0 1 2 3
Answer:
3
Step-by-step explanation:
f(x) = 4x^3 – 13x^2 + 9x + 2
This looks complicated but all we need to find are the Roots
We are looking for when y=0
So given each part of the information, we can label how many times it happens
The function starts from the bottom of quadrant 3: Starts lower left
and goes up through the x-axis at (0, negative 0.25) : This is ONE ROOT
and then through the y-axis at (0, 2). : It's now on the 2nd quartile
It then starts to curve down at (0.5, 4): It's moving towards y=0
until it reaches (1.75, negative 0.5).: It has now passed y=o and there are TWO ROOTS
It then curves up and crosses the x-axis at (2, 0) and goes up approaching x = 3: It has passed y=0 again, so there are THREE ROOTS
This polynomial function has 3 ROOTS
Answer:
The first for the graph is crosses and then it is touches for the second.
Step-by-step explanation:
Explain how you found the volume of the rectangular prism with a hole through it. Explain how you found the volume of the rectangular prism with a hole through it.
Answer:
Step-by-step explanation:
We khow that the volume of a prism the product of the base and the height
We have a hole inside it so we must khow what is the geometrical form of this whole to calculate its volum then substract from the total volume
Sample Answer:
I found the volume of the large rectangular prism. Then I found the volume of the small rectangular prism. I subtracted the volume of the smaller prism from the volume of the larger prism.
Find the length of a leg of a right triangle (in inches) if the other leg measures 9 in. and the hypotenuse measures 19 in. Round to the nearest thousandth. __________________ in
Answer:
a = 16.733
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
a^2 + 9^2 = 19^2
a^2 = 19^2 - 9^2
a^2 = 361-81
a^2 =280
Taking the square root of each side
sqrt(a^2) = sqrt(280)
a = 16.73320053
Rounding to the nearest thousandth
a = 16.733
Consider the following set of sample data: (34, 32, 34, 32, 40, 37, 31, 31, 29, 27). We're interested in using this data to test a null hypothesis about the population mean. Which of the following statements are true?
I. Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean.
II. Because they're robust, t procedures are justified in this case.
III. We'd use zprocedures here, since we're interested in the population mean.
a. I only
b. II only
c. III only
d. I and II only
e. I and III only
Answer:
Option I and II
Step-by-step explanation:
I. Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean.
II. Because they're robust, t procedures are justified in this case.
The t procedures are utilized because they are used as a hypothesis testing tool, which allows for testing of an hypothesis applicable to a population where in this case we are testing the null hypothesis about the population mean.
A satellite dish has cross-sections shaped like parabolas. The receiver is located 13 inches from the base along the axis of symmetry. If the satellite dish is 26 inches across at the opening, what is its depth in inches? (Round your answer to the nearest tenth if necessary.)
Answer:
Depth = 3.3 inches
Step-by-step explanation:
Given that the shape of the satellite looks like a parabola
The equation of parabola is given as follows
[tex]x^2=4\times a\times y[/tex]
Where
a= 13
Therefore
[tex]x^2=4\times 13\times y[/tex]
[tex]x^2=52\times y[/tex]
Lets take (13 , y) is a
Now by putting the values in the above equation we get
[tex]13^2=52\times y[/tex]
[tex]y=\dfrac{13^2}{52}=3.25[/tex]
y=3.25 in
Therefore the depth of the satellite at the nearest integer will be 3.3 inches.
Depth = 3.3 inches
. Jayvon bakes two small circular cakes that are 8 inches across their widest point and 3 inches high. He removes the cake from the pans to frost them. Jayvon would like a consistent quarter-inch deep layer of frosting. How many cubic inches of frosting does he need for the cakes if he wants to frost only the top and sides of each cake
Answer:
20π in³ or 62.832 in³
Step-by-step explanation:
The surface area for each cake is given by:
[tex]S=\pi r^2+2\pi rh[/tex]
Where 'r' is the radius of each cake (4 inches), and 'h' is the height of each cake (3 inches). Since there are two cakes, the total surface area is:
[tex]A=2*(\pi r^2+2\pi rh)\\A=2*(\pi 4^2+2\pi*4*3)\\A=80\pi\ in^2[/tex]
If Jayvon wants a consistent quarter-inch deep layer of frosting covering the surface of the cakes, the volume of frosting required is:
[tex]V=80\pi *0.25\\V=20\pi\ in^3 = 62.832\ in^3[/tex]
He needs 20π in³ or 62.832 in³ of frosting.
the polynomial p(x)=x^3-7x-6 has a known factor of (x+1) rewrite p(x) as a product of linear factors p(x)=
Answer:(x+1)(x+2)(x-3)
Because..
Which equation has no solution?
4(x + 3) + 2x = 6(x + 2)
5 + 2(3 + 2x) = x + 3(x + 1)
g9x + 3) + x = 4(x + 3) + 3
4 + 6(2 + x) = 2(3x + 8)
Answer:
B. 5 + 2(3 + 2x) = x + 3(x + 1)
Step-by-step explanation:
5 + 6 + 4x = x + 3x + 3
11 + 4x = 4x + 3
4x - 4x = 3 - 11
0 = - 8
There are no solutions.
Answer:
A
4(x+3)+2x=6(x+2)
4x+12+2x=6x+12
6x+12=6x+12
6x-6x=12-12
0=0
How does a perpendicular bisector divide a triangle
graph the linear equation. Find three points that solve the equation, then plot on the graph. -3y=-x-6
Answer:
hope u get it.......!!
Which equation represents the line passing through points A and C on the graph below? On a coordinate plane, point A is at (2, 3), point B is at (negative 2, 1), point C is at (negative 4, negative 3), and point D is at (4, negative 5). y= negative x minus 1 y = negative x + 1 y = x minus 1 y = x + 1
The equation that represents the line that passes through the points A and C is y = x + 1
What is a linear equation?A linear equation is an equation that has a constant rate or slope, and is represented by a straight line
The points are given as:
(x,y) = (2,3) and (-4,-3)
Calculate the slope, m using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
So, we have:
[tex]m = \frac{-3 -3}{-4 - 2}[/tex]
Evaluate
m = 1
The equation is then calculated as:
y = m *(x - x1) + y1
So, we have:
y = 1 * (x - 2) + 3
Evaluate
y = x - 2 + 3
This gives
y = x + 1
Hence, the equation that represents the line that passes through the points A and C is y = x + 1
Read more about linear equations at:
https://brainly.com/question/14323743
#SPJ2
Answer:
y = x + 1
Step-by-step explanation:
Edge2020