Answer:
ionize
Explanation:
Acids are chemical substances that lose/donate their hydrogen ion (H+) when they react with water. This property of acids is termed IONIZATION. In a chemical reaction involving acids and bases, acids release their proton or hydrogen ion (H+) in the presence of water solutions to form a conjugate base, which is usually an anion.
For example, in the chemical reaction;
HX + H20 -------> X- + H30+
HX is the acid because it loses its electron to water and forms the anion, X-, which is the conjugate base. Hence, it can be said that acid HX ionizes in water.
The diagrams show the partides of a substance
Which statement best describes the process that the diagrams show?
O A solid loses fonetic energy to become a loud and then becomes a gas
O A solid sains kinetic energy to become a loud and then becomes a gas
O Asas loses tonerc energy to become a loud and then becomes a solid
O A gas as kinetic energy to become a loud and then becomes a solid
Answer:
B. A solid gains kinetic energy to become a liquid and then becomes a gas.
Which statement best describes how energy is important to chemistry?
A. Energy is stored in an atom's electrons.
B. Energy is not conserved during chemical reactions,
C. Energy is absorbed and released during chemical reactions,
D. Energy holds atoms and bonds together,
Answer:
C. Energy is absorbed and released during chemical reactions,
Explanation:
All chemical reactions involve energy. Energy is used to break bonds in reactants, and energy is released when new bonds form in products. Endothermic reactions absorb energy, and exothermic reactions release energy.
Tartaric acid, C4H6O6, has the first ionization constant with the value: Ka1 = 9.20 × 10-4. Calculate the value of pKb for the conjugate base of tartaric acid. 10.963 3.036 1.087 x 10-11 9.20 x 10-4
Answer:
pKb = 10.96
Explanation:
Tartaric acid is a dyprotic acid. It reacts to water like this:
H₂Tart + H₂O ⇄ H₃O⁺ + HTart⁻ Ka1
HTart⁻ + H₂O ⇄ H₃O⁺ + Tart⁻² Ka2
When we anaylse the base, we have
Tart⁻² + H₂O ⇄ OH⁻ + HTart⁻ Kb1
HTart⁻ + H₂O ⇄ OH⁻ + H₂Tart Kb2
Remember that Ka1 . Kb2 = Kw, plus pKa1 + pKb2 = 14
Kb2 = Kw / Ka1 → 1×10⁻¹⁴ / 9.20×10⁻⁴ = 1.08×10⁻¹¹
so pKb = - log Kb2 → - log 1.08×10⁻¹¹ = 10.96
Which energy profile best shows that the enthalpy of formation of CS2 is 89.4 KJ/mol?
Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.