Answer:
The answer is below
Step-by-step explanation:
Use the given degree of confidence and sample data to find a confidence interval for the population standard deviation . Assume that the population has a normal distribution. Round the confidence interval limits to the same number of decimal places as the sample standard deviation.
Answer: Given that:
Sample size (n) = 14, mean ([tex]\mu[/tex]) = 161.3, standard deviation ([tex]\sigma[/tex]) = 12.6
Confidence(C)= 90% = 0.9
α = 1 - C = 1- 0.9 = 0.1
α/2 = 0.1 / 2 = 0.05
The z score of α/2 correspond to a z score of 0.45 (0.5 - 0.05). This gives:
[tex]z_{\frac{\alpha}{2} }=1.645[/tex]
The margin of error (E) is given by the formula:
[tex]E=z_{\frac{\alpha}{2} }\frac{\sigma}{\sqrt{n} } =1.645*\frac{12.6}{\sqrt{14} }=5.5[/tex]
The confidence interval = μ ± E = 161.3 ± 5.5 = (155.8, 166.8)
The confidence interval is between 155.8 lb and 166.8 lb. There is a 90% confidence that the mean is between 155.8 lb and 166.8 lb.
Which of the following theorems verifies that CRV BYU?
A.
AA
B.
HL
C.
LL
D.
HA
Answer:
LL
Step-by-step explanation:
We have two right triangles
The two legs are congruent
We can use the LL congruence theorem
what is the answer to the equation? plz help 3x+8=9+3x-14
Answer:
It does not have an answer as 3x != 3x + 13 or not equalivalent
Step-by-step explanation:
Answer:
no solution
Step-by-step explanation:
3x+8=9+3x-14
Combine like terms
3x+8 = 3x -5
Subtract 3x from each side
8 = -5
This is never true so there is no solution
Solve the quadratic equation 4x2 – 2x = 9 using the quadratic formula
Answer:
x= 1 + or - sr37/4 got it from a sitr
Here you go.
I really hope I helped. Good luck.
WILL MARK AS BRAINLIEST 4. Suppose there is a card game where you are dealt a hand of three cards. You have already learned that the total number of three-card hands that can be dealt from a deck of 52 cards is: 52C3=52!/49!3! 52C3=22100 Calculate the probability of getting a hand that has exactly two aces in it (A A X). Do this by finding out the number of possible hands that have exactly two aces, and then dividing by the total possible number of three-card hands that is stated above. Part A: Use the multiplication principle to tell the total number of three-card hands (permutations) that can be made with two aces. (2 points) Part B: In the answer from Part I, each two-ace hand got counted twice. For example, A A X got counted as a separate hand from A A X. Since order should not matter in a card hand, these are really the same hand. What is the actual number of two-ace hands (combinations) you can get from a deck of 52 cards?(2 points) Part C: Find the probability of drawing a three-card hand that includes two aces from a deck of 52 cards. Write your answer as a fraction. (2 points)
Answer:
Part A- 6
Part B- 3
Part C- 3/22100
Step-by-step explanation:
Part A-
Use the permutation formula and plug in 3 for n and 2 for k.
nPr=n!/(n-k)!
3P2=3!/(3-2)!
Simplify.
3P2=3!/1!
3P2=6
Part B-
Use the combination formula and plug in 3 for n and 2 for k.
nCk=n!/k!(n-k)!
3C2=3!/2!(3-2)!
Simplify.
3C2=3!/2!(1!)
3C2=3
Part C-
It is given that the total number of three-card hands that can be dealt from a deck of 52 cards is 22100. Use the fact that the probability of something equals the total successful outcomes over the sample space. In this case the total successful outcomes is 3 and the sample space is 22100.
I believe the answer is 3/22100
I honestly suck at probability but I tried my best.
The solutions to the inequality ys-x+1 are shaded on
the graph. Which point is a solution?
(2, 3)
(3,-2)
(2.1)
(-1,3)
Answer:
the solutions to the inequality ys-x+1 are shaded on the graph. which point is B. (3 ,-2)
A bowl of Halloween candy contains 7 chocolate candies and 3 lemon candies. Tanya will choose one piece of candy at random.
PLEASE HELP WILL GIVE EVERYTHING Amare wants to ride a Ferris wheel that sits four meters above the ground and has a diameter of 50 meters. It takes six minutes to do three revolutions on the Ferris wheel. Complete the function, h(t), which models Amare's height above the ground, in meters, as a function of time, t, in minutes. Assume he enters the ride at the low point when t = 0.
Answer:
[tex]h(t)=-25\cos(\pi t)+29[/tex]
Step-by-step explanation:
First thing to understand is that we will be producing a sine or cosine function to solve this one. I'll use a cosine function for the sake of the problem, since it's most easily represented by a cosine wave flipped over. If you're interested in seeing a visualization of how a circle's height converts to one of these waves, you may find the Better Explained article Intuitive Understanding of Sine Waves helpful.
Now let's get started on the problem. Cosine functions generally take the form
[tex]y=a\cos(b(x-c))+d[/tex]
Where:
[tex]|a|[/tex] is the amplitude
[tex]\frac{2\pi}{b}[/tex] is the period, or the time it takes to go one full rotation around the circle (ferris wheel)
[tex]c[/tex] is the horizontal displacement
[tex]d[/tex] is the vertical shift
Step one, find the period of the function. To do this, we know that it takes six minutes to do three revolutions on the ferris wheel, so it takes 2 minutes to do one full revolution. Now, let's find [tex]b[/tex] to put into our function:
[tex]\frac{2\pi}{b}=2[/tex]
[tex]2\pi=2b[/tex]
[tex]\pi=b[/tex]
I skipped some of the basic algebra to shorten the solution, but we have found our b. Next, we'll get the amplitude of the wave by using the maximum and minimum height of the wheel. Remember, it's 4 meters at its lowest point, meaning its highest point is 54 meters in the air rather than 50. Using the formula for amplitude:
[tex]\frac{\max-\min}{2}[/tex]
[tex]\frac{54-4}{2}[/tex]
[tex]\frac{50}{2}=25=a[/tex]
Our vertical transformation is given by [tex]\min+a[/tex] or [tex]\max-a[/tex], which is the height of the center of the ferris wheel, [tex]4+25=29=d[/tex]
Because cosine starts at the minimum, [tex]c=0[/tex].
The last thing to point out is that a cosine wave starts at its maximum. For that reason, we need to flip the entire function by making the amplitude negative in our final equation. Therefore our equation ends up being:
[tex]h(t)=-25\cos(\pi t)+29[/tex]
Copy the problem, mark the givens in the diagram. Given: CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC, Prove: CR ≅ HS
Help urgently needed
Explanation:
1. CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC — given
2. ∆CRH ~ ∆HSC — AA similarity theorem
3. ∠SCH ≅ ∠RHC — corresponding angles of similar triangles are congruent
4. CH ≅ HC — reflexive property of congruence
5. ∆CRH ≅ ∆HSC — SAS congruence theorem
6. CR ≅ HS — CPCTC
A circle has a radius of 8ft. Find the length s of the arc intercepted by a central angle of π3 radians. Do not round any intermediate computations, and round your answer to the nearest tenth.
Answer:
8.4ft
Step-by-step explanation:
Formula for calculating the length of an arc is expressed as [tex]L = \frac{\theta}{360} * 2\pi r\\[/tex]
[tex]\theta[/tex] is the central angle = π/3 rad
r is the radius of the circle = 8ft
Substituting the values into the formula above we have;
[tex]L =[/tex] [tex]\frac{(\frac{\pi}{3} )}{2 \pi} * 2\pi (8)\\\\[/tex]
[tex]L = \frac{\pi}{6 \pi} * 2\pi(8) \\\\L = 1/6 * 16\pi\\\\L = 8\pi/3\\\\L = \frac{8(22/7)}{3} \\\\L = \frac{8*22}{7*3}\\ \\L = 176/21\\\\L = 8.4 ft (to\ the\ nearest\ tenth)[/tex]
Hence, the length of the arc s is approximately 8.4 ft.
need help thanksssssssss
Answer:
Volume: 112 m³.
Surface area: 172 m².
Step-by-step explanation:
The volume is the base times height times length. So, the volume will be 2 * 8 * 7 = 16 * 7 = 112 m³.
The surface area is 2lw + 2lh + 2wh. l = 8; w = 7; h = 2.
2(8)(7) + 2(8)(2) + 2(7)(2) = 2 * 56 + 2 * 16 + 2 * 14 = 112 + 32 + 28 = 112 + 60 = 172 m².
Hope this helps!
The population of a city can be modeled with a linear equation Y equals -80 X +3450 where X is the number of years after 2000 and why is the cities population by the description of the cities population based on equation
Answer:
retype that im not understanding .
Step-by-step explanation:
I need help with this !!
Answer:
A
Step-by-step explanation:
When subtracting 7 on the left of the equation, he also needs to subtract 7 from the right of the equation.
Step 2 should be:
⅓X +7 -7= 15 -7
What he is trying to do here by subtracting 7 is to move all the constants, that is numbers without any variables such as x, to one side of the equation.
⅓X= 8
X= 8 ×3
X= 24
Find the amount of money in savings account if $3200 was deposited for 3 years at 40% interest compounded annually. Find the interest
Step-by-step explanation:
Formula for compound interest is given by
[tex]A = P(1 + R) ^{n} [/tex]
Where
A is the amount at the end of the period
P is the principal
R is the rate
n is the period
The interest = A - P
From the question
P = $ 3200
n = 3 years
R = 40%
So we have
[tex]A = 3200 \times 2.744[/tex]
A = $ 8780.80
The amount is $ 8780.80The interest is
$ 8780.80 - $3200
= $ 5580.80Hope this helps you
Find the largest integer which belongs to the following interval: [−∞, 31]
Answer:
Largest integer in the interval [−∞, 31] is 31.
Step-by-step explanation:
Given the interval: [−∞, 31]
To find: The largest integer in this interval.
Solution:
First of all, let us learn about the representation of intervals.
Two kind of brackets can be used to represent the intervals. i.e. () and [].
Round bracket means not included in the interval and square bracket means included in the interval.
Also, any combination can also be used.
Let us discuss one by one.
1. [p, q] It means the interval contains the values between p and q. Furthermore, p and q are also included in the interval.
Smallest p
Largest q
2. (p, q) It means the interval contains the values between p and q. Furthermore, p and q are not included in the interval.
Smallest value just greater than p.
Largest value just smaller than q.
3. [p, q) It means the interval contains the values between p and q. Furthermore, p is included in the interval but q is not included in the interval.
Smallest value p.
Largest value just smaller than q.
4. (p, q] It means the interval contains the values between p and q. Furthermore, p is not included in the interval but q is included in the interval.
Smallest value just greater than p.
Largest value q.
As per above explanation, we can clearly observe that:
The largest integer which belongs to the following interval: [−∞, 31] is 31.
helppppppppppppp pleaseeeeeeeeeeeeee
Answer:
work is shown and pictured
The cost of plastering the 4 walls of a room which is 4m high and breadth one third of its length is Rs. 640 at the rate of Rs. 5/m². What will be the cost of carpeting its floor at the rate of Rs. 250/m².
Answer:
Rs. 32,000
Step-by-step explanation:
height = 4m
let length = x m
breadth = x/3 m
Area of the 4 walls = 2(length × height) + 2(breadth × height)
Area = 2(4×x) + 2(4 × x/3) = 8x + (8x)/3
Area = (32x)/3 m²
1 m² = Rs. 5
The cost for an area that is (32x)/3 m²= (32x)/3 × 5 Rs.
The cost of plastering 4 walls at Rs.5 per m² = 640
(32x)/3 × 5 = 640
(160x)/3 = 640
x = length = 12
Area = (32x)/3 m² = (32×12)/3 = 128m²
The cost of carpeting its floor at the rate of Rs. 250/m²:
= 128m² × Rs. 250/m² = 32,000
The cost of carpeting its floor at the rate of Rs. 250/m² = Rs. 32,000
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2. What is the lateral area of the smaller cylinder? 17.1π mm2 33.6π mm2 60π mm2 84π mm2
Answer:
84π mm^2
Step-by-step explanation:
formula for circumference is 2πr where r is the radius of circle
Given,The circumference of the base of a cylinder is 24π mm
Thus,
2πr= 24π mm
=> r = 24π mm/2π = 12 mm
________________________________________
A similar cylinder has a base with circumference of 60π mm.
radius for this cylinder will be
2πr= 60π mm
r = 60π mm/2π = 30mm
______________________________________________
Given
The lateral area of the larger cylinder is 210π mm2
lateral area of cylinder is given by 2πrl
where l is the length of cylinder
thus,
r for larger cylinder = 30mm
2π*30*l = 210π mm^2
=> l = 210π mm^2/2π*30 = 3.5 mm
___________________________________________
the lateral area of the smaller cylinder
r = 12 mm
l = 3.5 mm as both larger and smaller cylinder are same
2πrl = 2π*12*3.5 mm^2 = 84π mm^2 answer
Answer:
33.6pi mm2 is the correct answer
edge 2021
Step-by-step explanation:
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2.
What is the lateral area of the smaller cylinder?
17.1π mm2
33.6π mm2
60π mm2
84π mm2
Translate this sentence into an equation. 59 is the sum of 11 and Mai’s score
Answer:
11 + Mai's Score = 59
Step-by-step explanation:
You need to add 11 and Mai's score together to get 59, so with the values given we can make the equation 11 + Mai's Score = 59.
*depending on the question, Mai's score may need to be said as a letter variable, so:
If m = mai's score,
11 + m = 59
I hope this helped! :)
*4.8.21
Question Help
O
After the release of radioactive material into the atmosphere from a nuclear power plant in a country in 2000, the hay in that country was contaminated by a radioactive
isotope (half-life 7 days). If it is safe to feed the hay to cows when 14% of the radioactive isotope remains, how long did the farmers need to wait to use this hay?
The farmers needed to wait approximately days for it to be safe to feed the hay to the cows.
(Round to one decimal place as needed.)
ות
nts
Enter your answer in the answer box and then click Check Answer.
All parts showing
Clear All
Check Answer
OK
here to search
O
Answer:
19.9 days
Step-by-step explanation:
The amount remaining after d days is ...
a = (1/2)^(d/7)
We want to find d when a = 0.14
log(a) = (d/7)log(1/2)
d = 7·log(0.14)/log(1/2) ≈ 19.855 ≈ 19.9
The farmers need to wait about 19.9 days for it to be safe.
25 points will mark brainlest as part of the save nature campaign the city Forest department has decided to grow more trees to kick off the campaign they start by planting 2 pine trees it has been decided that every year they will increase the amount of trees but 1 tree less than the square of the previous year's count which of the following recursives formulas can be used to determine the total number of tree planted in the future assume there is in limited space for trees and n is the number of years of the program's operation
Answer:
N(n+1) = N(n)^2 - 1, n>=0, N(0) = 2
or equivalently
N(n) = N(n-1)^2 - 1, n>0, N(0) = 2
Step-by-step explanation:
Year 0 = 2 trees
year 1 = 2^2-1 = 3
year 2 = 3^2-1 =8
year 2 = 8^2-1 =63
...
Recursive formula
Let
n = integer year number
N(n) = number of trees to plant in year n
N(n+1) = N(n)^2-1, n>=0, N(0) = 2
or equivalently
N(n) = N(n-1)^2, n>0, N(0) = 2
Whats the options???
What is the measure of x?
Answer:
9 in.
Step-by-step explanation:
Given that the line 10 in. and line 4 in. are parallel, then the two triangles are similar.
As such, the ratio of the sides would give the same results.
Hence,
4/6 = 10/(6 + x)
cross multiplying
4(6 + x) = 60
Dividing both sides by 4
6 + x = 15
collecting like terms
x = 15 - 6
= 9
Amber created a scatter plot and drew a line of best fit, as shown. What is the equation of the line of best fit that Amber drew?
Answer:
The correct answer for the best line of fit is C: y = 1/3x+12
Step-by-step explanation:
So our goal here is to find the best equation that matches the line of fit.
So right away we can already eliminate two of the options because in the scatter point it shows that the starting y-intercept is 12 and two of the options have a y-intercept of 15. So we are able to tell that Option B and Option D isn't the equation for the lien of fit.
Now we are left with Option A and Option C, which both have a y-intercept of 12. To find the right equation that best matches the line of fit we look at the slope. Option A has a slope of 3x while Option C has a slope of 1/3x, to tell what slope the line of has we applied both option's slope and see which one matches it.
When we match Option A's slope which is 3x it doesn't match because a slope of 3x is going first going up the y-axis 3 times then moving through the x-axis 1 time. Which would had made the line of fit more steep.
Next we match Option C's slope which is 1/3x this slope matches the line of fit because in the scatter plot it clearly shows it going up 1 time on the y=axis and 3 times through the x-axis. Which made the line of fit not that steep.
So the correct answer to this question is C: y = 1/3x+12.
Here a picture of the line of fit if it has a slope of 3x.
Answer:
correct answer C: y = 1/3x+12
Step-by-step explanation:
i just did the problem
If x is 6, What is X+4
Answer:
x = 10
Step-by-step explanation:
We know x = 6
asked: x + 4
Plus it in =>
6 + 4
=> 10
For questions 13-15, Let Z1=2(cos(pi/5)+i Sin(pi/5)) And Z2=8(cos(7pi/6)+i Sin(7pi/6)). Calculate The Following Keeping Your Answer In Polar Form. 13. z1z2 14. z2 15. z1/z2
Answer:
Step-by-step explanation:
Given the following complex values Z₁=2(cos(π/5)+i Sin(πi/5)) And Z₂=8(cos(7π/6)+i Sin(7π/6)). We are to calculate the following complex numbers;
a) Z₁Z₂ = 2(cos(π/5)+i Sin(πi/5)) * 8(cos(7π/6)+i Sin(7π/6))
Z₁Z₂ = 18 {(cos(π/5)+i Sin(π/5))*(cos(7π/6)+i Sin(7π/6)) }
Z₁Z₂ = 18{cos(π/5)cos(7π/6) + icos(π/5)sin(7π/6)+i Sin(π/5)cos(7π/6)+i²Sin(π/5)Sin(7π/6)) }
since i² = -1
Z₁Z₂ = 18{cos(π/5)cos(7π/6) + icos(π/5)sin(7π/6)+i Sin(π/5)cos(7π/6)-Sin(π/5)Sin(7π/6)) }
Z₁Z₂ = 18{cos(π/5)cos(7π/6) -Sin(π/5)Sin(7π/6) + i(cos(π/5)sin(7π/6)+ Sin(π/5)cos(7π/6)) }
From trigonometry identity, cos(A+B) = cosAcosB - sinAsinB and sin(A+B) = sinAcosB + cosAsinB
The equation becomes
= 18{cos(π/5+7π/6) + isin(π/5+7π/6)) }
= 18{cos((6π+35π)/30) + isin(6π+35π)/30)) }
= 18{cos((41π)/30) + isin(41π)/30)) }
b) z2 value has already been given in polar form and it is equivalent to 8(cos(7pi/6)+i Sin(7pi/6))
c) for z1/z2 = 2(cos(pi/5)+i Sin(pi/5))/8(cos(7pi/6)+i Sin(7pi/6))
let A = pi/5 and B = 7pi/6
z1/z2 = 2(cos(A)+i Sin(A))/8(cos(B)+i Sin(B))
On rationalizing we will have;
= 2(cos(A)+i Sin(A))/8(cos(B)+i Sin(B)) * 8(cos(B)-i Sin(B))/8(cos(B)-i Sin(B))
= 16{cosAcosB-icosAsinB+isinAcosB-sinAsinB}/64{cos²B+sin²B}
= 16{cosAcosB-sinAsinB-i(cosAsinB-sinAcosB)}/64{cos²B+sin²B}
From trigonometry identity; cos²B+sin²B = 1
= 16{cos(A+ B)-i(sin(A+B)}/64
= 16{cos(pi/5+ 7pi/6)-i(sin(pi/5+7pi/6)}/64
= 16{ (cos 41π/30)-isin(41π/30)}/64
Z1/Z2 = (cos 41π/30)-isin(41π/30)/4
Answer:
13. 16(cos(41 π/30)+ isin(41 π/30))
14. Mine asked for z2 magnitude so I got 8 (magnitude is the same as modulus which is r)
15. 1/8 (cos(29 π/30)+ isin(29 π/30))
Step-by-step explanation:
13. Since we’re multiplying z1, and z2, use De Moivre’s theorem by multiplying the r values (2 and 8) and adding the theta values (π/5 and 7π/6). Adding the angle values should lead you to have 41 π/30, and the rest is self-explanatory.
14. Explanation is in the answer, just take the r value from z2 for magnitude (at least that’s what’s on my practice assignment)
15. Use De Moivre’s theorem again, this time with division, so you will divide the r values (2 divided by 8) and subtract the theta values (π/5 minus 7π/6). 2/8 simplifies to 1/8 and when subtracting with 6π/30 - 35π/30 (finding common denominators) you should get 29π/30.
find the product 8x(2x^2+8x-5)
Answer:
16x^3 +64x^2 -40x
Step-by-step explanation:
Use the distributive property. The factor outside parentheses multiplies each term inside parentheses:
8x(2x^2 +8x -5) = (8x)(2x^2) +(8x)(8x) +(8x)(-5)
= 16x^3 +64x^2 -40x
which numbers are the extremes of the proption shown below. 3/4 = 6/8
Answer:
3 and 8
Step-by-step explanation:
Given the proportion:
[tex] \frac{3}{4} = \frac{6}{8}[/tex]
Required:
Find the extreme values.
When given an equation like the one we have here, there is always a very easy way to find the extreme value.
First make rewrite to a ratio form:
Example:
a:b = c:d
Just know that extreme values are the values on the outside of the ratio(a & d)
Therefore,
3:4 = 6:8
When it is written this way extreme values are 3 & 8
Extreme values = 3 and 8
The value of a car dropped from $7400 to $6800 over the last year. What percent decrease is this?
Answer:
8.1% decrease
Step by step
To find precentage decrease we use formula:
Percent decrease= original amount-new amount/original amount(100%)
percent decrease= 7,400-6,800/7,400(100%)=300/37=8.1%
How to calculate a circumference of a circle?
Answer: Pi multiplied by the diameter of the circle
Step-by-step explanation:
Answer:
The formula for finding the circumference of a circle is [tex]C = 2\pi r[/tex]. You substitute the radius of the circle for [tex]r[/tex] and multiply it by [tex]2\pi[/tex].
2) A basketball player scores 70% of his shots on average. What is the probability that he scores at least 18 successful shots tonight if he gets 20 shots?
Answer:
3.54%
Step-by-step explanation:
This question represents a binomial distribution. A binomial distribution is given by:
[tex]P(x)=\frac{n!}{(n-x)!x!} p^xq^{n-x}[/tex]
Where n is the total number of trials, p is the probability of success, q is the probability of failure and x is the number of success.
Given that:
A basketball player scores 70% of his shots on average, therefore p = 70% = 0.7. Also q = 1 - p = 1 - 0.7 = 0.3.
The total number of trials (n) = 20 shots
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20)
P(x = 18) = [tex]\frac{20!}{(20-18)!18!}*0.7^{18}*0.3^{20-18}=0.0278[/tex]
P(x = 19) = [tex]\frac{20!}{(20-19)!19!}*0.7^{19}*0.3^{20-19}=0.0068[/tex]
P(x = 20) = [tex]\frac{20!}{(20-20)!20!}*0.7^{20}*0.3^{20-20}=0.0008[/tex]
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20) = 0.0278 + 0.0068 + 0.0008 = 0.0354 = 3.54%
Please help
ASAP
ANSWERS
A-48.21
B-66.35
C-53.68
D-28.34
Answer:
B
Step-by-step explanation:
Using the cosine ratio in the right triangle
cos54° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{39}{AB}[/tex] ( multiply both sides by AB )
AB × cos54° = 39 ( divide both sides by cos54° )
AB = [tex]\frac{39}{cos54}[/tex] ≈ 66.35 → B