Answer:
absorbent p = S / c
reflective p = 2S/c
Explanation:
The moment of radiation on a surface is
p = U / c
where U is the energy and c is the speed of light.
In the case of a fully absorbent object, the energy is completely absorbed. The energy carried by the light is given by the Poynting vector.
p = S / c
in the case of a completely reflective surface the energy must be absorbed and remitted, therefore there is a 2-fold change in the process
p = 2S/c
What is the wave length if the distance from the central bright region to the sixth dark fringe is 1.9 cm . Answer in units of nm.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The wavelength is [tex]\lambda = 622 nm[/tex]
Explanation:
From the question we are told that
The distance of the slit to the screen is [tex]D = 5 \ m[/tex]
The order of the fringe is m = 6
The distance between the slit is [tex]d = 0.9 \ mm = 0.9 *10^{-3} \ m[/tex]
The fringe distance is [tex]Y = 1.9 \ cm = 0.019 \ m[/tex]
Generally the for a dark fringe the fringe distance is mathematically represented as
[tex]Y = \frac{[2m - 1 ] * \lambda * D }{2d}[/tex]
=> [tex]\lambda = \frac{Y * 2 * d }{[2*m - 1] * D}[/tex]
substituting values
=> [tex]\lambda = \frac{0.019 * 2 * 0.9*10^{-3} }{[2*6 - 1] * 5}[/tex]
=> [tex]\lambda = 6.22 *10^{-7} \ m[/tex]
[tex]\lambda = 622 nm[/tex]
gravity can be described as..?
A. an magnetic force found in nature
B.the force that moves electrical charges
C.the force that repels object with like chargers
D.the force of attraction between two objects
Answer:
D
Explanation:
Gravity is the force of attraction between two objects.
Each object creates a gravitational field in wich every other object is affected by it.
A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium:__________.
1. the electric fields at the surfaces of the two spheres are equal.
2. the amount of charge on each sphere is q/2.
3. both spheres are at the same potential. the potentials are in the ratio V2/V1 = q2/q1.
4. the potentials are in the ratio V2/V1 = r2/r1 .
Answer:
Option 3 = both spheres are at the same potential.
Explanation:
So, let us complete or fill the missing gap in the question above;
" A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium BOTH SPHERES ARE AT THE SAME POTENTIAL"
The reason both spheres are at the same potential after the charges on the spheres are in equilibrium is given below:
=> So, if we take a look at the Question again, the kind of connection described in the question above (that is a charged sphere, say X is connected another charged sphere, say Y by a conducting wire) will eventually cause the movement of charges(which initially are not of the same potential) from X to Y and from Y to X and this will continue until both spheres are at the same potential.
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
A computer has a mass of 3 kg. What is the weight of the computer?
A. 288 N.
B. 77.2 N
C. 3N
D. 29.4 N
Answer:
29.4 NOption D is the correct option.
Explanation:
Given,
Mass ( m ) = 3 kg
Acceleration due to gravity ( g ) = 9.8 m/s²
Weight ( w ) = ?
Now, let's find the weight :
[tex]w \: = \: m \times g[/tex]
plug the values
[tex] = 3 \times 9.8[/tex]
Multiply the numbers
[tex] = 29.4 \: [/tex] Newton
Hope this helps!!
best regards!!
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
A 285-kg object and a 585-kg object are separated by 4.30 m. (a) Find the magnitude of the net gravitational force exerted by these objects on a 42.0-kg object placed midway between them.
Answer:
The magnitude of the net gravitational force exerted by these objects on a 42.0-kg object is 1.818 x 10⁻⁷ N
Explanation:
Given;
first object with mass, m₁ = 285 kg
second object with mass, m₂ = 585 kg
distance between the two objects, r = 4.3 m
The midpoint between the two objects = r/₂ = 4.3 /2 = 2.15 m
Gravitational force between the first object and the 42 kg object;
[tex]F = \frac{GMm}{r^2}[/tex]
where;
G = 6.67 x 10⁻¹¹ Nm²kg⁻²
[tex]F = \frac{6.67*10^{-11} *285*42}{2.15^2} \\\\F = 1.727*10^{-7} \ N[/tex]
Gravitational force between the second object and the 42 kg object
[tex]F = \frac{6.67*10^{-11} *585*42}{2.15^2} \\\\F = 3.545*10^{-7} \ N[/tex]
Magnitude of net gravitational force exerted on 42kg object;
F = 3.545x 10⁻⁷ N - 1.727 x 10⁻⁷ N
F = 1.818 x 10⁻⁷ N
Therefore, the magnitude of the net gravitational force exerted by these objects on a 42.0-kg object is 1.818 x 10⁻⁷ N
Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.
Answer:
The 1/2 inch barrel will burst at the same height of 20 ft
Explanation:
The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.
From the equation of fluid pressure,
P = ρgh
where
P is the pressure at the bottom of the fluid due to its height
ρ is the density of the fluid in question
h is the height to which the water stand.
You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.
We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.
That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.
NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.
Which has more mass electron or ion?
A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70
Answer:
The induced current is [tex]I = 6.25*10^{-4} \ A[/tex]
Explanation:
From the question we are told that
The number of turns is [tex]N = 1[/tex]
The cross-sectional area is [tex]A = 8.20 cm^2 = 8.20 * 10^{-4} \ m^2[/tex]
The initial magnetic field is [tex]B_i = 0.500 \ T[/tex]
The magnetic field at time = 1.02 s is [tex]B_t = 2.60 \ T[/tex]
The resistance is [tex]R = 2.70\ \Omega[/tex]
The induced emf is mathematically represented as
[tex]\epsilon = - N * \frac{ d\phi }{dt}[/tex]
The negative sign tells us that the induced emf is moving opposite to the change in magnetic flux
Here [tex]d\phi[/tex] is the change in magnetic flux which is mathematically represented as
[tex]d \phi = dB * A[/tex]
Where dB is the change in magnetic field which is mathematically represented as
[tex]dB = B_t - B_i[/tex]
substituting values
[tex]dB = 2.60 - 0.500[/tex]
[tex]dB = 2.1 \ T[/tex]
Thus
[tex]d \phi = 2.1 * 8.20 *10^{-4}[/tex]
[tex]d \phi = 1.722*10^{-3} \ weber[/tex]
So
[tex]|\epsilon| = 1 * \frac{ 1.722*10^{-3}}{1.02}[/tex]
[tex]|\epsilon| = 1.69 *10^{-3} \ V[/tex]
The induced current i mathematically represented as
[tex]I = \frac{\epsilon}{ R }[/tex]
substituting values
[tex]I = \frac{1.69*10^{-3}}{ 2.70 }[/tex]
[tex]I = 6.25*10^{-4} \ A[/tex]
A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2
Answer:
650W/m²Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
A tennis player swings her 1000 g racket with a speed of 12 m/s. She hits a 60 g tennis ball that was approaching her at a speed of 15 m/s. The ball rebounds at 40 m/s.
A) How fast is her racket moving immediately after the impact? You can ignore the interaction of the racket with her hand for the brief duration of the collision.
_________m/s
B) If the tennis ball and racket are in contact for 7.00, what is the average force that the racket exerts on the ball?
_________N
The velocity and force are required.
The speed of the racket is 8.7 m/s
The required force is 471.43 N.
[tex]m_1[/tex] = Mass of racket = 1000 g
[tex]m_2[/tex] = Mass of ball = 60 g
[tex]u_1[/tex] = Initial velocity of racket = 12 m/s
[tex]u_2[/tex] = Initial velocity of ball = -15 m/s
[tex]v_1[/tex] = Final velocity of racket
[tex]v_2[/tex] = Final velocity of ball = 40 m/s
[tex]\Delta t[/tex] = Time = 7 ms
The equation of the momentum will be
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\Rightarrow v_1=\dfrac{m_1u_1+m_2u_2-m_2v_2}{m_1}\\\Rightarrow v_1=\dfrac{1\times 12+0.06\times (-15)-0.06\times 40}{1}\\\Rightarrow v_1=8.7\ \text{m/s}[/tex]
Force is given by
[tex]F=m_2\dfrac{v_2-u_2}{\Delta t}\\\Rightarrow F=0.06\times \dfrac{40-(-15)}{7\times 10^{-3}}\\\Rightarrow F=471.43\ \text{N}[/tex]
Learn more:
https://brainly.com/question/19689434?referrer=searchResults
The magnetic force per meter on a wire is measured to be only 45 %% of its maximum possible value. Calculate the angle between the wire and the magnetic field.
Answer:
27°
Explanation:
The force is proportional to the sine of the angle between the wire and the magnetic field. (See the ref.)
So theta = arcsin(0.45)
=27°
The angle between the wire and the magnetic field is 27°.
Calculation of the angle:Since The magnetic force per meter on a wire is measured to be only 45 %
So here we know that The force should be proportional to the sine of the angle between the wire and the magnetic field
Therefore,
theta = arcsin(0.45)
=27°
Hence, The angle between the wire and the magnetic field is 27°.
Learn more about wire here: https://brainly.com/question/24733137
In a polar coordinate system, the velocity vector can be written as . The term theta with dot on top is called _______________________ angular velocity transverse velocity radial velocity angular acceleration
Answer:
I believe it's called rapid growth
Explanation:
that is my answer no matter what
Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation.
Answer:
The object with the twice the area of the other object, will have the larger drag coefficient.
Explanation:
The equation for drag force is given as
[tex]F_{D} = \frac{1}{2}pu^{2} C_{D} A[/tex]
where [tex]F_{D}[/tex] IS the drag force on the object
p = density of the fluid through which the object moves
u = relative velocity of the object through the fluid
p = density of the fluid
[tex]C_{D}[/tex] = coefficient of drag
A = area of the object
Note that [tex]C_{D}[/tex] is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid
The above equation can also be broken down as
[tex]F_{D}[/tex] ∝ [tex]P_{D}[/tex] A
where [tex]P_{D}[/tex] is the pressure exerted by the fluid on the area A
Also note that [tex]P_{D}[/tex] = [tex]\frac{1}{2}pu^{2}[/tex]
which also clarifies that the drag force is approximately proportional to the abject's area.
In this case, the object with the twice the area of the other object, will have the larger drag coefficient.
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe
Answer:
0.0127m
Explanation:
Using
Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m
soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.
Answer:
Since their wings and body develop the drag. When there is warm air then they expand their wings. Since,soaring birds and glider pilots have no engine, they always maintain their high speed to lift their weight in air for hours without expending power by convection
Explanation:
The number of neutrons in the nucleus of zinc 65 Zn 30 is:
35
Need more data to answer
65
30
Explanation:
proton number + neutron number = atomic mass
30 + 35 = 65
What are the approximate dimensions of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 275 km above the Earth
Answer:
s_400 = 16.5 m , s_700 = 29.4 m
Explanation:
The limit of the human eye's solution is determined by the diffraction limit that is given by the expression
θ = 1.22 λ / D
where you lick the wavelength and D the mediator of the circular aperture.
In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.
by introducing these values into the formula
λ = 400 nm θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad
λ = 700 nm θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad
Now we can use the definition radians
θ= s / R
where s is the supported arc and R is the radius. Let's find the sarcos for each case
λ = 400 nm s_400 = θ R
S_400 = 6 10⁻⁵ 275 10³
s_400 = 16.5 m
λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³
s_700 = 29.4 m
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
The 2-Mg truck is traveling at 15 m/s when the brakes on all its wheels are applied, causing it to skid for 10 m before coming to rest. The total mass of the boat and trailer is 1 Mg. Determine the constant horizontal force developed in the coupling C, and the friction force developed between the tires of the truck and the road during this time.
Answer:
constant horizontal force developed in the coupling C = 11.25KN
the friction force developed between the tires of the truck and the road during this time is 33.75KN
Explanation:
See attached file
The friction force between the tires of the truck and the road is 22500 N.
Calculating the friction force:It is given that a 2 Mg truck ( m = 2000 Kg) is initially moving with a speed of u = 15 m/s.
Distance traveled before coming to rest, s = 10m
The final velocity of the truck will be zero, v = 0
When the breaks are applied, only the frictional force is acting on the truck and it is opposite to the motion of the truck.
The frictional force is given by:
f = -ma
the acceleration of the truck = -a
The negative sign indicates that the acceleration is opposite to the motion.
Applying the third equation of motion we get:
v² = u² -2as
0 = 15² - 2×a×10
225 = 20a
a = 11.25 m/s²
So the magnitude of frictional force is:
f = ma = 2000 × 11.25 N
f = 22500 N
Learn more about friction force:
https://brainly.com/question/1714663?referrer=searchResults
A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed.
Answer:
4.9x10^-6T
Explanation:
See attached file
Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?
Answer:
x = 0.006 m
Explanation:
The potential at one point is given by
V = k ∑ [tex]q_{i} / r_{i}[/tex]
remember that the potential is to scale, let's apply to our case
V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)
in this case they indicate that the potential is zero
0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + 3 10⁻⁶ / x)
3 / x = + 2 / 10⁻² + 3 / 10⁻²
3 / x = 500
x = 3/500
x = 0.006 m
On a part-time job, you are asked to bring a cylindrical iron rod of density 7800 kg/m 3 kg/m3 , length 81.2 cmcm and diameter 2.60 cmcm from a storage room to a machinist. Calculate the weight of the rod, www. Assume the free-fall acceleration is ggg = 9.80 m/s2m/s2 .
Answer:
The weight of the rod is 32.87 N
Explanation:
Density of the rod = 7800 kg/m
length of the rod = 81.2 cm = 0.812 m
diameter of rod = 2.60 cm = 0.026 m
acceleration due to gravity = 9.80 m/s^2
The rod can be assumed to be a cylinder.
The volume of the rod can be calculated as that of a cylinder, and can be gotten as
V = [tex]\frac{\pi d^{2} l}{4}[/tex]
where d is the diameter of the rod
l is the length of the rod
V = [tex]\frac{3.142* 0.026^{2}* 0.812}{4}[/tex] = 4.3 x 10^-4 m^3
We know that the mass of a substance is the density times the volume i.e
mass m = ρV
where ρ is the density of the rod
V is the volume of the rod
m = 4.3 x 10^-4 x 7800 = 3.354 kg
The weight of a substance is the mass times the acceleration due to gravity
W = mg
where g is the acceleration due to gravity g = 9.80 m/s^2
The weight of the rod W = 3.354 x 9.80 = 32.87 N
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron
Answer:
acting force is the answer
The direction of the magnetic force on the moving electron is upward.
The direction of the magnetic force on the electron can be determined by applying right hand rule.
This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.
Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.
Learn more here:https://brainly.com/question/14434299
An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels for a time t0 along a half-circle of radius R before leaving the magnetic field traveling opposite the direction it initially entered the field. Which of the following quantities would change if the electron had entered the field with a speed 2v? (There may be more than one correct answer.)
a. The radius of the circular path the electron travels
b. The magnitude of the electron's acceleration inside the field
c. The time the electron is in the magnetic field
d. The magnitude of the net force acting on the electron inside the field
Answer:
Explanation:
For circular path in magnetic field
mv² / R = Bqv ,
m is mass , v is velocity , R is radius of circular path , B is magnetic field , q is charge on the particle .
a )
R = mv / Bq
If v is changed to 2v , keeping other factors unchanged , R will be doubled
b )
magnitude of acceleration inside field
= v² / R
= Bqv / m
As v is doubled , acceleration will also be doubled
c )
If T be the time inside the magnetic field
T = π R / v
= π / v x mv / Bq
= π m / Bq
As is does not contain v that means T remains unchanged .
d )
Net force acting on electron
= m v² / R = Bqv
Net force = Bqv
As v becomes twice force too becomes twice .
So a . b , d are correct answer.
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m