Values for relation g are given in the table. Which ordered pair would be found in the inverse of g? X Y 2 2 3 5 4 9 5 13 A: (4,9) B:(-3.-5) C:(13,5) D:(-2,-2)

Answers

Answer 1

Answer:

D (13,5)

Step-by-step explanation:

X 2 3 4 5

Y 2 5 9 13

So the ordered pairs are (2,2),(3,5), (4,9), (5,13)

and the ordered pairs for the inverse are

(2,2),(5,3), (9,4), (13,5)

from which D (13,5) is found among the options.

Answer 2

Answer:

b

Step-by-step explanation:


Related Questions

A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90. its price-earnings ratio equals:

Answers

Answer: Price-earnings ratio= 22.0

Step-by-step explanation:

Given: A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90

To find: price-earnings ratio

Required formula: [tex]\text{price-earnings ratio }=\dfrac{\text{ Market Price per Share}}{\text{Earnings Per Share}}[/tex]

Then, Price-earnings ratio = [tex]\dfrac{\$38.50}{\$1.75}[/tex]

⇒Price-earnings ratio = [tex]\dfrac{22}{1}[/tex]

Hence, the price-earnings ratio= 22.0

Total length of a pole is 21.3 m. If 0.2m of the length of the pole is inside the ground. Find how much of its length is outside the ground

Answers

Answer:

21.1 m

Step by step explanation

Total length of pole = 21.3 m

Length of pole inside the ground = 0.2 m

Let length of pole outside the ground be X,

So, according to the Question,

[tex]x + 0.2 = 21.3[/tex]

Move constant to R.H.S and change its sign

[tex]x = 21.3 - 0.2[/tex]

Calculate the difference

[tex]x = 21.1 \: m[/tex]

Hope this helps...

Good luck on your assignment...

WILL GIVE BRAINLIEST IF CORRECT!! Please help ! -50 POINTS -

Answers

Answer:

i think (d) one i think it will help you

The correct answer is c. 180 , 202

All the step by step is below

Hopefully this help you :)

TRIANGLE ABC IS DILATED BY A SCALE FACTOR OF 0.5 WITH THE ORIGIN AS THE CENTER OF DILATION, RESULTING IN THE IMAGE TRIANGLE A'B'C. IF A=(2,2). IF A (2,2), B= (4,3) AND C=(6,3), WHAT IS THE LENGTH OF LINE B'C'?

Answers

Answer: The length of the line B'C" is 1 unit.

Step-by-step explanation:

Given: Triangle ABC is dilated by a scale factor of 0.5 with the origin as the center of dilation , resulting in the image Triangle A'B'C'.

If A (2,2), B= (4,3) and C=(6,3).

Distance between (a,b) and (c,d): [tex]D=\sqrt{(d-b)^2+(c-b)^2}[/tex]

Then, BC [tex]=\sqrt{(3-3)^2+(6-4)^2}[/tex]

[tex]\\\\=\sqrt{0+2^2}\\\\=\sqrt{4}\\\\=2\text{ units}[/tex]

Length of image = scale factor x length in original figure

B'C' = 0.5 × BC

= 0.5 × 2

= 1 unit

Hence, the length of the line B'C" is 1 unit.

In​ 2005, there were 14,100 students at college​ A, with a projected enrollment increase of 750 students per year. In the same​ year, there were 42,100 students at college​ B, with a projected enrollment decline of 1250 students per year. According to these​ projections, when will the colleges have the same​ enrollment? What will be the enrollment in each college at that​ time?

Answers

Set up two equations and set equal to each other. Let number of years = x:

College A = 14100+750x

College B = 42100-1250x

Set equal:

14100 + 750x = 42100 - 1250x

Subtract 750x from both sides:

14100 = 42100 - 2000x

Subtract 42100 from both sides:

-28000 = -2000x

Divide both sides by -2000:

x = -28000 / -2000

x = 14

It will take 14 years for the schools to have the same enrollment.

Enrollment will be:

14100 + 750(14) = 14100 + 10500 = 24,600

Answer:

(a)2019 (14 years after)

(b)24,600

Step-by-step explanation:

Let the number of years =n

College A

Initial Population in 2005 = 14,100

Increase per year = 750

Therefore, the population after n years = 14,100+750n

College B

Initial Population in 2005 = 42,100

Decline per year = 1250

Therefore, the population after n years = 42,100-1250n

When the enrollments are the same

14,100+750n=42,100-1250n

1250n+750n=42100-14100

2000n=28000

n=14

Therefore, in 2019 (14 years after), the colleges will have the same​ enrollment.

Enrollment in 2019 =42,100-1250(14)

=24,600

Please help! Will give brainliest to correct answer! (1/3) - 50 POINTS - please no wrong answers.

Answers

Answer:

( 6, pi/6)

Step-by-step explanation:

( 3 sqrt(3), 3)

To get r we use x^2 + y ^2 = r^2

( 3 sqrt(3) )^2 + 3^2 = r^2

9 *3 +9 = r^2

27+9 = r^2

36 = r^2

Taking the square root of each side

sqrt(36) = sqrt(r^2)

6 =r

Now we need to find theta

tan theta = y/x

tan theta = 3 / 3 sqrt(3)

tan theta = 1/ sqrt(3)

Taking the inverse tan of each side

tan ^-1 ( tan theta) = tan ^ -1 ( 1/ sqrt(3))

theta = pi /6

r=sqrt(x^2 + y^2)= sqrt(36)= 6
tan(theta)=y/x= sqrt(3)/3
theta = arctan(sqrt(3)/3)= pi/6

So D) (6, pi/6)

¿Cuál es la fórmula para calcular el área de cualquier triangulo?

Answers

¡Hola! ¡Ojalá esto ayude!

--------------------------------------------------------------------------------------------------------

La fórmula para calcular el área de cualquier triángulo es:

base multiplicada por la altura y dividida por dos.

||

||

||

\/

Bh / 2.

In an isolated environment, a disease spreads at a rate proportional to the product of the infected and non-infected populations. Let I(t) denote the number of infected individuals. Suppose that the total population is 2000, the proportionality constant is 0.0001, and that 1% of the population is infected at time t-0, write down the intial value problem and the solution I(t).
dI/dt =
1(0) =
I(t) =
symbolic formatting help

Answers

Answer:

dI/dt = 0.0001(2000 - I)I

I(0) = 20

[tex]I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

Step-by-step explanation:

It is given in the question that the rate of spread of the disease is proportional to the product of the non infected and the infected population.

Also given I(t) is the number of the infected individual at a time t.

[tex]\frac{dI}{dt}\propto \textup{ the product of the infected and the non infected populations}[/tex]

Given total population is 2000. So the non infected population = 2000 - I.

[tex]\frac{dI}{dt}\propto (2000-I)I\\\frac{dI}{dt}=k (2000-I)I, \ \textup{ k is proportionality constant.}\\\textup{Since}\ k = 0.0001\\ \therefore \frac{dI}{dt}=0.0001 (2000-I)I[/tex]

Now, I(0) is the number of infected persons at time t = 0.

So, I(0) = 1% of 2000

            = 20

Now, we have dI/dt = 0.0001(2000 - I)I  and  I(0) = 20

[tex]\frac{dI}{dt}=0.0001(2000-I)I\\\frac{dI}{(2000-I)I}=0.0001 dt\\\left ( \frac{1}{2000I}-\frac{1}{2000(I-2000)} \right )dI=0.0001dt\\\frac{dI}{2000I}-\frac{dI}{2000(I-2000)}=0.0001dt\\\textup{Integrating we get},\\\frac{lnI}{2000}-\frac{ln(I-2000)}{2000}=0.0001t+k \ \ \ (k \text{ is constant})\\ln\left ( \frac{I}{I-222} \right )=0.2t+2000k[/tex]

[tex]\frac{I}{I-2000}=Ae^{0.2t}\\\frac{I-2000}{I}=Be^{-0.2t}\\\frac{2000}{I}=1-Be^{-0.2t}\\I(t)=\frac{2000}{1-Be^{-0.2t}}\textup{Now we have}, I(0)=20\\\frac{2000}{1-B}=20\\\frac{100}{1-B}=1\\B=-99\\ \therefore I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

The required expressions are presented below:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

Analysis of an ordinary differential equation for the spread of a disease in an isolated population

After reading the statement, we obtain the following differential equation:

[tex]\frac{dI}{dt} = k\cdot I\cdot (n-I)[/tex] (1)

Where:

[tex]k[/tex] - Proportionality constant[tex]I[/tex] - Number of infected individuals[tex]n[/tex] - Total population[tex]\frac{dI}{dt}[/tex] - Rate of change of the infected population.

Then, we solve the expression by variable separation and partial fraction integration:

[tex]\frac{1}{k} \int {\frac{dI}{I\cdot (n-I)} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \int {\frac{dl}{l} } + \frac{1}{kn}\int {\frac{dI}{n-I} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \cdot \ln |I| -\frac{1}{k\cdot n}\cdot \ln|n-I| = t + C[/tex]

[tex]\frac{1}{k\cdot n}\cdot \ln \left|\frac{I}{n-I} \right| = C\cdot e^{k\cdot n \cdot t}[/tex]

[tex]I(t) = \frac{n\cdot C\cdot e^{k\cdot n\cdot t}}{1+C\cdot e^{k\cdot n \cdot t}}[/tex], where [tex]C = \frac{I_{o}}{n}[/tex] (2, 3)

Note - Please notice that [tex]I_{o}[/tex] is the initial infected population.

If we know that [tex]n = 2000[/tex], [tex]k = 0.0001[/tex] and [tex]I_{o} = 20[/tex], then we have the following set of expressions:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

To learn more on differential equations, we kindly invite to check this verified question: https://brainly.com/question/1164377

A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?

Answers

Answer:

The probability that no more than 70% would prefer to start their own business is 0.1423.

Step-by-step explanation:

We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.

Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business

The z-score probability distribution for the sample proportion is given by;

                               Z  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, p = population proportion who would prefer to start their own business = 72%

            n = sample of 18-29 year-olds = 600

Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)

       P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)

                                                                       = 1 - 0.8577 = 0.1423

The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.

HELPNEEDED.Two boys and three girls are auditioning to play the piano for a school production. Two students will be chosen, one as the pianist, the other as the alternate.


What is the probability that the pianist will be a boy and the alternate will be a girl?


30%

40%

50%

60%

Answers

I’m pretty sure it’s 30%

A coin is thrown at random into the rectangle below.

A rectangle is about 90 percent white and 10 percent green.

What is the likelihood that the coin will land in the green region?
It is certain.
It is impossible.
It is likely.
It is unlikely.

Answers

Answer:

It is unlikely.

Step-by-step explanation:

Certain = 100%

Impossible = 0%

Likely = more than 50%

Unlikely = less than 50%

It is less than 50%, so it is unlikely.

Answer:

(A) it is likely

Step-by-step explanation:

i took the test on edge

Which of the following algebraic expressions represents the statement given below?
A number is increased by five and squared.
A. x+5²
В.
x²+5
c. ° +5
D. (x+5)

Answers

Answer:

Let the number be x

The statement

A number is increased by five is written as

x + 5

Then it's squared

So we the final answer as

(x + 5)²

Hope this helps

What is the simplified expression for 3 y squared minus 6 y z minus 7 + 4 y squared minus 4 y z + 2 minus y squared z?
WILL MARK BRAINLEST

Answers

Answer:

7y⁴- 10yz - y²z - 5

Step-by-step explanation:

First collect like terms

3y²+ 4y²- 6yz - 4yz - y²z - 7+2

7y⁴-10yz - y²z - 5

Answer:

Its C

Step-by-step explanation:

What is the cube of the square of the second smallest prime number?

Answers

Answer:8

Step-by-step explanation:

The smallest prime is 2

cube of 2 is equal to 8

2*2*2=8

Answer:

729

Step-by-step explanation:

The second smallest prime number is 3 (preceded by 2). We have (3^2)^3=3^6=729.

Hope this helped! :)

What does it mean to say​ "correlation does not imply​ causation"? Choose the correct answer below. A. Two variables can only be strongly correlated if there existed a​ cause-and-effect relationship between the variables. B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables. C. The fact that two variables are strongly correlated implies a​ cause-and-effect relationship between the variables. D. Two variables that have a​ cause-and-effect relationship are never correlated.

Answers

Answer:

B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables.

Step-by-step explanation:

The term "correlation does not imply causation", simply means that because we can deduce a link between two factors or sets of data, it does not necessarily prove that there is a cause-and-effect relationship between the two variables. In some cases, there could indeed be a cause-and-effect relationship but it cannot be said for certain that this would always be the case.

While correlation shows the linear relationship between two things, causation implies that an event occurs because of another event. So the phrase is actually saying that because two factors are related, it does not mean that it is as a result of a causal factor. It could simply be a coincidence. This occurs because of our effort to seek an explanation for the occurrence of certain events.

Answer: B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables.

Step-by-step explanation:

Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?

Answers

Answer:

0.0668 or 6.68%

Step-by-step explanation:

Variance (V) = 10,000

Standard deviation (σ) = √V= 100

Mean score (μ) = 500

The z-score for any test score X is:

[tex]z=\frac{X-\mu}{\sigma}[/tex]

For X = 650:

[tex]z=\frac{650-500}{100}\\z=1.5[/tex]

A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]

The probability is 0.0668 or 6.68%

The probability that he or she will make a score of 650 or more is 0.0668.

Let X = Scores made on a certain aptitude test by nursing students

X follows normal distribution with mean = 500 and variance of 10,000.

So, standard deviation = [tex]\sqrt{10000}=100[/tex].

z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].

The probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]

Learn more: https://brainly.com/question/14109853

Suppose the weather forecast calls for a 60% chance of rain each day for the next 3 days. What is the probability that it will NOT rain during the next 3 days

Answers

Answer:

Probability that it'll not rain during the next three days = 0.064

Step-by-step explanation:

Given

Let:

P(R) represent the probability that it'll rain each day

P(R') represent the probability that it'll not

[tex]P(R) = 60\%[/tex]

Required

Probability that it'll not rain during the next three days

From concept of probability;

[tex]P(R) + P(R') = 1[/tex]

Substitute 60% for P(R)

[tex]60\% + P(R') = 1[/tex]

Subtract 60% from both sides

[tex]60\% - 60\% + P(R') = 1 - 60\%[/tex]

[tex]P(R') = 1 - 60\%[/tex]

Convert % to decimal

[tex]P(R') = 1 - 0.6[/tex]

[tex]P(R') = 0.4[/tex]

The probability that it'll not rain during the next 3 days is:

[tex]P(R') * P(R') * P(R')[/tex]

[tex]P(R') * P(R') * P(R') =0.4 * 0.4 * 0.4[/tex]

[tex]P(R') * P(R') * P(R') = 0.064[/tex]

what is the answer to 100×338 ​

Answers

Answer:

33800

Step-by-step explanation:

100 x 338 = 33800

Answer:

33800

Step-by-step explanation:

338x10=3380 then 3380x10=33800

-------------------------------------------------------

Good luck with your assignment...

Write the following numbers in increasing order: −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2

Answers

Answer:

-12,-10,-3,-1.4,-1,0.25,2,5.2,12

Step-by-step explanation:

The following number −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2 in increasing order

-12,-10,-3,-1.4,-1,0.25,2,5.2,12

It's arranged this way starting from the negative sign because positive it's greater than negative and if the negative gets to approach zero it's get smaller

Answer:

-10 ; -3 1/2 ; -1.4 ; -1 ; -1/2 ; 0.25 ; 2 ; 5.2

g The average salary in this city is $45,600. Is the average different for single people? 53 randomly selected single people who were surveyed had an average salary of $46,356 and a standard deviation of $15,930. What can be concluded at the α α = 0.05 level of significance?

Answers

Answer:

Step-by-step explanation:

The average salary in this city is $45,600.

Using the formula

z score = x - u /(sd/√n)

Where x is 46,356, u is 45,600 sd is 15,930 and n is 53.

z = 46,356 - 45600 / (15930/√53)

z = 756/(15930/7.2801)

z = 756/(2188.1568)

z = 0.3455

To draw a conclusion, we have to determine the p value, at 0.05 level of significance for a two tailed test, the p value is 0.7297. The p value is higher than the significance level, thus we will fail to reject the null and can conclude that there is not enough statistical evidence to prove that the average is any different for single people.

PLEASE HELP I DO NOT UNDERSTAND AT ALL ITS PRECALC PLEASE SERIOUS ANSWERS

Answers

You want to end up with [tex]A\sin(\omega t+\phi)[/tex]. Expand this using the angle sum identity for sine:

[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]

We want this to line up with [tex]2\sin(4\pi t)+5\cos(4\pi t)[/tex]. Right away, we know [tex]\omega=4\pi[/tex].

We also need to have

[tex]\begin{cases}A\cos\phi=2\\A\sin\phi=5\end{cases}[/tex]

Recall that [tex]\sin^2x+\cos^2x=1[/tex] for all [tex]x[/tex]; this means

[tex](A\cos\phi)^2+(A\sin\phi)^2=2^2+5^2\implies A^2=29\implies A=\sqrt{29}[/tex]

Then

[tex]\begin{cases}\cos\phi=\frac2{\sqrt{29}}\\\sin\phi=\frac5{\sqrt{29}}\end{cases}\implies\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)[/tex]

So we end up with

[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]

Answer:

y(t) = √29·sin(4πt +1.1903)amplitude: √29angular frequency: 4πphase shift: 1.1903 radians

Step-by-step explanation:

In the form ...

  y(t) = Asin(ωt +φ)

you have ...

Amplitude = Aangular frequency = ωphase shift = φ

The translation from ...

  y(t) = 2sin(4πt) +5cos(4πt)

is ...

  A = √(2² +5²) = √29 . . . . the amplitude

  ω = 4π . . . . the angular frequency in radians per second

  φ = arctan(5/2) ≈ 1.1903 . . . . radians phase shift

Then, ...

  y(t) = √29·sin(4πt +1.1903)

_____

Comment on the conversion

You will notice we used "2" and "5" to find the amplitude and phase shift. In the generic case, these are "coefficient of sin( )" and "coefficient of cos( )". When determining phase shift, pay attention to whether your calculator is giving you degrees or radians. (Set the mode to what you want.)

If you have a negative coefficient for sin( ), you will need to add 180° (π radians) to the phase shift value given by the arctan( ) function.

Solving exponential functions

Answers

Answer:

Option B

an increasing exponential graph

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Consider the functions given below. SEE FILE ATTATCHED

Answers

Answer:

1. [tex] P(x) [/tex] ÷ [tex] Q(x) [/tex]---> [tex] \frac{-3x + 2}{3(3x - 1)} [/tex]

2. [tex] P(x) + Q(x) [/tex]---> [tex]\frac{2(6x - 1)}{(3x - 1)(-3x + 2)}[/tex]

3.  [tex] P(x) - Q(x) [/tex]---> [tex] \frac{-2(12x - 5)}{(3x - 1)(-3x + 2)} [/tex]

4. [tex] P(x)*Q(x) [/tex] --> [tex] \frac{12}{(3x - 1)(-3x + 2)} [/tex]

Step-by-step explanation:

Given that:

1. [tex] P(x) = \frac{2}{3x - 1} [/tex]

[tex] Q(x) = \frac{6}{-3x + 2} [/tex]

Thus,

[tex] P(x) [/tex] ÷ [tex] Q(x) [/tex] = [tex] \frac{2}{3x - 1} [/tex] ÷ [tex] \frac{6}{-3x + 2} [/tex]

Flip the 2nd function, Q(x), upside down to change the process to multiplication.

[tex] \frac{2}{3x - 1}*\frac{-3x + 2}{6} [/tex]

[tex] \frac{2(-3x + 2)}{6(3x - 1)} [/tex]

[tex] = \frac{-3x + 2}{3(3x - 1)} [/tex]

2. [tex] P(x) + Q(x) [/tex] = [tex] \frac{2}{3x - 1} + \frac{6}{-3x + 2} [/tex]

Make both expressions as a single fraction by finding, the common denominator, divide the common denominator by each denominator, and then multiply by the numerator. You'd have the following below:

[tex] \frac{2(-3x + 2) + 6(3x - 1)}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{-6x + 4 + 18x - 6}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{-6x + 18x + 4 - 6}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{12x - 2}{(3x - 1)(-3x + 2)} [/tex]

[tex] = \frac{2(6x - 1}{(3x - 1)(-3x + 2)} [/tex]

3. [tex] P(x) - Q(x) [/tex] = [tex] \frac{2}{3x - 1} - \frac{6}{-3x + 2} [/tex]

[tex] \frac{2(-3x + 2) - 6(3x - 1)}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{-6x + 4 - 18x + 6}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{-6x - 18x + 4 + 6}{(3x - 1)(-3x + 2)} [/tex]

[tex] \frac{-24x + 10}{(3x - 1)(-3x + 2)} [/tex]

[tex] = \frac{-2(12x - 5}{(3x - 1)(-3x + 2)} [/tex]

4. [tex] P(x)*Q(x) = \frac{2}{3x - 1}* \frac{6}{-3x + 2} [/tex]

[tex] P(x)*Q(x) = \frac{2*6}{(3x - 1)(-3x + 2)} [/tex]

[tex] P(x)*Q(x) = \frac{12}{(3x - 1)(-3x + 2)} [/tex]

Composite functions involve combining multiple functions to form a new function

The functions are given as:

[tex]P(x) = \frac{2}{3x - 1}[/tex]

[tex]Q(x) = \frac{6}{-3x + 2}[/tex]

[tex]P(x) \div Q(x)[/tex] is calculated as follows:

[tex]P(x) \div Q(x) = \frac{2}{3x - 1} \div \frac{6}{-3x + 2}[/tex]

Express as a product

[tex]P(x) \div Q(x) = \frac{2}{3x - 1} \times \frac{-3x + 2}{6}[/tex]

Divide 2 by 6

[tex]P(x) \div Q(x) = \frac{1}{3x - 1} \times \frac{-3x + 2}{3}[/tex]

Multiply

[tex]P(x) \div Q(x) = \frac{-3x + 2}{3(3x - 1)}[/tex]

Hence, the value of [tex]P(x) \div Q(x)[/tex] is [tex]\frac{-3x + 2}{3(3x - 1)}[/tex]

P(x) + Q(x) is calculated as follows:

[tex]P(x) + Q(x) = \frac{2}{3x - 1} + \frac{6}{-3x + 2}[/tex]

Take LCM

[tex]P(x) + Q(x) = \frac{2(-3x + 2) + 6(3x - 1)}{(3x - 1)(-3x + 2)}[/tex]

Open brackets

[tex]P(x) + Q(x) = \frac{-6x + 4 + 18x - 6}{(3x - 1)(-3x + 2)}[/tex]

Collect like terms

[tex]P(x) + Q(x) = \frac{18x-6x + 4 - 6}{(3x - 1)(-3x + 2)}[/tex]

[tex]P(x) + Q(x) = \frac{12x - 2}{(3x - 1)(-3x + 2)}[/tex]

Factor out 2

[tex]P(x) + Q(x) = \frac{2(6x -1)}{(3x - 1)(-3x + 2)}[/tex]

Hence, the value of P(x) + Q(x) is [tex]\frac{2(6x -1)}{(3x - 1)(-3x + 2)}[/tex]

P(x) - Q(x) is calculated as follows:

[tex]P(x) - Q(x) = \frac{2}{3x - 1} - \frac{6}{-3x + 2}[/tex]

Take LCM

[tex]P(x) - Q(x) = \frac{2(-3x + 2) - 6(3x - 1)}{(3x - 1)(-3x + 2)}[/tex]

Open brackets

[tex]P(x) - Q(x) = \frac{-6x + 4 - 18x +6}{(3x - 1)(-3x + 2)}[/tex]

Collect like terms

[tex]P(x) - Q(x) = \frac{-18x-6x + 4 + 6}{(3x - 1)(-3x + 2)}[/tex]

[tex]P(x) - Q(x) = \frac{-24x +10}{(3x - 1)(-3x + 2)}[/tex]

Factor out -2

[tex]P(x) - Q(x) = \frac{-2(12x -5)}{(3x - 1)(-3x + 2)}[/tex]

Hence, the value of P(x) - Q(x) is [tex]\frac{-2(12x -5)}{(3x - 1)(-3x + 2)}[/tex]

P(x) * Q(x) is calculated as follows:

[tex]P(x) \times Q(x) = \frac{2}{3x - 1} \times \frac{6}{-3x + 2}[/tex]

Multiply

[tex]P(x) \times Q(x) = \frac{12}{(3x - 1)(-3x + 2)}[/tex]

Hence, the value of P(x) * Q(x) is [tex]\frac{12}{(3x - 1)(-3x + 2)}[/tex]

Read more about composite functions at:

https://brainly.com/question/10687170

1000 randomly selected Americans were asked if they believed the minimum wage should be raised. 600 said yes. Construct a 95% confidence interval for the proportion of Americans who believe that the minimum wage should be raised.
a. Write down the formula you intend to use with variable notation).
b. Write down the above formula with numeric values replacing the symbols.
c. Write down the confidence interval in interval notation.

Answers

Answer:

a. p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]  

b.0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. { -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

Step-by-step explanation:

Here the total number of trials is n= 1000

The number of successes is p` = 600/1000 = 0.6. The q` is 1 - p`= 1- 0.6 = 0.4

The degree of confidence is 95 %  therefore z₀.₀₂₅ = 1.96 ( α/2 = 0.025)

a.  The formula used will be

p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]       ( z with the base alpha by 2 (α/2 = 0.025))

b. Putting the values

0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. Confidence Interval in Interval Notation.

{ -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

{ -z( base alpha by 2) ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ z( base alpha by 2)  } = 1- α


13. How long will a man take to cover
a distance of 7 kilometres by
walking 4 kilometres per hour?
(a) 1 hr. 35mins.
b) 1hr. 45mins
(c) Less than 1hr
(d) Exactly 1 hr.
(e) More than 2hrs​

Answers

7km/ 4km per hour = 1 3/4 hours

3/4 hour = 45 minutes

Total time = 1 hour and 45 minutes.

Circle the numbers divisible by 2.

320;5,763; 9,308; 5,857;3,219; 5,656; 83,001;53,634​

Answers

The number divisible by 2 are:
330,
308,
656,
634

ASAP PLEASE HELP!!!!!! Find the y-intercept of the rational function. A rational function is graphed in the first quadrant, and in the second, third and fourth quadrants are other pieces of the graph. The graph crosses the x axis at negative 10 and crosses the y axis at negative 2.

Answers

Answer:

(0,-2)

Step-by-step explanation:

The y-intercept is simply when the function touches or crosses the y-axis.

We're told that the graph crosses the y-axis at -2. In other words, the y-intercept is at -2.

The ordered pair would be (0,-2)

A ball always bounces to 3/5 of the height from which it is dropped. The ball is dropped from 1.8m and bounces 3 times. How high will it rise from the third bounce?

Answers

Answer: 0.388 m

Step-by-step explanation:

Ok, if the ball is dropped from 1.8 meters, then the height after the first bounce will be 3/5 times 1.8 meters:

h1 = (3/5)*1.8m = 1.08m

now we can think that the ball is dropped from a height of 1.08 meters, then the height after the second rebound will be:

h2 = (3/5)*1.08m = 0.648m

Now, using the same method as before, the height after the third bounce will be:

h3 = (3/5)*0.648m = 0.388 m

Notice that we can write this relation as:

h(n) = 1.8m*(3/5)^n

where n is the number of bounces.

if n = 0 we have the initial height, and if n = 3 we are on the third bounce, then:

h(3) = 1.8m*(3/5)^3 = 0.388 m

What is the value of x?

Answers

Answer:

  54

Step-by-step explanation:

x is half the difference of the two arcs:

  x = (136 -28)/2 = 54

The value of x is 54.

If w'(t) is the rate of growth of a child in pounds per year, what does 7 w'(t)dt 4 represent? The change in the child's weight (in pounds) between the ages of 4 and 7. The change in the child's age (in years) between the ages of 4 and 7. The child's weight at age 7. The child's weight at age 4. The child's initial weight at birth.

Answers

Complete Question

If w'(t) is the rate of growth of a child in pounds per year, what does

[tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  represent?

a) The change in the child's weight (in pounds) between the ages of 4 and 7.

b) The change in the child's age (in years) between the ages of 4 and 7.

c) The child's weight at age 7.

d) The child's weight at age 4. The child's initial weight at birth.

Answer:

The correct option is  option a

Step-by-step explanation:

From the question we are told that

       [tex]w'(t)[/tex] represents the rate of growth of a child in   [tex]\frac{pounds}{year}[/tex]

So      [tex]{w'(t)} \, dt[/tex]  will be in  [tex]pounds[/tex]

Which then mean that this  [tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  the change in the weight of the child between the ages of  [tex]4 \to 7[/tex] years

   

Other Questions
Use z scores to compare the given values. The tallest living man at one time had a height of 249 cm. The shortest living man at that time had a height of 120.2 cm. Heights of men at that time had a mean of 176.55 cm and a standard deviation of 7.23 cm. Which of these two men had the height that was more extreme? Two football players are running toward each other. One football player has a mass of 105 kg and is running at 8.6 m/s. The other player has a mass of 90 kg and is running at -9.0 m/s. What is the momentum of the system after the football players collide? 93 kg m/s 1,713 kg m/s. 810 kg m/s. 903 kg m/s. If the world price of a good is below its domestic price, the country will: Please choose the correct answer from the following choices, and then select the submit answer button. Answer choices import that good. export that good. put a price floor on that good. have a surplus of that good. What is an example of a belief about government the English colonists brought to North America? A. government should have clear limits to its authority B. government should make laws to cover all aspects of life C. government should have unlimited authority D. government should have unlimited access to funds What is the unit price of a quart of juice for $0.79?A. $3.16/gallonB. 3 half-gallons for $5.40C. $3.16/1bD. 7 pints for $4.20 Let A = 2, B = 3, C = 9, and D = 15. Find the value of each expression listed below. -2 -14 10 2 -6 -10 14 6-A + C - (D B)----------------------> (answer) B (-C) - (-D) + A----------------------> (answer) (C + D) B + A----------------------> (answer) D B + A - C----------------------> (answer) : What is lymph? What is lymph? thick carbohydrate matrix that supports cells in various tissues of the body the portion of blood that contains red blood cells the layer of lipids that collects under the skin for protection and insulation protein-rich blood plasma that has left capillaries the portion of blood that contains white blood cells and platelets If you are given the molarity of a solution, what additional information would you need to find the weight/weight percent (w/w%)? Andrew is about to leave for school. If he walks at a speed of 50 meters per minute, he will arrive 3 minutes after the bell rings. If he runs at a speed of 80 meters per minute, he will arrive 3 minutes before the bell rings. In how many minutes will the bell ring? 144g of KCl dissolved in 1000cm3of water at 90oC. Calculate the solubility of KCl at this temperature. (K=39, Cl=35.5, 1dm3=1000cm3). Which group of plants were the first to adapt to life on land? flowering pine mosses conifers Simplify. Rewrite the expression in the form 4^n. 4^11/4^-8 A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true?a. the mass is initially released from rest from a point 1 meter below the equilibrium positionb. the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 11 m/s What effect would alcohol have on a 16 year old who has never had alcohol?3 possible effects HELP ME ASAP WITH MATH MONEY & WAGES Who was Toussaint LOuverture? What was one of his biggest fears? What is the answer for x? (3x-3) [6(x-10)] A concentric tube heat exchanger is used to cool a solution of ethyl alcohol flowing at 6.93 kg/s (Cp = 3810 J/kg-K) from 65.6 degrees C to 39.4 degrees C using water flowing at 6.30 kg/s at a temperature of 10 degrees C. Assume that the overall heat transfer coefficient is 568 W/m2-K. Use Cp = 4187 J/kg-K for water. a. What is the exit temperature of the water? b. Can you use a parallel flow or counterflow heat exchanger here? Explain. c. Calculate the rate of heat flow from the alcohol solution to the water. d. Calculate the required heat exchanger area for a parallel flow configuration e. Calculate the required heat exchanger area for a counter flow configuration. What happens when you try to do this? What is the solution? In captivity, tigers and lions have been known to interbreed and produce hybrids, known as ligers. Why does this NOT make them the same species, according to the biological species concept Zollverein started in 1834 in prussian refers to a :